235
Views
3
CrossRef citations to date
0
Altmetric
Electrical Separation

Assessment of EDTA-enhanced electrokinetic removal of metal(loid)s from phosphate mine tailings

ORCID Icon, , , &
Pages 613-625 | Received 30 Jul 2022, Accepted 24 Oct 2022, Published online: 01 Nov 2022

References

  • Vriens, B.; Plante, B.; Seigneur, N.; Jamieson, H. Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management. Minerals. 2020, 10(9), 728. DOI: 10.3390/min10090728.
  • Chia, R. W.; Lee, J.Y.; Jang, J.; Kim, H.; Kwon, K. D. Soil Health and Microplastics: A Review of the Impacts of Microplastic Contamination on Soil Properties. J. Soils Sediments. 2022, 22(10), 2690–2705. DOI: 10.1007/s11368-022-03254-4.
  • Hudson-Edwards, K. Tackling Mine Wastes. Science. 2016, 352(6283), 288–290. DOI: 10.1126/science.aaf3354.
  • Karaca, O.; Cameselle, C.; Reddy, K. R. Mine Tailing Disposal Sites: Contamination Problems, Remedial Options and Phytocaps for Sustainable Remediation. Rev. Environ. Sci. Biotec. 2018, 17(1), 205–228. DOI: 10.1007/s11157-017-9453-y.
  • Ostovar, M.; Saberi, N.; Ghiassi, R. Selenium Contamination in Water; Analytical and Removal Methods: A Comprehensive Review. Sep. Sci. Technol. 2022, 57(15), 2500–2520. DOI: 10.1080/01496395.2022.2074861.
  • Skrzypiec, K.; Gajewska, M. H. The Use of Constructed Wetlands for the Treatment of Industrial Wastewater. J. Water Land Dev. 2017, 34(1), 233–240. DOI: 10.1515/jwld-2017-0058.
  • Huang, T.; Cao, Z. X.; Jin, J. X.; Zhou, L.; Zhang, S. W.; Liu, L. F. Hydroxyapatite Nanoparticle Functionalized Activated Carbon Particle Electrode That Removes Strontium from Spiked Soils in a Unipolar Three-Dimensional Electrokinetic System. J. Environ. Manage. 2021a, 280, 111697. DOI: 10.1016/j.jenvman.2020.111697.
  • Huang, T.; Liu, L.; Zhang, S.; Xu, J. Evaluation of Electrokinetics Coupled with a Reactive Barrier of Activated Carbon Loaded with a Nanoscale Zero-Valent Iron for Selenite Removal from Contaminated Soils. J. Hazard. Mater. 2019a, 368, 104–114. DOI: 10.1016/j.jhazmat.2019.01.036.
  • Huang, T.; Song, D.; Chen, X.; Cao, J.; Jin, J. X.; Liu, W.; Zhang, S. W.; Liu, L.-F.; Yang, C.-H.; Zhou, L.; Xu, J. A Green Rust-Coated Expanded Perlite Particle Electrode-Based Adsorption Coupling with the Three-Dimensional Electrokinetics That Enhances Hexavalent Chromium Removal. Ecotoxicol. Environ. Saf. 2021b, 213, 112003. DOI: 10.1016/j.ecoenv.2021.112003.
  • Ostovar, M.; Ghiassi, R.; Mehdizadeh, M. J.; Shariatmadari, N. Effects of Crude Oil on Geotechnical Specification of Sandy Soils. Soil Sediment Contam. 2021, 30(1), 58–73. DOI: 10.1080/15320383.2020.1792410.
  • Wang, Y.; Li, A.; Cui, C. Remediation of Heavy Metal-Contaminated Soils by Electrokinetic Technology: Mechanisms and Applicability. Chemosphere. 2020, 265, 129071. DOI: 10.1016/j.chemosphere.2020.129071.
  • Zhang, Y.; Chu, G.; Dong, P.; Xiao, J.; Meng, Q.; Baumgartel, M.; Xu, B.; Hao, T. Enhanced Electrokinetic Remediation of Lead- and Cadmium-Contaminated Paddy Soil by Composite Electrolyte of Sodium Chloride and Citric Acid. J. Soils Sediments. 2018, 18(5), 1915–1924. DOI: 10.1007/s11368-017-1890-2.
