184
Views
3
CrossRef citations to date
0
Altmetric
Adsorption

Pre-concentration of quartz from sea sand through superconducting high gradient magnetic separation technology

, , , &
Pages 822-834 | Received 12 Aug 2022, Accepted 18 Nov 2022, Published online: 27 Nov 2022

References

  • Moura, L. C.; André, F. P.; Miceli, H.; Neumann, R.; Tavares, L. M. Manufactured Feldspar-Quartz Sand for Glass Industry from Gneiss Quarry Rock Fines Using Dry Rare-Earth Magnetic Separation [J]. Mineral Process. Extr. Metall. Rev. 2019, 40(5), 1–11. DOI: 10.1080/08827508.2019.1643341.
  • Hosseini, M. R.; Rsadeghieh, S. M.; Razizinia, M. R.; Tabatabaei, S. H. Biological Separation of Quartz from Kaolinite Using Bacillus Licheniformis [J]. Sep. Sci. Technol. 2020, 55(11), 2061–2071. DOI: 10.1080/01496395.2019.1617738.
  • Li, Y. J.; Zhang, X. Z.; Zhi, C. C. Kinetics of Ni/Nano-SiO2 Codeposition on the Sintered NdFeb Surface [J]. Strength Mater. 2021, 53(1), 134–144. DOI: 10.1007/s11223-021-00269-z.
  • Taxiarchou, M.; Panias, D.; Douni, I.; Paspaliaris, I.; Kontopoulos, A. Removal of Iron from Silica Sand by Leaching with Oxalic Acid [J]. Hydrometallurgy. 1997, 46(1), 215–227. DOI: 10.1016/S0304-386X(97)00015-7.
  • Teng, Q.; Wang, H. Effect of Silicate Bacteria on Quartz Flotation Separation [J]. Sep. Sci. Technol. 2021, 56(5), 982–990. DOI: 10.1080/01496395.2020.1745238.
  • Zhang, Y.; Wang, K.; Jia, G.; Li, J.; Wang, H.; Tian, Y. Photoluminescence Study on the Optical Properties of Silicon-Vacancy Centre in Diamond [J]. J. Alloys Compd. 2021, 860, 157914. DOI: 10.1016/j.jallcom.2020.157914.
  • Zhang, H.; Guo, S.; Wu, J.; Wu, D.; Wei, K.; Ma, W. Effect of Quartz Crystal Structure Transformations on the Removal of Iron Impurities [J]. Hydrometallurgy. 2021, 204. DOI: 10.1016/j.hydromet.2021.105715.
  • Gaweł, B. A.; Ulvensøen, A.; Łukaszuk, K.; Muggerud, A. M. F.; Erbe, A. In situ High Temperature Spectroscopic Study of Liquid Inclusions and Hydroxyl Groups in High Purity Natural Quartz [J]. Miner. Eng. 2021, 174, 107238. DOI: 10.1016/j.mineng.2021.107238.
  • Zivko, S.; Zoran, B.; Slavica, M.; Ignjatovic, M.; Savic, L.; Jovanovic, V.; Nisic, D. The Choice of High Gradient Magnetic Separation Processes for Removal of Fe2O3 Carriers from Quartz Raw Material [J]. Gospodarka Surowcami Mineralnymi. 2017, 33(4), 93–106. DOI: 10.1515/gospo-2017-0047.
  • Arslan, V. The Modeling and Optimization of Iron Removal from Silica Sand Under Ultrasound-Assisted Leaching by Response Surface Methodology [J]. Min. Metall. Explor. 2021, 38(5), 2229–2237. DOI: 10.1007/s42461-021-00457-0.
  • Cheng, Q.; Mei, G.; Xu, W.; Yuan, Q. Flotation of Quartz Using Imidazole Ionic Liquid Collectors with Different Counterions [J]. Miner. Eng. 2022, 180, 107491. DOI: 10.1016/j.mineng.2022.107491.
  • Gaweł, B. A.; Ulvensøen, A.; Łukaszuk, K.; Arstad, B.; Muggerud, A. M. F.; Erbe, A. Structural Evolution of Water and Hydroxyl Groups During Thermal, Mechanical and Chemical Treatment of High Purity Natural Quartz [J]. RSC Adv. 2020, 10(48), 29018–29030. DOI: 10.1039/D0RA05798C.
