182
Views
1
CrossRef citations to date
0
Altmetric
Adsorption

Green mechanochemical route for the synthesis of carboxy-rich polyaniline/multiwalled carbon nanotubes composite as a competent adsorbent for cationic dyes

, , , & ORCID Icon
Pages 454-466 | Received 07 Jun 2022, Accepted 03 Oct 2022, Published online: 20 Oct 2022

References

  • Lellis, B.; Fávaro-Polonio, C. Z.; Pamphile, J. A.; Polonio, J. C. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. DOI: 10.1016/j.biori.2019.09.001.
  • Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A. H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L. A., et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14(2), 242. DOI: 10.3390/w14020242.
  • Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. DOI: 10.1016/j.jece.2018.06.060.
  • Zhao, Y.; Yang, Q.; Yan, B.; Liu, B.; Gu, Y.; Lin, Y.; Shang, J.; Liu, W.; Chen, S.; Lan, J. Aminated Polyacrylonitrile Nanofiber Membranes for the Removal of Organic Dyes. Acs Appl. Nano Mater. 2022, 5(1), 1131–1140. DOI: 10.1021/acsanm.1c03759.
  • Yadav, D.; Karki, S.; Ingole, P. G. Current Advances and Opportunities in the Development of Nanofiltration (NF) Membranes in the Area of Wastewater Treatment, Water Desalination, Biotechnological and Pharmaceutical Applications. J. Environ. Chem. Eng. 2022, 10, 108109. DOI: 10.1016/j.jece.2022.108109.
  • Su, M.; Li, H.; He, X.; Xu, Z. Significant Enhancement of Pesticide and Organic Dyes Degradation by Ion-Exchange Within a Metal–organic Framework. Polyhedron 2022, 215, 115651. DOI: 10.1016/j.poly.2022.115651.
  • Lu, C.; Yang, J.; Khan, A.; Yang, J.; Li, Q.; Wang, G. A Highly Efficient Technique to Simultaneously Remove Acidic and Basic Dyes Using Magnetic Ion-Exchange Microbeads. J. Environ. Manage. 2022, 304, 114173. DOI: 10.1016/j.jenvman.2021.114173.
  • Bouchareb, R.; Bilici, Z.; Dizge, N. Water Recovery from Yarn Fabric Dyeing Wastewater Using Electrochemical Oxidation and Membrane Processes. Water Environ. Res. 2022, 94(1), 1681. DOI: 10.1002/wer.1681.
  • Hassani, A.; Malhotra, M.; Karim, A. V.; Krishnan, S.; Nidheesh, P. V. Recent Progress on Ultrasound-Assisted Electrochemical Processes: A Review on Mechanism, Reactor Strategies, and Applications for Wastewater Treatment. Environ. Res. 2022, 205, 112463. DOI: 10.1016/j.envres.2021.112463.
  • Rajappa, S.; Shivarathri, P. G.; Kumari, M. L. A.; Swamygowda, D. K.; Devendrachari, M. C.; Kotresh, H. M. N. Mechanochemical Route for Tetra Amino Zinc Phthalocyanine Embedded PANI Sensitized Fe2O3 Heteroarchitecture for Photodegradation of Dyes Under the Influence of Low Power LED Light Source. Surf. Interfaces 2022, 29, 101720. DOI: 10.1016/j.surfin.2022.101720.
  • Padervand, M.; Hajiahmadi, S. Ag/AgCl@tubular G-C3N4 Nanostructure as an Enhanced Visible Light Photocatalyst for the Removal of Organic Dye Compounds and Biomedical Waste Under Visible Light. J. Photochem. Photobiol. A Chem. 2022, 425, 113700. DOI: 10.1016/j.jphotochem.2021.113700.
  • Ihaddaden, S.; Aberkane, D.; Boukerroui, A.; Robert, D. Removal of Methylene Blue (Basic Dye) by Coagulation-Flocculation with Biomaterials (Bentonite and Opuntia Ficus Indica). J. Water Process Eng. 2022, 49, 102952. DOI: 10.1016/j.jwpe.2022.102952.
  • Sun, L.; Mo, Y.; Zhang, L. A Mini Review on Bio-Electrochemical Systems for the Treatment of Azo Dye Wastewater: State-Of-The-Art and Future Prospects. Chemosphere 2022, 133801. DOI: 10.1016/j.chemosphere.2022.133801.
  • Raji, F.; Shayesteh, H.; Rahbar-Kelishami, A. YY Microfluidic Polymer/Salt Aqueous Two-Phase System for Optimization of Dye Extraction: Evaluation of Channel Geometry. Sep. Sci. Technol. 2022, 57, 1–11. DOI: 10.1080/01496395.2022.2059677.