  • Acar, Y. B.; Alshawabkeh, A. N. Principles of Electrokinetic Remediation. Environ. Sci. Technol. 1993, 27(13), 2638–2645. DOI: 10.1021/es00049a002.
  • Acar, Y. B.; Gale, R. J.; Alshawabkeh, A. N.; Marks, R. E.; Puppala, S.; Bricka, M.; Parker, R. Electrokinetic Remediation: Basics and Technology Status. J. Hazard. Mater. 1995, 40(2), 117–137. DOI: 10.1016/0304-3894(94)00066-P.
  • Huang, T.; Zhang, S.; Liu, L. Immobilization of Trace Heavy Metals in the Electrokinetics-Processed Municipal Solid Waste Incineration Fly Ashes and Its Characterizations and Mechanisms. J. Environ. Manage. 2019b, 232, 207–218. DOI: 10.1016/j.jenvman.2018.11.051.
  • Wang, X.; Lu, X.; Yi, X.; Li, Z.; Zhou, Y.; Duan, G.; Lei, M. Changes in Soil Available Cadmium and Bacterial Communities After Fallowing Depend on Contamination Levels. J. Soils Sediments. 2021, 21(3), 1408–1419. DOI: 10.1007/s11368-021-02877-3.
  • Wen, D.; Fu, R.; Li, Q. Removal of Inorganic Contaminants in Soil by Electrokinetic Remediation Technologies: A Review. J. Hazard. Mater. 2020, 401, 123345. DOI: 10.1016/j.jhazmat.2020.123345.
  • Baek, K.; Kim, D.-H.; Park, S.-W.; Ryu, B.-G.; Bajargal, T.; Yang, J.-S. Electrolyte Conditioning-Enhanced Electrokinetic Remediation of Arsenic-Contaminated Mine Tailing. J. Hazard. Mater. 2009, 161(1), 457–462. DOI: 10.1016/j.jhazmat.2008.03.127.
  • Huang, T.; Liu, L.; Zhou, L.; Yang, K. Operating Optimization for the Heavy Metal Removal from the Municipal Solid Waste Incineration Fly Ashes in the Three-Dimensional Electrokinetics. Chemosphere. 2018a, 204, 294–302. DOI: 10.1016/j.chemosphere.2018.04.065.
  • Huang, T.; Zhang, S. W.; Zhou, L.; Liu, L. F. Electrokinetics Couples with the Adsorption of Activated Carbon-Supported Hydroxycarbonate Green Rust That Enhances the Removal of Sr Cations from the Stock Solution in Batch and Column. Sep. Purif. Technol. 2021c, 265, 118531. DOI: 10.1016/j.seppur.2021.118531.
  • Huang, T.; Zhou, L.; Chen, L.; Liu, W.; Zhang, S.; Liu, L. Mechanism Exploration on the Aluminum Supplementation Coupling the Electrokinetics-Activating Geopolymerization That Reinforces the Solidification of the Municipal Solid Waste Incineration Fly Ashes. Waste Manage. 2020, 103, 361–369. DOI: 10.1016/j.wasman.2019.12.048.
  • Kim, S.O.; Jeong, J. Y.; Lee, W.C.; Yun, S.-T.; Jo, H. Y. Electrokinetic Remediation of Heavy Metal-Contaminated Soils: Performance Comparison Between One- and Two-Dimensional Electrode Configurations. J. Soils Sediments. 2021, 21(8), 2755–2769. DOI: 10.1007/s11368-020-02803-z.
  • Ryu, B.-G.; Yang, J.-S.; Kim, D.-H.; Baek, K. Pulsed Electrokinetic Removal of Cd and Zn from Fine-Grained Soil. J. Appl. Electrochem. 2010, 40(6), 1039–1047. DOI: 10.1007/s10800-009-0046-5.
  • Yao, W.; Cai, Z.; Sun, S.; Romantschuk, M.; Sinkkonen, A.; Sun, Y.; Wang, Q. Electrokinetic-Enhanced Remediation of Actual Arsenic-Contaminated Soils with Approaching Cathode and Fe0 Permeable Reactive Barrier. J. Soils Sediments. 2020, 20(3), 1526–1533. DOI: 10.1007/s11368-019-02459-4.