  • Lv, H.; Peng, Z.; Tong, X.; Chen, L.; Chen, Y. Pulsating High Gradient Magnetic Separation for Purification of Quartz [J]. Physicochem. Probl. Miner. Process. 2017, 1(53), 617–627. DOI: 10.5277/ppmp170148.
  • Gao, L.; Long, H.; SHEN, J.; Yu, G.; Liao, M.; Yin, Y. Optical Dating of Holocene Tidal Deposits from the Southwestern Coast of the South Yellow Sea Using Different Grain-Size Quartz Fractions [J]. J. Asian Earth Sci. 2017, 135, 155–165. DOI: 10.1016/j.jseaes.2016.12.036.
  • Yudistira, D.; Purwonugroho, D.; Setianingsih, T. Synthesis of Organo-Quartz from Lumajang Sea Sand Using Sodium Dodecyl Benzene Sulfonate (SDBS) Modificator for Adsorption of Fe3+ [J]. Brawijaya University. 2021, 10(1), 44–45. DOI: 10.21776/ub.jpacr.2021.010.01.530.
  • Xia, L.; Li, Y.; Chen, Y.; Yi, L.; Chen, G.; Wang, Y.; Hu, K. Standardized Dose–Response Curve (sDRC) Construction for OSL Dating of Quartz from Bohai Coast, NE China. J. Mar. Sci. Eng. 2021, 9, (11), 2077-1312. DOI: 10.3390/jmse9111200.
  • Xu, W.; Wen, X.; Wei, J.; Xu, P.; Zhang, B.; Yu, Q.; Ma, H. Feasibility of Kaolin Tailing Sand to Be as an Environmentally Friendly Alternative to River Sand in Construction Applications [J]. J. Cleaner Prod. 2018, 205, 1114–1126. DOI: 10.1016/j.jclepro.2018.09.119.
  • Guan, X.; Li, Y.; Liu, T.; Zhang, C.; Li, H.; Ou, J. An Economical Ultra-High Ductile Engineered Cementitious Composite with Large Amount of Coarse River Sand [J]. Constr. Build. Mater. 2019, 201, 461–472. DOI: 10.1016/j.conbuildmat.2018.12.207.
  • Garzanti, E.; Vermeesch, P.; Vezzoli, G.; Andò, S.; Botti, E.; Limonta, M.; Dinis, P.; Hahn, A.; Baudet, D.; De Grave, J., et al. Congo River Sand and the Equatorial Quartz Factory [J]. Earth Sci. Rev. 2019, 197, 102918. DOI: 10.1016/j.earscirev.2019.102918.
  • Zhang, H.; Zeng, J.; Xie, H.; Guan, C.; Chen, L. Enhanced Separation for Ilmenite Tailings with a Novel HGMS-Flotation Process [J]. Sep. Sci. Technol. 2020, 55(4), 752–760. DOI: 10.1080/01496395.2019.1567546.
  • Xu, J.; Chen, J.; Ren, X.; Xiong, T.; Liu, K.; Song, S. A Novel Dry Vibrating HGMS Separator for Purification of Potash Feldspar Ore [J]. Sep. Sci. Technol. 2022, 57(3), 484–491. DOI: 10.1080/01496395.2021.1900250.
  • Nunna, V.; Suthers, S. P.; Rpownceby, M. I.; Sparrow, G. J. Beneficiation Strategies for Removal of Silica and Alumina from Low-Grade Hematite-Goethite Iron Ores [J]. Mineral Process. Extr. Metall. Rev. 2021, 43(8), 1–19. DOI: 10.1080/08827508.2021.2003353.
  • Chen, L.; Qian, Z.; Wen, S.; Huang, S. High-Gradient Magnetic Separation of Ultrafine Particles with Rod Matrix [J]. Mineral Process. Extr. Metall. Rev. 2013, 34(5), 340–347. DOI: 10.1080/08827508.2012.695304.
  • Liu, L.; Tan, Q.; Yue, T.; Guo, Z.; Lv, L. Pre-Concentration of Ultrafine Crushed Hematite Ores [J]. Sep. Sci. Technol. 2014, 49(9), 1442–1448. DOI: 10.1080/01496395.2013.879480.
  • Xu, J.; Xiong, D.; Song, S.; Chen, L. Superconducting Pulsating High Gradient Magnetic Separation for Fine Weakly Magnetic Ores: Cases of Kaolin and Chalcopyrite [J]. Results Phys. 2018, 10, 837–840. DOI: 10.1016/j.rinp.2018.07.027.
