239
Views
0
CrossRef citations to date
0
Altmetric
Water treatment

Scale formation in wet scrubbers and the current state of anti-scaling and softening methods for hard waters: A review

, &
Pages 1331-1346 | Received 24 Jun 2022, Accepted 15 Feb 2023, Published online: 12 Mar 2023

References

  • Córdoba, P. Status of Flue Gas Desulphurisation (FGD) Systems from Coal-Fired Power Plants: Overview of the Physic-Chemical Control Processes of Wet Limestone FGDs. Fuel. 2015, 144, 274–286. DOI: 10.1016/j.fuel.2014.12.065.
  • Poullikkas, A. Review of Design, Operating, and Financial Considerations in Flue Gas Desulfurization Systems. Energy Technol. Policy. 2015, 2(1), 92–103. DOI: 10.1080/23317000.2015.1064794.
  • Rogers, P. G. The Clean Air Act of 1970. Epa J. 1990, 16, 21.
  • United States Environmental Protection Agency. Progress Cleaning the Air and Improving People’s Health, 2021. https://www.epa.gov/clean-air-act-overview/progress-cleaning-air-and-improving-peoples-health
  • Kuklinska, K.; Wolska, L.; Namiesnik, J. Air Quality Policy in the US and the EU–A Review. Atmos. Pollut. Res. 2015, 6(1), 129–137. DOI: 10.5094/APR.2015.015.
  • Gubb, A. National Environmental Management: Air Quality Act (39 of 2004). Wildlife and Environmental Society of South Africa. Retrieved from http://www. enviropaedia.com/topic/default.php. 2009.
  • Mohlala, K. A critical evaluation of local government air quality management: the Gauteng experience. (Doctoral dissertation, North-West University (South Africa). 2020.
  • Rycroft, M. Air Quality regulations− Playing the Numbers Game with Power Stations. Energize. 2014, 1, 25–29.
  • Tshehla, C.; Wright, C. Y. 15 Years After the National Environmental Management Air Quality Act: Is Legislation Failing to Reduce Air Pollution in South Africa? South Afr. J. Sci. 2019, 115(9–10), 1–4. DOI: 10.17159/sajs.2019/6100.
  • Wirsching, F.; Hüller, R.; Olejnik, R. FGD Gypsum Definitions and Legislation in the European Communities, in the OECD and in Germany. In Studies in Environmental Science; Goumans, J. J. J. M., Goumansvan der Sloot, H. A., Aalbers, Th.G., Eds. Elsevier: New York: 1994; Vol. 60, pp. 205–216.
  • World Bank. Pollution Prevention and Abatement Handbook, 1998: Toward Cleaner Production; The World Bank: Washington, D.C., 1999.
  • Jahnig, C. E.; Shaw, H. A Comparative Assessment of Flue Gas Treatment Processes Part I—status and Design Basis. J. Air Pollut. Control Assoc. 1981, 31(4), 421–428. DOI: 10.1080/00022470.1981.10465241.
  • Pike, D. E.; Airpol Inc. Double Alkali Process for Removal of Sulfur Dioxide from Gas Streams. U.S. Patent 4,452,766. 1984.
  • Slack, A. V.; Falkenberry, H. L.; Harrington, R. E. Sulfur Oxide Removal from Waste Gases: Lime-Limestone Scrubbing Technology. J. Air Pollut. Control Assoc. 1972, 22(3), 159–166. DOI: 10.1080/00022470.1972.10469622.
  • Li, X.; Feng, D.; Chai, M.; Xu, S.; Mohammedomar, A.; Zhao, W. Efficient SO2 Capture by 2-(Diethylamino) Ethanol/Hexadecane Phase Separation Absorbent. Energy & Fuels. 2020, 34(11), 15039–15047. DOI: 10.1021/acs.energyfuels.0c02404.
  • Fokaides, P. A.; Kylili, A.; Pyrgou, A.; Koroneos, C. J. Integration Potentials of Insular Energy Systems to Smart Energy Regions. Energy Technol. Policy. 2014, 1(1), 70–83. DOI: 10.1080/23317000.2014.969455.