  • Hassan, I.; Mohamedelhassan, E. Efficacy of Electrokinetics in Remediating Soft Clay Slurries Contaminated with Cadmium and Copper. Water Air Soil Pollut. 2021, 232(7), 1–13. DOI: 10.1007/s11270-021-05250-9.
  • Huang, T.; Zhou, L.; Liu, L.; Xia, M. Ultrasound-Enhanced Electrokinetic Remediation for Removal of Zn, Pb, Cu and Cd in Municipal Solid Waste Incineration Fly Ashes. Waste Manage. 2018b, 75, 226–235. DOI: 10.1016/j.wasman.2018.01.029.
  • Rosa, M. A.; Egido, J. A.; Marquez, M. C. Enhanced Electrochemical Removal of Arsenic and Heavy Metals from Mine Tailings. J. Taiwan Inst. Chem. Eng. 2017, 78, 409–415. DOI: 10.1016/j.jtice.2017.06.046.
  • Torabi, M. S.; Asadollahfardi, G.; Rezaee, M.; Panah, N. B. Electrokinetic Removal of Cd and Cu from Mine Tailing: EDTA Enhancement and Voltage Intensity Effects. J. Hazard. Toxic Radioact. Waste. 2021, 25(2), 05020007. DOI: 10.1061/(ASCE)HZ.2153-5515.0000579.
  • Le Hecho, I.; Pecheyran, C.; Charles, S.; Monperrus, M.; Pavageau, M. P.; Casiot, C.; Potin-Gautier, M.; Leblanc, M.; Donard, O. F. X. Biogeochemical Cycle and Speciation of as and Cr in an Acid Mine Environment: The Case of Carnoulès Creek, France. J. Phys. IV (Proceedings). May 2003, 107, 735–738. EDP sciences. DOI: 10.1051/jp4:20030406.
  • Ortiz-Soto, R.; Leal, L.; Gutierrez, C.; Aracena, A.; Rojo, A.; Hansen, H. K. Electrokinetic Remediation of Manganese and Zinc in Copper Mine Tailings. J. Hazard. Mater. 2019, 365, 905–911.
  • Asadollahfardi, G.; Sarmadi, M. S.; Rezaee, M.; Khodadadi-Darban, A.; Yazdani, M.; Paz-Garcia, J. M. Comparison of Different Extracting Agents for the Recovery of Pb and Zn Through Electrokinetic Remediation of Mine Tailings. J. Environ. Manage. 2021, 279, 111728. DOI: 10.1016/j.jenvman.2020.111728.
  • Song, Y.; Cang, L.; Zuo, Y.; Yang, J.; Zhou, D.; Duan, T.; Wang, R. EDTA-Enhanced Electrokinetic Remediation of Aged Electroplating Contaminated Soil Assisted by Combining Dual Cation-Exchange Membranes and Circulation Methods. Chemosphere. 2020, 243, 125439. DOI: 10.1016/j.chemosphere.2019.125439.
  • Giannis, A.; Pentari, D.; Wang, J.-Y.; Gidarakos, E. Application of Sequential Extraction Analysis to Electrokinetic Remediation of Cadmium, Nickel and Zinc from Contaminated Soils. J. Hazard. Mater. 2010, 184(1–3), 547–554. DOI: 10.1016/j.jhazmat.2010.08.070.
  • Tang, J.; Qiu, Z.; Tang, H.; Wang, H.; Sima, W.; Liang, C.; Liao, Y.; Li, Z.; Wan, S.; Dong, J. Coupled with EDDS and Approaching Anode Technique Enhanced Electrokinetic Remediation Removal Heavy Metal from Sludge. Environ. Pollut. 2020, 272, 115975. DOI: 10.1016/j.envpol.2020.115975.
  • Fu, R.; Wen, D.; Xia, X.; Zhang, W.; Gu, Y. Electrokinetic Remediation of Chromium (Cr)-Contaminated Soil with Citric Acid (CA) and Polyaspartic Acid (PASP) as Electrolytes. Chem. Eng. J. 2017, 316, 601–608. DOI: 10.1016/j.cej.2017.01.092.
