90
Views
1
CrossRef citations to date
0
Altmetric
Water treatment

Preparation of micro-nano particles modified discarded face-mask by a versatile thermocompression modification approach and its application to emulsion separation

, , &
Pages 695-703 | Received 01 Aug 2022, Accepted 12 Dec 2022, Published online: 20 Dec 2022

References

  • Aragaw, T. A. Surgical Face Masks as a Potential Source for Microplastic Pollution in the COVID-19 Scenario, Mar. Pollut. Bull. 2020, 159, 111517. DOI: 10.1016/j.marpolbul.2020.111517.
  • Kwak, J. I.; An, Y. J. Post COVID-19 Pandemic: Biofragmentation and Soil Ecotoxicological Effects of Microplastics Derived from Face Masks. J. Hazard. Mater. 2021, 416, 126169. DOI: 10.1016/j.jhazmat.2021.126169.
  • Morgana, S.; Casentini, B.; Amalfitano, S. Uncovering the Release of Micro/Nanoplastics from Disposable Face Masks at Times of COVID-19. J. Hazard. Mater. 2021, 419, 126507. DOI: 10.1016/j.jhazmat.2021.126507.
  • Matthew, M.; Hans, P. H. A.; Mine, B. T.; Jahnke, A. The Global Threat from Plastic Pollution. Science. 2021, 373(6550), 61–65. DOI: 10.1126/science.abg5433.
  • Schyns, Z. O. G.; Shaver, M. P. Mechanical Recycling of Packaging Plastics: A Review, Macromol. Rapid. Commun. 2021, 42(3), 2000415. DOI: 10.1002/marc.202000415.
  • Rahimi, A.; Garcia, J. M. Chemical Recycling of Waste Plastics for New Materials Production. Nat. Rev. Chem. 2021, 1(6), 0046. DOI: 10.1038/s41570-017-0046.
  • Venault, A.; Jumao-As-Leyba, A. J.; Chou, F.; Bouyer, D.; Lin, I. -J.; Wei, T. -C.; Chang, Y. Design of Near-Superhydrophobic/superoleophilic PVDF and PP Membranes for the Gravity-Driven Breaking of Water-In-Oil Emulsions. J. Taiwan. Inst. Chem. E. 2016, 65, 459–471. DOI: 10.1016/j.jtice.2016.05.011.
  • Usha, Z. R.; Babiker, D. M. D.; Yu, R.; Yang, J.; Chen, W.; Chen, X.; Li, L. Super Hydrophilic Modified Biaxially Oriented Polypropylene Microporous Membrane for Excellent Gravity-Driven Oil/Water Emulsion Separation. J. Membr. Sci. 2022, 660, 120840. DOI: 10.1016/j.memsci.2022.120840.
  • Wang, H.; Guo, X.; Pei, C.; Dong, W.; Yao, Y. Hydrophilic Modification of Polypropylene Membrane via Tannic and Titanium Complexation for High-Efficiency Oil/Water Emulsion Separation Driven by Self-Gravity. Polym. Eng. Sci. 2022, 62(7), 2131–2142. DOI: 10.1002/pen.25994.
  • Zhao, Z. P.; Li, M. S.; Li, N.; Wang, M. -X.; Zhang, Y. Controllable Modification of Polymer Membranes by Long-Distance and Dynamic Low-Temperature Plasma Flow: AA Grafting Penetrated Through Electrospun PP Fibrous Membranes. J. Membr. Sci. 2013, 440, 9–19. DOI: 10.1016/j.memsci.2013.03.069.
  • Hassan, M. I.; Taimur, S.; Yasin, T. Upcycling of Polypropylene Waste by Surface Modification Using Radiation-Induced Grafting. Appl. Surf. Sci. 2017, 422, 720–730. DOI: 10.1016/j.apsusc.2017.06.086.
  • Juan, R. S.; Hou, W. T.; Huang, Y. C.; Tseng, Y. -C.; Huang, C. Surface Hydrophilic Modifications on Polypropylene Membranes by Remote Methane/Oxygen Mixture Plasma Discharges. J. Taiwan. Inst. Chem. E. 2016, 65, 420–425. DOI: 10.1016/j.jtice.2016.04.032.
  • Saule, M.; Moine, L.; Degueil-Castaing, M.; Maillard, B. Chemical Modification of Polypropylene by Decomposition of Unsaturated Peroxides. Macromolecules. 2005, 38(1), 77–85. DOI: 10.1021/ma048712n.
  • Jia, X.; Qin, C.; Friedberger, T.; Guan, Z.; Huang, Z. Efficient and Selective Degradation of Polyethylenes into Liquid Fuels and Waxes Under Mild Conditions. Sci. Adv. 2016, 2(6), e1501591. DOI: 10.1126/sciadv.1501591.
  • Zieli´nska, D.; Rydzkowski, T.; Thakur, V. K.; Borysiak, S. Enzymatic Engineering of Nanometric Cellulose for Sustainable Polypropylene Nanocomposites, Ind. Crop. Prod. 2021, 161, 113188. DOI: 10.1016/j.indcrop.2020.113188.
  • Liu, W. W.; Feng, Y. S.; Wang, G. Y.; Jiang, W. W.; Xu, H. J. Characterization and Reactivity of γ-Al2o3 Supported Pd–Cu Bimetallic Nanocatalysts for the Selective Oxygenization of Cyclopentene. Chinese Chem. Lett. 2016, 27(6), 905–909. DOI: 10.1016/j.cclet.2016.02.026.
  • Mundo, R. D.; Bottiglione, F.; Carbone, G. Cassie State Robustness of Plasma Generated Randomly Nano-Roughsurfaces, Appl. Surf. Sci. 2014, 316, 324–332. DOI: 10.1016/j.apsusc.2014.07.184.
  • Koishi, T.; Yasuoka, K.; Fujikawa, S.; Ebisuzaki, T.; Zeng, X. C. Coexistence and Transition Between Cassie and Wenzel State on Pillared Hydrophobic Surface. P Natural Acad. Sci. USA. 2009, 106(21), 8435–8440. DOI: 10.1073/pnas.0902027106.
  • Palama, I. E.; Amone, S. D.; Arcadio, V.; Caschera, D.; Toro, R. G.; Gigli, G.; Cortese, B. Underwater Wenzel and Cassie Oleophobic Behavior. J. Mater. Chem. A. 2015, 3(7), 3854. DOI: 10.1039/C4TA06787H.
  • Stachurski, J.; Michałek, M. The Effect of the ζ Potential on the Stability of a Non-Polar Oil-In-Water Emulsion. J. Colloid. Interface. Sci. 1996, 184(2), 433–436. DOI: 10.1006/jcis.1996.0637.
  • Brown, M. A.; Goel, A.; Abbas, Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Angew. Chem. Int. Edit. 2016, 55(11), 3790–3794. DOI: 10.1002/anie.201512025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.