  • Dutta, S.; Gupta, B.; Srivastava, S. K.; Gupta, A. K. Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv. 2021, 2, 4497–4531. DOI: 10.1039/D1MA00354B.
  • Lan, D.; Zhu, H.; Zhang, J.; Li, S.; Chen, Q.; Wang, C.; Wu, T.; Xu, M. Adsorptive Removal of Organic Dyes via Porous Materials for Wastewater Treatment in Recent Decades: A Review on Species, Mechanisms and Perspectives. Chemosphere 2021, 293, 133464. DOI: 10.1016/j.chemosphere.2021.133464.
  • Negarestani, M.; Farimaniraad, H.; Mollahosseini, A.; Kheradmand, A.; Shayesteh, H. Facile Preparation of Sisal–fe/Zn Layered Double Hydroxide Bio-Nanocomposites for the Efficient Removal of Rifampin from Aqueous Solution: Kinetic, Equilibrium, and Thermodynamic Studies. Int. J. Phytoremediation 2022, 1–12. DOI:10.1080/15226514.2022.2093834.
  • Kheradmand, A.; Negarestani, M.; Kazemi, S.; Shayesteh, H.; Javanshir, S.; Ghiasinejad, H. Adsorption Behavior of Rhamnolipid Modified Magnetic Co/Al Layered Double Hydroxide for the Removal of Cationic and Anionic Dyes. Sci. Rep. 2022, 12(1), 1–17. DOI: 10.1038/s41598-022-19056-0.
  • Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R. Adsorption of Malachite Green and Crystal Violet Cationic Dyes from Aqueous Solution Using Pumice Stone as a Low-Cost Adsorbent: Kinetic, Equilibrium, and Thermodynamic Studies. Desalinat. Water Treat. 2016, 57(27), 12822–12831. DOI: 10.1080/19443994.2015.1054315.
  • Kalidason, A.; Kuroiwa, T. Synthesis of Chitosan–magnetite Gel Microparticles with Improved Stability and Magnetic Properties: A Study on Their Adsorption, Recoverability, and Reusability in the Removal of Monovalent and Multivalent Azo Dyes. React. Funct. Polym. 2022, 173, 105220. DOI: 10.1016/j.reactfunctpolym.2022.105220.
  • Choudhary, M.; Sharma, A.; Raj, S. A.; Sultan, M. T. H.; Hui, D.; Shah, A. U. M. Contemporary Review on Carbon Nanotube (CNT) Composites and Their Impact on Multifarious Applications. Nanotechnol. Rev. 2022, 11(1), 2632–2660. DOI: 10.1515/ntrev-2022-0146.
  • Jain, N.; Gupta, E.; Kanu, N. J. Plethora of Carbon Nanotubes Applications in Various Fields–a State-Of-The-Art-Review. Smart Sci. 2022, 10(1), 1–24. DOI: 10.1080/23080477.2021.1940752.
  • Vinodh, R.; Babu, R. S.; Sambasivam, S.; Gopi, C. V. M.; Alzahmi, S.; Kim, H. J.; de Barros, A. L. F.; Obaidat, I. M. Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review. Nanomaterials 2022, 12, 9, 1511. DOI: 10.3390/nano12091511
  • Das, H. T.; Dutta, S.; Beura, R.; Das, N. Role of Polyaniline in Accomplishing a Sustainable Environment: Recent Trends in Polyaniline for Eradicating Hazardous Pollutants. Environ. Sci. Pollut. Res. 2022, 29, 1–34. DOI: 10.1007/s11356-022-20916-5.
  • Gaikwad, P.; Devendrachari, M. C.; Thimmappa, R.; Paswan, B.; Raja Kottaichamy, A.; Kotresh, H. M. N.; Thotiyl, M. O. Galvanic Cell Type Sensor for Soil Moisture Analysis. Anal. Chem. 2015, 87, 7439–7445. DOI: 10.1021/acs.analchem.5b01653.
  • Sudhakara, S. M.; Devendrachari, M. C.; Kotresh, H. M. N.; Khan, F. Silver Nanoparticles Decorated Phthalocyanine Doped Polyaniline for the Simultaneous Electrochemical Detection of Hydroquinone and Catechol. J. Electroanal. Chem. 2021, 884, 115071. DOI: 10.1016/j.jelechem.2021.115071.
  • Sudhakara, S. M.; Devendrachari, M. C.; Kotresh, H. M. N.; Khan, F. Phthalocyanine Pendented Polyaniline via Amide Linkage for an Electrochemical Sensing of H2O2. Microchem. J. 2021, 161, 105781. DOI: 10.1016/j.microc.2020.105781.