  • Song, Y.; Sun, T.; Cang, L.; Wu, S.; Zhou, D. Migration and Transformation of Cu(ii)-EDTA During Electrodialysis Accompanied by an Electrochemical Process with Different Compartment Designs. Electrochim. Acta. 2019, 295, 605–614. DOI: 10.1016/j.electacta.2018.10.162.
  • Jeon, E.-K.; Jung, J.-M.; Kim, W.-S.; Ko, S.-H.; Baek, K. In situ Electrokinetic Remediation of As-, Cu-, and Pb-Contaminated Paddy Soil Using Hexagonal Electrode Configuration: A Full Scale Study. Environ. Sci. Pollut. 2015, 22(1), 711–720. DOI: 10.1007/s11356-014-3363-0.
  • Ayyanar, A.; Thatikonda, S. Enhanced Electrokinetic Remediation (EKR) for Heavy Metal Contaminated Sediments Focusing on Treatment of Generated Effluents from EKR and Recovery of EDTA. Water Environ. Res. 2020, 93(1), 136–147. DOI: 10.1002/wer.1369.
  • Kim, E. J.; Jeon, E.-K.; Baek, K. Role of Reducing Agent in Extraction of Arsenic and Heavy Metals from Soils by Use of EDTA. Chemosphere. 2016, 152, 274–283. DOI: 10.1016/j.chemosphere.2016.03.005.
  • Shen, X.; Li, C.; Li, M.; Zhou, K.; Li, Y. Effect of Electric Potentials on the Removal of Cu and Zn in Soil by Electrokinetic Remediation. Sep. Sci. Technol. 2021, 56(14), 2439–2448.
  • Tang, X.; Li, Q.; Wang, Z.; Hu, Y.; Hu, Y.; Li, R. In situ Electrokinetic Isolation of Cadmium from Paddy Soil Through Pore Water Drainage: Effects of Voltage Gradient and Soil Moisture. Chem. Eng. J. 2018, 337, 210–219. DOI: 10.1016/j.cej.2017.12.111.
  • Saberi, N.; Aghababaei, M.; Ostovar, M.; Mehrnahad, H. Simultaneous Removal of Polycyclic Aromatic Hydrocarbon and Heavy Metals from an Artificial Clayey Soil by Enhanced Electrokinetic Method. J. Environ. Manage. 2018, 217, 897–905. DOI: 10.1016/j.jenvman.2018.03.125.
  • Maturi, K.; Reddy, K. R.; Cameselle, C. Surfactant-Enhanced Electrokinetic Remediation of Mixed Contamination in Low Permeability Soil. Sep. Sci. Technol. 2009, 44(10), 2385–2409. DOI: 10.1080/01496390902983745.
  • Reddy, K. R.; Saichek, R. E.; Kranti, M.; Prasanth, A. Effect of Soil Moisture and Heavy Metal Concentrations on Electrokinetic Remediation. Indian Geotech. J. 2002, 32, 258–288.
  • Ahmed, O. A.; Derriche, Z.; Kameche, M.; Bahmani, A.; Souli, H.; Dubujet, P. Electro-Remediation of Lead Contaminated Kaolinite: An Electro-Kinetic Treatment. Chem. Eng. Process. 2016, 100, 37–48. DOI: 10.1016/j.cep.2015.12.002.
  • Merdoud, O.; Cameselle, C.; Boulakradeche, M. O.; Akretche, D. E. Removal of Heavy Metals from Contaminated Soil by Electrodialytic Remediation Enhanced with Organic Acids. Environ. Sci. Process Impacts. 2016, 18(11), 1440–1448. DOI: 10.1039/C6EM00380J.
  • Ng, Y. S.; Sen Gupta, B.; Hashim, M. A. Remediation of Pb/Cr Co-Contaminated Soil Using Electrokinetic Process and Approaching Electrode Technique. Environ. Sci. Pollut. 2016, 23(1), 546–555. DOI: 10.1007/s11356-015-5290-0.