  • Mousavi Ehteshami, S. M.; Chan, S. H. Techno-Economic Study of Hydrogen Production via Steam Reforming of Methanol, Ethanol, and Diesel. Energy Technol. Policy. 2014, 1(1), 15–22. DOI: 10.1080/23317000.2014.933087.
  • Álvarez-Ayuso, E.; Querol, X.; Tomás, A. Environmental Impact of a Coal Combustion-Desulphurisation Plant: Abatement Capacity of Desulphurisation Process and Environmental Characterisation of Combustion By-Products. Chemosphere. 2006, 65(11), 2009–2017. DOI: 10.1016/j.chemosphere.2006.06.070.
  • Braden, J. B.; Kolstad, C. D.; Woock, R. A.; Machado, J. A. Is Coal Desulphurisation Worthwhile? Evidence from the Market. Energy Policy. 2001, 29(3), 217–225. DOI: 10.1016/S0301-4215(00)00115-4.
  • Baker, J. S.; Judd, S. J. Magnetic Amelioration of Scale Formation. Water Res. 1996, 30(2), 247–260. DOI: 10.1016/0043-1354(95)00184-0.
  • Fathi, A.; Mohamed, T.; Claude, G.; Maurin, G.; Mohamed, B. A. Effect of a Magnetic Water Treatment on Homogeneous and Heterogeneous Precipitation of Calcium Carbonate. Water Res. 2006, 40(10), 1941–1950. DOI: 10.1016/j.watres.2006.03.013.
  • Lipus, L. C.; Dobersek, D. Influence of Magnetic Field on the Aragonite Precipitation. Chem. Eng. Sci. 2007, 62(7), 2089–2095. DOI: 10.1016/j.ces.2006.12.051.
  • Parsons, S. A.; Judd, S. J.; Stephenson, T.; Udol, S.; Wang, B. L. Magnetically Augmented Water Treatment. Process Saf. Environ. Prot. 1997, 75(2), 98–104. DOI: 10.1205/095758297528869.
  • Gabrielli, C.; Jaouhari, R.; Maurin, G.; Keddam, M. Magnetic Water Treatment for Scale Prevention. Water Res. 2001 Sep 1, 35(13), 3249–3259.
  • Bezuidenhout, G. A.; Davis, J.; Van Beek, B.; Eksteen, J. J. Operation of a Concentrated Mode Dual-Alkali Scrubber Plant at the Lonmin Smelter. J. South Afr. Inst. Min. Metall. 2012, 112(7), 657–665 http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532012000700010.
  • Córdoba, P.; Staicu, L. C. Flue Gas Desulfurization Effluents: An Unexploited Selenium Resource. Fuel. 2018, 223, 268–276. DOI: 10.1016/j.fuel.2018.03.052.
  • Dzhonova-Atanasova, D. B.; Razkazova-Velkova, E. N.; Ljutzkanov, L. A. Current Problems and Development in Flue Gas Desulfurization. Mater. Methods Technol. (CD-ROM). 2011, 5, 74–103.
  • Nygaard, H. G.; Kiil, S.; Johnsson, J. E.; Jensen, J. N.; Hansen, J.; Fogh, F.; Dam-Johansen, K. Full-Scale Measurements of SO2 Gas Phase Concentrations and Slurry Compositions in a Wet Flue Gas Desulphurisation Spray Absorber. Fuel. 2004, 83(9), 1151–1164. DOI: 10.1016/j.fuel.2003.12.007.
  • Soud, H. N. Developments in FGD; IEA Coal Research: London, 2000; Vol. 29.
  • Srivastava, R. K.; Controlling, S. O. Emissions: A Review of Technologies, US Environmental Protection Agency; Office of Research and Development: Washington, DC, 2000. EPA/600/R-00/093
  • Eksteen, J. J.; Van Beek, B.; Bezuidenhout, G. A. Cracking a Hard Nut: An Overview of Lonmin’s Operations Directed at Smelting of UG2-Rich Concentrate Blends. J. South Afr. Inst. Min. Metall. 2011, 111(10), 681–690.