  • Sudhakara, S. M.; Devendrachari, M. C.; Kotresh, H. M. N.; Khan, F. Synthesis and Electrochemical Investigation of Tetra Amino Cobalt (II) Phthalocyanine Functionalized Polyaniline Nanofiber for the Selective Detection of Dopamine. Electroanalysis 2020, 32, 1807–1817. DOI: 10.1002/elan.202000067.
  • Motamedi, M.; Mollahosseini, A.; Negarestani, M. Ultrasonic-Assisted Batch Operation for the Adsorption of Rifampin and Reactive Orange 5 Onto Engineered Zeolite–polypyrrole/TiO2 Nanocomposite. Int. J. Environ. Sci. Technol. 2022, 19, 1–18. DOI: 10.1007/s13762-022-03951-0.
  • Saxena, M.; Sharma, N.; Saxena, R. Highly Efficient and Rapid Removal of a Toxic Dye: Adsorption Kinetics, Isotherm, and Mechanism Studies on Functionalized Multiwalled Carbon Nanotubes. Surf. Interfaces 2020, 21, 100639. DOI: 10.1016/j.surfin.2020.100639.
  • Khalili, M. S.; Zare, K.; Moradi, O.; Sillanpää, M. Preparation and Characterization of Mwcnt–cooh–cellulose–mgo NP Nanocomposite as Adsorbent for Removal of Methylene Blue from Aqueous Solutions: Isotherm, Thermodynamic and Kinetic Studies. J. Nanostruct. Chem. 2018, 8, 103–121. DOI: 10.1007/s40097-018-0258-5.
  • Robati, D.; Mirza, B.; Ghazisaeidi, R.; Rajabi, M.; Moradi, O.; Tyagi, I.; Gupta, V. K. Adsorption Behavior of Methylene Blue Dye on Nanocomposite Multi-Walled Carbon Nanotube Functionalized Thiol (MWCNT-SH) as New Adsorbent. J. Mol. Liq. 2016, 216, 830–835. DOI: 10.1016/j.molliq.2016.02.004.
  • Ehyaee, M.; Safa, F.; Shariati, S. Magnetic Nanocomposite of Multi-Walled Carbon Nanotube as Effective Adsorbent for Methyl Violet Removal from Aqueous Solutions: Response Surface Modelling and Kinetic Study. Korean J. Chem. Eng. 2017, 34, 1051–1061. DOI: 10.1007/s11814-016-0353-6.
  • Yadav, S. K.; Dhakate, S. R.; Singh, B. P. Carbon Nanotube Incorporated Eucalyptus Derived Activated Carbon-Based Novel Adsorbent for Efficient Removal of Methylene Blue and Eosin Yellow Dyes. Bioresour. Technol. 2022, 344, 126231. DOI: 10.1016/j.biortech.2021.126231.
  • Zhao, Z.; Yang, Y.; Xu, L.; Qiu, Z.; Wang, Z.; Luo, Y.; Du, K. Amino Acid-Doped Polyaniline Nanotubes as Efficient Adsorbent for Wastewater Treatment. J. Chem. 2022, 2022, 1–12. DOI: 10.1155/2022/2041512.
  • Gohoho, H. D.; Noby, H.; Hayashi, J. I.; El-Shazly, A. H. Various Acids Functionalized Polyaniline–peanut Shell Activated Carbon Composites for Dye Removal. J. Mater. Cycles Waste Manage. 2022, 24, 1–16. DOI: 10.1007/s10163-022-01408-7.
  • Myasoedova, T. N.; Gadzhieva, V. A.; Miroshnichenko, Y. S. Properties of Mesoporous Pani Nanorods Obtained by Facil Acid-Free Synthesis as a Sorbent for Methylene Blue and Indigo Carmine Removal. J. Polym. Res. 2022, 29(8), 1–13. DOI: 10.1007/s10965-022-03206-z.
  • Karami, K.; Beram, S. M.; Bayat, P.; Siadatnasab, F.; Ramezanpour, A. A Novel Nanohybrid Based on Metal–organic Framework MIL101− Cr/PANI/Ag for the Adsorption of Cationic Methylene Blue Dye from Aqueous Solution. J. Mol. Struct. 2022, 1247, 131352. DOI: 10.1016/j.molstruc.2021.131352.
  • Kumar, R.; Ansari, M. O.; Barakat, M. A. Adsorption of Brilliant Green by Surfactant Doped Polyaniline/MWCNTs Composite: Evaluation of the Kinetic, Thermodynamic, and Isotherm. Ind. Eng. Chem. Res. 2014, 53, 7167–7175. DOI: 10.1021/ie500100d.