  • Ohara, T.; Kumakura, H.; Wada, H. Magnetic Separation Using Superconducting Magnets [J]. Physica C Supercond. Its Appl. 2001, 357(part–P2), 1272–1280. DOI: 10.1016/S0921-4534(01)00530-5.
  • Chen, L.; Xiong, T.; Xiong, D.; Yang, R.; Peng, Y.; Shao, Y.; Xu, J.; Zeng, J. Pulsating HGMS for Industrial Separation of Chalcopyrite from Fine Copper-Molybdenun Co-Flotation Concentrate [J]. Miner. Eng. 2021, 170, 106967. DOI: 10.1016/j.mineng.2021.106967.
  • Zhou, L.; Li, W.; Han, Y.; Li, Y.; Liu, D. Numerical Simulation for Magnetic Field Analysis and Magnetic Adsorption Behavior of Ellipse Magnetic Matrices in HGMS: Prediction Magnetic Adsorption Behavior via Numerical Simulation [J]. Miner. Eng. 2021, 167, 106876. DOI: 10.1016/j.mineng.2021.106876.
  • Zeng, J.; Tong, X.; Xiao, Q.; Chen, L.; Xie, X. Improving Wet Belt High Gradient Magnetic Separation Performance by Magnetic Length Optimization [J]. Sep Sci. Technol. 2017, 6, 1–8. DOI: 10.1080/01496395.2017.1397024.
  • Chen, L.; Wen, S.; Xu, G.; Xie, H. A Novel Process for Titanium Sand by Magnetic Separation and Gravity Concentration [J]. Mineral Process. Extr. Metall. Rev. 2013, 34(3), 139–150. DOI: 10.1080/08827508.2011.623749.
  • Huang, Z.; Cheng, C.; Li, K.; Zhang, S.; Zhou, J.; Luo, W.; Liu, Z.; Qin, W.; Wang, H.; Hu, Y., et al. Reverse Flotation Separation of Quartz from Phosphorite Ore at Low Temperatures by Using an Emerging Gemini Surfactant as the Collector [J]. Sep. Purif. Technol. 2020, 246, 116923. DOI: 10.1016/j.seppur.2020.116923.
  • Xue, Z.; Wang, Y.; Zheng, X.; Lu, D.; Sun, Z.; Jing, Z. Mechanical Entrainment Study by Separately Collecting Particle Deposit on Matrix in High Gradient Magnetic Separation [J]. Miner. Eng. 2022, 178, 107435. DOI: 10.1016/j.mineng.2022.107435.
  • Yang, C.; Li, S.; Zhang, C.; Bai, J.; Guo, Z. Application of Superconducting High Gradient Magnetic Separation Technology on Silica Extraction from Iron Ore Beneficiation Tailings [J]. Miner. Process. Extr. Metall. Rev. 2017, 39(1), 44–49. DOI: 10.1080/08827508.2017.1324439.
  • Yamashita, M.; Akai, T.; Murakami, M.; Oki, T. Recovery of LaPo4:Ce,tb from Waste Phosphors Using High-Gradient Magnetic Separation [J]. Waste Manage. 2018, 79, 164–168. DOI: 10.1016/j.wasman.2018.07.038.
  • Yuan, Z.; Zhao, X.; Lu, J.; Lv, H.; Li, L. Innovative Pre-Concentration Technology for Recovering Ultrafine Ilmenite Using Superconducting High Gradient Magnetic Separator [J]. Int. J. Min. Sci. Technol. 2021, 31(6), 1043–1052. DOI: 10.1016/j.ijmst.2021.10.011.
  • Li, Y.; Li, S.; Hu, B.; Zhao, X.; Guo, P. FeOoh and nZvi Combined with Superconducting High Gradient Magnetic Separation for the Remediation of High-Arsenic Metallurgical Wastewater [J]. Sep. Purif. Technol. 2022, 285, 120372. DOI: 10.1016/j.seppur.2021.120372.
  • Zhao, Y.; Xi, B.; Li, Y.; Wang, M.; Zhu, Z.; Xia, X.; Zhang, L.-Y.; Wang, L.; Luan, Z. Removal of Phosphate from Wastewater by Using Open Gradient Superconducting Magnetic Separation as Pretreatment for High Gradient Superconducting Magnetic Separation [J]. Sep. Purif. Technol. 2012, 86, 255–261. DOI: 10.1016/j.seppur.2011.11.014.
  • Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R. Waste Water Purification by Magnetic Separation Technique Using HTS Bulk Magnet System [J]. Physica C Supercond. Its Appl. 2009, 469(15–20), 1849–1852. DOI: 10.1016/j.physc.2009.05.123.
  • Hirota, N.; Ando, T.; Takano, T.; Okada, H. In-Situ Observation of Particles Deposition Process on a Ferromagnetic Filter During High-Gradient Magnetic Separation Process [J]. J. Magn. Magn. Mater. 2017, 427, 296–299. DOI: 10.1016/j.jmmm.2016.11.028.
  • Yang, C.; Li, S.; Yang, R.; Bai, J.; Guo, Z. Recovery of Silicon Powder from Kerf Loss Slurry Waste Using Superconducting High Gradient Magnetic Separation Technology [J]. J. Mater. Cycles Waste Manage. 2018, 20(2), 937–945. DOI: 10.1007/s10163-017-0656-7.
  • Zheng, X.; Wang, Y.; Lu, D. A Realistic Description of Influence of the Magnetic Field Strength on High Gradient Magnetic Separation [J]. Miner. Eng. 2015, 79, 94–101. DOI: 10.1016/j.mineng.2015.06.004.
  • El-Salmawy, M. S.; Nakahiro, Y.; Wakamatsu, T. The Role of Alkaline Earth Cations in Flotation Separation of Quartz from Feldspar [J]. Miner. Eng. 1993, 6(12), 1231–1243. DOI: 10.1016/0892-6875(93)90101-R.
  • Xie, R.; Zhu, Y.; Liu, J.; Li, Y. The Flotation Behavior and Adsorption Mechanism of a New Cationic Collector on the Separation of Spodumene from Feldspar and Quartz [J]. Sep. Purif. Technol. 2021, 264, 118445. DOI: 10.1016/j.seppur.2021.118445.
  • Angadi, S. I.; Jeon, H.-S.; Mohanthy, A.; Prakash, S.; Das, B. Analysis of Wet High-Intensity Magnetic Separation of Low-Grade Indian Iron Ore Using Statistical Technique [J]. Sep. Sci. Technol. 2012, 47(8), 1129–1138. DOI: 10.1080/01496395.2011.644020.
  • Zhang, H.; Chen, L.; Zeng, J.; Ding, L.; Liu, J. Processing of Lean Iron Ores by Dry High Intensity Magnetic Separation [J]. Sep. Sci. Technol. 2015, 50(11), 1689–1694. DOI: 10.1080/01496395.2014.978471.
  • Ebner, A. D.; Ritter, J. A.; Ploehn, H. J. Feasibility and Limitations of Nanolevel High Gradient Magnetic Separation [J]. Sep. Purif. Technol. 1997, 11(3), 199–210. DOI: 10.1016/S1383-5866(97)00021-X.
  • Zhou, W.; Sun, Y.; Han, Y.; Gao, P.; Li, Y. Recycling Iron from Oolitic Hematite via Microwave Fluidization Roasting and Magnetic Separation [J]. Miner. Eng. 2021, 164, 106851. DOI: 10.1016/j.mineng.2021.106851.
  • Shi, C.; Zhang, S.; Zhao, J.; Ma, J.; Wu, H.; Sun, H.; Cheng, S. Experimental Study on Removal of Microplastics from Aqueous Solution by Magnetic Force Effect on the Magnetic Sepiolite [J]. Sep. Purif. Technol. 2022, 288, 120564. DOI: 10.1016/j.seppur.2022.120564.
  • Yu, J.; Han, Y.; Li, Y.; Gao, P.; Sun, Y. Separation and Recovery of Iron from a Low-Grade Carbonate-Bearing Iron Ore Using Magnetizing Roasting Followed by Magnetic Separation [J]. Sep. Sci. Technol. 2017, 52(10), 1768–1774. DOI: 10.1080/01496395.2017.1296867.
  • Ahmed, A.; Guo, S.; Zhang, Z.; Shi, C.; Zhu, D. A Review on Durability of Fiber Reinforced Polymer (FRP) Bars Reinforced Seawater Sea Sand Concrete [J]. Constr. Build. Mater. 2020, 256, 119484. DOI: 10.1016/j.conbuildmat.2020.119484.
