229
Views
2
CrossRef citations to date
0
Altmetric
Membrane

Static and dynamic sorption of DOM on Bond Elute PPL and Bondesil PPL sorbents: physical-chemical characteristics

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 642-653 | Received 19 Jul 2022, Accepted 01 Nov 2022, Published online: 14 Nov 2022

References

  • Coppola, A.I.; Druffel, E.R.M. Cycling of Black Carbon in the Ocean: Cycling of Black Carbon in the Ocean. Geophys. Res. Lett. 2016, 43, 4477–4482. DOI: 10.1002/2016GL068574.
  • Dittmar, T.; Paeng, J. A Heat-Induced Molecular Signature in Marine Dissolved Organic Matter. Nat. Geosci. 2009, 2, 175–179. DOI: 10.1038/ngeo440.
  • Perminova, I.V.; Shirshin, E.A.; Zherebker, A.; Pipko, I.I.; Pugach, S.P.; Dudarev, O.V.; Nikolaev, E.N.; Grigoryev, A.S.; Shakhova, N.; Semiletov, I.P. Signatures of Molecular Unification and Progressive Oxidation Unfold in Dissolved Organic Matter of the Ob-Irtysh River System Along Its Path to the Arctic Ocean. Sci. Rep. 2019, 9(1), 1–16. DOI: 10.1038/s41598-019-55662-1.
  • Repeta, D.J. Chemical Characterization and Cycling of Dissolved Organic Matter. In Biogeochemistry of Marine Dissolved Organic Matter; Elsevier, 2015; pp. 21–63. DOI: 10.1016/B978-0-12-405940-5.00002-9
  • Hansell, D.A.; Carlson, C.A.; Repeta, D. J.; Schlitzer, R. Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights. Oceanography. 2009, 22, 202–211. DOI: 10.5670/oceanog.2009.109.
  • Ritson, J.P.; Graham, N.J.D.; Templeton, M.R.; Clark, J.M.; Gough, R.; Freeman, C. The Impact of Climate Change on the Treatability of Dissolved Organic Matter (DOM) in Upland Water Supplies: A UK Perspective. Sci. Tot. Environ. 2014, 473, 714–730. DOI: 10.1016/j.scitotenv.2013.12.095.
  • Hertkorn, N.; Harir, M.; Koch, B.P.; Michalke, B.; Schmitt-Kopplin, P. High-Field NMR Spectroscopy and FTICR Mass Spectrometry: Powerful Discovery Tools for the Molecular Level Characterization of Marine Dissolved Organic Matter. Biogeosciences. 2013, 10, 1583–1624. DOI: 10.5194/bg-10-1583-2013.
  • Li, Y.; Harir, M.; Uh, J.; Kanawati, B.; Lucio, M.; Smirnov, K.S.; Hertkorn, N. How Representative are Dissolved Organic Matter (DOM) Extracts? A Comprehensive Study of Sorbent Selectivity for DOM Isolation. Water Res. 2017, 116, 316–323. DOI: 10.1016/j.watres.2017.03.038.
  • Stenson, A.C.; Marshall, A.G.; Cooper, W.T. Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Anal. Chem. 2003, 75(6), 1275–1284. DOI: 10.1021/ac026106p.
  • Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. A Simple and Efficient Method for the Solid‐phase Extraction of Dissolved Organic Matter (SPE‐DOM) from Seawater. Limnol. Oceanogr. Methods. 2008, 6, 230–235. DOI: 10.4319/lom.2008.6.230.
  • Perminova, I.V.; Dubinenkov, I.V.; Kononikhin, A.S.; Konstantinov, A.I.; Zherebker, A.Y.; Andzhushev, M.A.; Nikolaev, E.N.; Bulygina, E.; Holmes, R. M.; Kostyukevich, Y. I.; Popov, I. A. Molecular Mapping of Sorbent Selectivities with Respect to Isolation of Arctic Dissolved Organic Matter as Measured by Fourier Transform Mass Spectrometry. Environ. Sci. Technol. 2014, 48(13), 7461–7468. DOI: 10.1021/es5015423.