  • Aliabadi, R. S.; Mahmoodi, N. O. Synthesis and Characterization of Polypyrrole, Polyaniline Nanoparticles and Their Nanocomposite for Removal of Azo Dyes; Sunset Yellow and Congo Red. J. Cleaner Prod. 2018, 179, 235–245. DOI: 10.1016/j.jclepro.2018.01.035.
  • Andersen, J.; Mack, J. Mechanochemistry and Organic Synthesis: From Mystical to Practical. Green. Chem. 2018, 20, 1435–1443. DOI: 10.1039/C7GC03797J.
  • Espro, C.; Rodríguez-Padrón, D. Re-Thinking Organic Synthesis: Mechanochemistry as a Greener Approach. Curr. Opin. Green Sustain. Chem. 2021, 30, 100478. DOI: 10.1016/j.cogsc.2021.100478.
  • O’Neill, R. T.; Boulatov, R. The Many Flavours of Mechanochemistry and Its Plausible Conceptual Underpinnings. Nat. Rev. Chem. 2021, 5, 148–167. DOI: 10.1038/s41570-020-00249-y.
  • Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Mechanochemistry: Toward Green Synthesis of Metal–organic Frameworks. Mater. Today 2021, 46, 109–124. DOI: 10.1016/j.mattod.2021.01.008.
  • Ying, P.; Yu, J.; Su, W. Liquid-Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv. Synth. Catal. 2021, 363, 1246–1271. DOI: 10.1002/adsc.202001245.
  • Ahsani-Namin, Z.; Norouzbeigi, R.; Shayesteh, H. Green Mediated Combustion Synthesis of Copper Zinc Oxide Using Eryngium Planum Leaf Extract as a Natural Green Fuel: Excellent Adsorption Capacity Towards Congo Red Dye. Ceram. Int. 2022, 48, 20961–20973. DOI: 10.1016/j.ceramint.2022.04.090.
  • Paul, S. J.; Gupta, B. K.; Chandra, P. Probing the Electrical and Dielectric Properties of Polyaniline Multi-Walled Carbon Nanotubes Nanocomposites Doped in Different Protonic Acids. Polym. Bull. 2021, 78(10), 5667–5683. DOI: 10.1007/s00289-020-03399-7.
  • Rivas, B. L.; Sanchez, C. O. Poly (2‐) and (3‐aminobenzoic Acids) and Their Copolymers with Aniline: Synthesis, Characterization, and Properties. J. Appl. Polym. Sci. 2003, 89(10), 2641–2648. DOI: 10.1002/app.12236.
  • Tanty, N.; Patra, A.; Maity, K. P.; Prasad, V. Tuning Magnetoresistance and Electrical Resistivity by Enhancing Localization Length in Polyaniline and Carbon Nanotube Composites. Bull. Mater. Sci. 2019, 42(5), 1–7. DOI: 10.1007/s12034-019-1890-5.
  • Chen, J.; Chen, Q.; Ma, Q. Influence of Surface Functionalization via Chemical Oxidation on the Properties of Carbon Nanotubes. J. Colloid Interface Sci. 2012, 370(1), 32–38. DOI: 10.1016/j.jcis.2011.12.073.
  • Kumar, A. S. K.; Jiang, S. J.; Tseng, W. L. Effective Adsorption of Chromium (VI)/Cr (III) from Aqueous Solution Using Ionic Liquid Functionalized Multiwalled Carbon Nanotubes as a Super Sorbent. J. Mater. Chem. A 2015, 3(13), 7044–7057. DOI: 10.1039/C4TA06948J.
  • Ahamad, T.; Naushad, M.; Eldesoky, G. E.; Al-Saeedi, S. I.; Nafady, A.; Al-Kadhi, N. S.; Ala’a, H.; Khan, A. A.; Khan, A. Effective and Fast Adsorptive Removal of Toxic Cationic Dye (MB) from Aqueous Medium Using Amino-Functionalized Magnetic Multiwall Carbon Nanotubes. J. Mol. Liq. 2019, 282, 154–161. DOI: 10.1016/j.molliq.2019.02.128.
  • Ai, L.; Zhang, C.; Liao, F.; Wang, Y.; Li, M.; Meng, L.; Jiang, J. Removal of Methylene Blue from Aqueous Solution with Magnetite Loaded Multi-Wall Carbon Nanotube: Kinetic, Isotherm and Mechanism Analysis. J. Hazard. Mater. 2011, 198, 282–290. DOI: 10.1016/j.jhazmat.2011.10.041.
  • Kunde, G. B.; Sehgal, B.; Ganguli, A. K. Synthesis of Mesoporous Rebar MWCNT/Alumina Composite (RMAC) Nodules for the Effective Removal of Methylene Blue and Cr (VI) from an Aqueous Medium. J. Hazard. Mater. 2019, 374, 140–151. DOI: 10.1016/j.jhazmat.2019.03.099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.