  • Chang, J.-H.; Dong, C.-D.; Huang, S.-H.; Shen, S.-Y. The Study on Lead Desorption from the Real-Field Contaminated Soil by Circulation-Enhanced Electrokinetics (CEEK) with EDTA. J. Hazard. Mater. 2019, 383, 121194. DOI: 10.1016/j.jhazmat.2019.121194.
  • Nasiri, A.; Jamshidi-Zanjani, A.; Khodadadi Darban, A. Application of Enhanced Electrokinetic Approach to Remediate Contaminated Soil: Effect of Chelating Agents and Permeable Reactive Barrier. Environ. Pollut. 2020, 266, 115197. DOI: 10.1016/j.envpol.2020.115197.
  • Park, S.-Y.; Park, G.-Y.; Kim, D.-H.; Yang, J.-S.; Baek, K. Electrokinetic Separation of Heavy Metals from Wastewater Treatment Sludge. Sep. Sci. Technol. 2010, 45(12–13), 1982–1987. DOI: 10.1080/01496395.2010.493836.
  • Al-Hamdan, A. Z.; Reddy, K. R. Transient Behavior of Heavy Metals in Soils During Electrokinetic Remediation. Chemosphere. 2008, 71(5), 860–871. DOI: 10.1016/j.chemosphere.2007.11.028.
  • Cameselle, C. Enhancement of Electro-Osmotic Flow During the Electrokinetic Treatment of a Contaminated Soil. Electrochim. Acta. 2015, 181, 31–38. DOI: 10.1016/j.electacta.2015.02.191.
  • Hamed, J. T.; Bhadra, A. Influence of Current Density and pH on Electrokinetics. J. Hazard. Mater. 1997, 55(1–3), 279–294. DOI: 10.1016/S0304-3894(97)00024-1.
  • Han, H.; Lee, Y.-J.; Kim, S.-H.; Yang, J.-W. Electrokinetic Remediation of Soil Contaminated with Diesel Oil Using EDTA-Cosolvent Solutions. Sep. Sci. Technol. 2009a, 44(10), 2437–2454. DOI: 10.1080/01496390902983794.
  • Klarke, R. L.; Lageman, R.; Schawartzkopf, S. H.; Smedley, S. I. Electrokinetic Remediation of Soils, Sludge and Groundwater. Proceeding, Electrosynthesis Symposium, Electrosynthesis Corp: Tampa, FL, USA, 1995.
  • Popov, K.; Yachmenev, V.; Kolosov, A.; Shabanova, N. Effect of Soil Electroosmotic Flow Enhancement by Chelating Reagents. Colloids Surf. A Physicochem. Eng. 1999, 160(2), 135–140. DOI: 10.1016/S0927-7757(99)00359-3.
  • Song, Y.; Ammami, M. T.; Benamar, A.; Mezazigh, S.; Wang, H. Effect of EDTA, EDDS, NTA and Citric Acid on Electrokinetic Remediation of As, Cd, Cr, Cu, Ni, Pb and Zn Contaminated Dredged Marine Sediment. Environ. Sci. Pollut. 2016, 23(11), 10577–10586. DOI: 10.1007/s11356-015-5966-5.
  • Yu, J.-W.; Neretnieks, I. Theoretical Evaluation of a Technique for Electrokinetic Decontamination of Soils. J. Contam. Hydrol. 1997, 26(1–4), 291–299. DOI: 10.1016/S0169-7722(96)00076-9.
  • Dong, Z.; Huang, W.; Xing, D.; Zhang, H. Remediation of Soil Contaminated with Petroleum and Heavy Metals by the Integration of Electrokinetics and Biostimulation. J. Hazard. Mater. 2013, 260, 399–408. DOI: 10.1016/j.jhazmat.2013.05.003.
  • Boulakradeche, M. O.; Akretche, D. E.; Cameselle, C.; Hamidi, N. Enhanced Electrokinetic Remediation of Hydrophobic Organics Contaminated Soils by the Combination of Non-Ionic and Ionic Surfactants. Electrochim. Acta. 2015, 174, 1057–1066. DOI: 10.1016/j.electacta.2015.06.091.
  • Han, J.-G.; Hong, K.-K.; Kim, Y.-W.; Lee, J.-Y. Enhanced Electrokinetic (E/K) Remediation on Copper Contaminated Soil by CFW (Carbonized Foods Waste). J. Hazard. Mater. 2009b, 177(1–3), 530–538. DOI: 10.1016/j.jhazmat.2009.12.065.