  • Chen, H.; Stubbins, A.; Perdue, E.M.; Green, N.W.; Helms, J.R.; Mopper, K.; Hatcher, P.G. Ultrahigh Resolution Mass Spectrometric Differentiation of Dissolved Organic Matter Isolated by Coupled Reverse Osmosis- Electrodialysis from Various Major Oceanic Water Masses. Mar. Chem. 2014, 164, 48–59. DOI: 10.1016/j.marchem.2014.06.002.
  • Green, N.W.; Perdue, E.M.; Aiken, G.R.; Butler, K.D.; Chen, H.; Dittmar, T.; Niggemann, J.; Stubbins, A. An Intercomparison of Three Methods for the Large-Scale Isolation of Oceanic Dissolved Organic Matter. Mar. Chem. 2014, 161, 14–19. DOI: 10.1016/j.marchem.2014.01.012.
  • Helms, J. R.; Mao, J.; Chen, H.; Perdue, E. M.; Green, N. W.; Hatcher, P. G.; Mopper, K.; Stubbins, A. Spectroscopic Characterization of Oceanic Dissolved Organic Matter Isolated by Reverse Osmosis Coupled with Electrodialysis. Mar. Chem. 2015, 177, 278–287. DOI: 10.1016/j.marchem.2015.07.007.
  • Tfaily, M.M.; Hodgkins, S.; Podgorski, D.C.; Chanton, J.P.; Cooper, W.T. Comparison of Dialysis and Solid-Phase Extraction for Isolation and Concentration of Dissolved Organic Matter Prior to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Bioanal. Chem. Res. 2012, 404, 447–457. DOI: 10.1007/s00216-012-6120-6.
  • Benner, R.; Biddanda, B.; Black, B.; McCarthy, M. Abundance, Size Distribution, and Stable Carbon and Nitrogen Isotopic Compositions of Marine Organic Matter Isolated by Tangential-Flow Ultrafiltration. Mar. Chem. 1997, 57, 243–263. DOI: 10.1016/S0304-4203(97)00013-3.
  • Dittmar, T.; Kattner, G. Recalcitrant Dissolved Organic Matter in the Ocean: Major Contribution of Small Amphiphilics. Mar. Chem. 2003, 82, 115–123. DOI: 10.1016/S0304-4203(03)00068-9.
  • Aiken, G.R. Isolation and Concentration Techniques for Aquatic Humic Substances. In Humic Substances in Soils Sediment, and Water. Geochemistry, Isolation, and Characterization; Aiken, G. R., McKnight, D. M., Wershaw, R. L., MacCarthy, P., Eds. Wiley-Interscience: New York, 1985; pp. 363–385.
  • Aiken, G.R.; Thurman, E.M.; Malcolm, R.L.; Walton, H.F. Comparison of XAD Macroporous Resins for the Concentration of Fulvic Acid from Aqueous Solution. Anal. Chem. 1979, 51, 1799–1803. DOI: 10.1021/ac50047a044.
  • Thurman, E.M.; Malcolm, R.L.; Aiken, G.R. Prediction of Capacity Factors for Aqueous Organic Solutes Adsorbed on a Porous Acrylic Resin. Anal. Chem. 1978, 50, 775–779. DOI: 10.1021/ac50027a028.
  • Weber, J.H.; Wilson, S.A. The Isolation and Characterization of Fulvic Acid and Humic Acid from River Water. Wat. Res. 1975, 9, 1079–1084. DOI: 10.1016/0043-1354(75)90105-0.
  • Mantoura, R.F.C.; Riley, J.P. The Analytical Concentration of Humic Substances from Natural Waters. Anal. Chim. Acta. 1975, 76(1), 97–106. DOI: 10.1016/S0003-2670(01)81990-5.
  • Thurman, E.M.; Malcolm, R.L. Preparative Isolation of Aquatic Humic Substances. Environ. Sci. Technol. 1981, 15, 463–466. DOI: 10.1021/es00086a012.
  • Agilent Bond Elut PPL User Guide. 2021. https://www.agilent.com/cs/library/usermanuals/public/bond-elut-ppl-5994-4162en-agilent.pdf (accessed May 17, 2022).
  • Kruger, B.R.; Dalzell, B.J.; Minor, E.C. Effect of Organic Matter Source and Salinity on Dissolved Organic Matter Isolation via Ultrafiltration and Solid Phase Extraction. Aquat. Sci. 2011, 73(3), 405–417. DOI: 10.1007/s00027-011-0189-4.