  • Xiao, J.; Qiang, C.; Nanni, A.; Zhang, K. Use of Sea-Sand and Seawater in Concrete Construction: Current Status and Future Opportunities [J]. Constr. Build. Mater. 2017, 155, 1101–1111. DOI: 10.1016/j.conbuildmat.2017.08.130.
  • Kowalczuk, P. B.; Siedlarz, M.; Szczerkowska, S.; Wojcik, M. Facile Determination of Foamability Index of Non-Ionic and Cationic Frothers and Its Effect on Flotation of Quartz [J]. Sep. Sci. Technol. 2018, 53(8), 1198–1206. DOI: 10.1080/01496395.2017.1293100.
  • Rahman, M. A.; Davey, K. J.; Heyes, G. W.; Bruckard, W. J.; Sparrow, G. J.; Pownceby, M. I.; Tardio, J.; Zaman, M. N. Upgrading a Brahmaputra River Sand from Northern Bangladesh by Flotation to Produce a High-Grade Silica Glass Sand Concentrate [J]. Mineral Process. Extract. Metall. 2022, 1–15. DOI: 10.1080/25726641.2022.2043026.
  • Deng, R.; Hu, Y.; Ku, J.; Ma, Y.; Yang, Z. Ion Migration Law in Flotation Pulp and Its Influence on the Separation of Smithsonite and Quartz [J]. Sep. Sci. Technol. 2018, 53(5), 833–841. DOI: 10.1080/01496395.2017.1405036.
  • Larsen, E.; Kleiv, R. A. Flotation of Quartz from Quartz-Feldspar Mixtures by the HF Method [J]. Miner. Eng. 2016, 98, 49–51. DOI: 10.1016/j.mineng.2016.07.021.
  • Silva, A. C.; Carolina, S. D.; Sousa, D. N.; Silva, E. M. S. Feldspar Production from Dimension Stone Tailings for Application in the Ceramic Industry [J]. J. Mater. Res. Technol. 2019, 8(1), 1–7. DOI: 10.1016/j.jmrt.2018.02.011.
  • Tanvar, H.; Dhawan, N. Recovery of Potash Values from Feldspar [J]. Sep. Sci. Technol. 2020, 55(7), 1398–1406. DOI: 10.1080/01496395.2019.1588317.
  • Pariyan, K.; Hosseini, M. R.; Ahmadi, A.; Zahiri, A. Optimization and Kinetics of Oxalic Acid Treatment of Feldspar for Removing the Iron Oxide Impurities [J]. Sep. Sci. Technol. 2020, 55(10), 1871–1882. DOI: 10.1080/01496395.2019.1612913.
  • Tuncuk, A.; Akcil, A. Iron Removal in Production of Purified Quartz by Hydrometallurgical Process [J]. Int. J. Miner. Process. 2016, 153, 44–50. DOI: 10.1016/j.minpro.2016.05.021.
  • Nowosielska, A. M.; Nikoloski, A. N.; Parsons, D. F. Interactions Between Coarse and Fine Galena and Quartz Particles and Their Implications for Flotation in NaCl Solutions [J]. Minerals Engineering, 2022, 183: 107591.
  • Banerjee, P.; Ansari, S. A.; Mohapatra, P. K.; Egberink, R. J. M.; Ramasubramanium, S.; Patil, C. B.; Huskens, J.; Verboom, W. Highly Efficient Europium(iii) Uptake with an Extraction Chromatographic Resin Containing a Unique Multiple Diglycolamide Ligand with a Tetraaza-12-Crown-4 Scaffold [J]. Ind. Eng. Chem. Res. 2021, 60(6), 2613–2624. DOI: 10.1021/acs.iecr.1c00186.
  • Gujar, R. B.; Ransari, S. A.; Mohapatra, P. K. Actinide Ion Uptake from Acidic Radioactive Feeds Using an Extraction Chromatographic Resin Containing a Branched Dialkyl Amide [J]. J. Chromatogr. A. 2021, 1635, 461728. DOI: 10.1016/j.chroma.2020.461728.
  • Boualem, A.; Leontie, L.; Lopera, S. A. G.; Hamzaoui, S. Synthesis and Characterization of Mesoporous Silica from Algerian River Sand for Solar Grade Silicon: Effect of Alkaline Concentration on the Porosity and Purity of Silica Powder [J]. Silicon. 2022, 14(10), 5231–5240. DOI: 10.1007/s12633-021-01306-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.