  • Hanay, O.; Hasar, H.; Kocer, N. N. Effect of EDTA as Washing Solution on Removing of Heavy Metals from Sewage Sludge by Electrokinetic. J. Hazard. Mater. 2009, 169(1–3), 703–710. DOI: 10.1016/j.jhazmat.2009.04.008.
  • Komárek, M.; Tlustoš, P.; Száková, J.; Chrastný, V.; Balík, J. The Role of Fe- and Mn-Oxides During EDTA-Enhanced Phytoextraction of Heavy Metals. Plant Soil Environ. 2007, 53, 216–224. DOI: 10.17221/2203-PSE.
  • Hassan, I.; Mohamedelhassan, E.; Yanful, E. K. Solar Powered Electrokinetic Remediation of Cu Polluted Soil Using a Novel Anode Configuration. Electrochim. Acta. 2015, 181, 58–67. DOI: 10.1016/j.electacta.2015.02.216.
  • Gu, Y.; Yeung, A. T.; Li, H. Enhanced Electrokinetic Remediation of Cadmium Contaminated Natural Clay Using Organophosphonates in Comparison with EDTA. Chin. J. Chem. Eng. 2018, 26(5), 1152–1159. DOI: 10.1016/j.cjche.2017.10.012.
  • Zhou, H.; Xu, J.; Lv, S.; Liu, Z.; Liu, W. Removal of Cadmium in Contaminated Kaolin by New-Style Electrokinetic Remediation Using Array Electrodes Coupled with Permeable Reactive Barrier. Sep. Purif. Technol. 2020, 239, 116544. DOI: 10.1016/j.seppur.2020.116544.
  • Vriens, B.; Skierszkan, E. K.; St-Arnault, M.; Salzsauler, K.; Aranda, C.; Mayer, K. U.; Beckie, R. D. Mobilization of Metal(oid) Oxyanions Through Circumneutral Mine Waste-Rock Drainage. ACS Omega. 2019, 4(6), 10205–10215. DOI: 10.1021/acsomega.9b01270.
  • Jackson, B. P.; Miller, W. P. Effectiveness of Phosphate and Hydroxide for Desorption of Arsenic and Selenium Species from Iron Oxides. Soil Sci. Soc. Am. J. 2000, 64(5), 1616–1622. DOI: 10.2136/sssaj2000.6451616x.
  • Ryu, S.-R.; Jeon, E.-K.; Baek, K. A Combination of Reducing and Chelating Agents for Electrolyte Conditioning in Electrokinetic Remediation of As-Contaminated Soil. J. Taiwan Inst. Chem. Eng. 2017, 70, 252–259. DOI: 10.1016/j.jtice.2016.10.058.
  • Yang, J.-S.; Kwon, M. J.; Choi, J.; Baek, K.; O’Loughlin, E. J. The Transport Behavior of As, Cu, Pb, and Zn During Electrokinetic Remediation of a Contaminated Soil Using Electrolyte Conditioning. Chemosphere. 2014, 117, 79–86. DOI: 10.1016/j.chemosphere.2014.05.079.
  • García-Sanchez, A.; Alonso-Rojo, P.; Santos-Franc_es, F. Distribution and Mobility of Arsenic in Soils of a Mining Area (Western Spain). Sci. Total Environ. 2010, 408(19), 4194–4201. DOI: 10.1016/j.scitotenv.2010.05.032.
  • Yang, J. S.; Lee, J. Y.; Baek, K.; Kwon, T. S.; Choi, J. Extraction Behavior of As, Pb, and Zn from Mine Tailings with Acid and Base Solutions. J. Hazard. Mater. 2009, 171(1–3), 443. DOI: 10.1016/j.jhazmat.2009.06.021.
  • Ryu, B.-G.; Park, G.-Y.; Yang, J.-W.; Baek, K. Electrolyte Conditioning for Electrokinetic Remediation of As, Cu, and Pb-Contaminated Soil. Sep. Purif. Technol. 2011, 79(2), 170–176. DOI: 10.1016/j.seppur.2011.02.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.