  • Li, Y.; Harir, M.; Lucio, M.; Kanawati, B.; Smirnov, K.; Flerus, R.; Hertkorn, N. Proposed Guidelines for Solid Phase Extraction of Suwannee River Dissolved Organic Matter. Anal. Chem. 2016, 88(13), 6680–6688. DOI: 10.1021/acs.analchem.5b04501.
  • Kong, X.; Jendrossek, T.; Ludwichowski, K.U.; Marx, U.; Koch, B.P. Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly. Environ. Sci. Technol. 2021, 55(22), 15495–15504. DOI: 10.1021/acs.est.1c04535.
  • Khreptugova, A.N.; Mikhnevich, T.A.; Molodykh, A.A.; Melnikova, S.V.; Konstantinov, A.I.; Rukhovich, G.D.; Perminova, I.V. Comparative Studies on Sorption Recovery and Molecular Selectivity of Bondesil PPL versus Bond Elut PPL Sorbents with Regard to Fulvic Acids. Water. 2021, 13(24), 3553. DOI: 10.3390/w13243553.
  • Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. DOI: 10.1109/MCSE.2007.55.
  • Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Van Mulbregt, P.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods. 2020, 17(3), 261–272. DOI: 10.1038/s41592-019-0686-2.
  • Perminova, I.V.; Frimmel, F.H.; Kudryavtsev, A.V.; Kulikova, N.A.; Abbt-Braun, G.; Hesse, S.; Petrosyan, V.S. Molecular Weight Characteristics of Humic Substances from Different Environments as Determined by Size Exclusion Chromatography and Their Statistical Evaluation. Environ. Sci. Technol. 2003, 37, 2477–2485. DOI: 10.1021/es0258069.
  • Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898, 24, 1–39.
  • Ho, Y.S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998a, 70, 115–124. DOI: 10.1016/S0923-0467(98)00076-1.
  • Ho, Y.S.; McKay, G. The Kinetics of Sorption of Basic Dyes from Aqueous Solution by Sphagnum Moss Peat. Can. J. Chem. Eng. 1998b, 76, 822–827. DOI: 10.1002/cjce.5450760419.
  • Weber, J.W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. DOI: 10.1061/JSEDAI.0000430.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40(9), 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie. 1907, 57, 385–470. DOI: 10.1515/zpch-1907-5723.
  • Dubinin, M. M.; Radushkevich, L. V. (1947) The Equation of the Characteristic Curve of Activated Charcoal. Proc. Acad. Sci. Phys. Chem. Sect. 55, 331.
  • Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich Isotherm Model at the Solid/Solution Interface: A Theoretical Analysis. J. Mol. Liq. 2019, 277, 646–648. DOI: 10.1016/j.molliq.2019.01.005.
  • Bohart, G.S.; Adams, E.Q. Some Aspects of the Behavior of Charcoal with Respect to Chlorine. J. Am. Chem. Soc. 1920, 42, 523–544. DOI: 10.1021/ja01448a018.
  • Thomas, H.C. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. DOI: 10.1021/ja01238a017.
  • Yoon, Y.H.; Nelson, J.H. Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life. Am. Ind. Hyg. Assoc. J. 1984, 45(8), 509–516. DOI: 10.1080/15298668491400197.
  • Chu, K.H. Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model. Chem. Eng. J. 2020, 380, 122513. DOI: 10.1016/j.cej.2019.122513.
  • Haan, D.H.; Boer, T.D. Applicability of Light Absorbance and Fluorescence as Measures of Concentration and Molecular Size of Dissolved Organic Carbon in Humic Lake Tjeukemeer. Water Res. 1987, 21, 731–734. DOI: 10.1016/0043-1354(87)90086-8.
  • Perminova, I.V.; Grechischeva, N.Y.; Petrosyan, V.S. Relationships Between Structure and Binding Affinity of Humic Substances for Polycyclic Aromatic Hydrocarbons: Relevance of Molecular Descriptors. Environ. Sci. Technol. 1999, 33, 3781–3787. DOI: 10.1021/es990056x.
  • Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. DOI: 10.1021/es030360x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.