  • Aly, A. I.; Halhouli, K. A.; Abu-Ashur, B. M. Flue gas desulphurization processes. 1999.
  • Koech, L.; Rutto, H.; Lerotholi, L.; Everson, R. C.; Neomagus, H.; Branken, D.; Moganelwa, A. Spray Drying Absorption for Desulphurization: A Review of Recent Developments. Clean Technol. Environ. Policy. 2021, 23(6), 1–22. DOI: 10.1007/s10098-021-02066-3.
  • Gololo, K. V. Industrial Emissions Management: The Good, the Bad and the Ugly; Department of Environmental Affairs; Pretoria, 2017October2-3. [PowerPoint presentation].
  • Jones, R. T. An Overview of Southern African PGM Smelting, Nickel and Cobalt 2005: Challenges in Extraction and Production. 44th Annual Conference of Metallurgists, Calgary, Alberta, Canada, 21-24 August 2005, 147–178.
  • Živković, N. V.; Šerbanović, S. P.; Živković, E. M.; Kijevčanin, M. L.; Stefanović, P. L. Wet Flue Gas Desulphurisation Procedures and Relevant Solvents Thermophysical Properties Determination. Hem. Ind. 2014, 68(4), 491–500. DOI: 10.2298/HEMIND130610074Z.
  • McIlvaine, R. FGD is a Big but Volatile FRP Market. Reinf. Plast. 2010, 54(3), 43–45. DOI: 10.1016/S0034-3617(10)70112-0.
  • Sensorex. Wet Vs. Dry Industrial Scrubbers. https://sensorex.com/blog/2019/12/10/wet-vs-dry-industrial-scrubbers/. viewed Jun 25, 2021.
  • Kemmer, F. N., Ed. The NALCO Water Handbook; McGraw-Hill: New York, 1979.
  • Tilly, J. Flue Gas Desulfurization: Cost and Functional Analysis of Large-Scale and Proven Plants. 1983.
  • Andreasen, A.; Mayer, S. Use of Seawater Scrubbing for SO2 Removal from Marine Engine Exhaust Gas. Energy & Fuels. 2007, 21(6), 3274–3279. DOI: 10.1021/ef700359w.
  • Behrends, B.; Liebezeit, G. Reducing SO2 and NOX Emissions from Ships by a Seawater Scrubber. BP Mar. Rep. 2003, 34, 1–34.
  • Srivastava, R. K.; Jozewicz, W. Flue Gas Desulfurization: The State of the Art. J. Air Waste Manag. Assoc. 2001, 51(12), 1676–1688. DOI: 10.1080/10473289.2001.10464387.
  • Strömberg, A. M.; Karlsson, H. T. Limestone Based Spray Dry Scrubbing of SO2. In Tenth International Symposium on Chemical Reaction Engineering; Bourne, J. R., Regenass, W., Richarz, W., Eds. Pergamon: Great Britain, January, 1988; pp. 2095–2102. DOI: 10.1016/B978-0-08-036969-3.50001-4.
  • Srivastava, R. K.; Jozewicz, W.; Singer, C. SO2 Scrubbing Technologies: A Review. Environ. Prog. 2001, 20(4), 219–228. DOI: 10.1002/ep.670200410.
  • Fischer, M.; Darling, G. (2015) Circulating Fluidized Bed Scrubber Vs Spray Dryer Absorber. Power Eng Intern. https://www.powerengineeringint.com/coal-fired/circulating-fluidized-bed-scrubber-vs-spray-dryer-absorber. Accessed 5 February
  • Koralegedara, N. H.; Pinto, P. X.; Dionysiou, D. D.; Al-Abed, S. R. Recent Advances in Flue Gas Desulfurization Gypsum Processes and Applications–A Review. J. Environ. Manage. 2019, 251, 109572. DOI: 10.1016/j.jenvman.2019.109572.
  • Dal Pozzo, A.; Lazazzara, L.; Antonioni, G.; Cozzani, V. Techno-Economic Performance of HCl and SO2 Removal in Waste-To-Energy Plants by Furnace Direct Sorbent Injection. J. Hazard. Mater. 2020, 394, 122518. DOI: 10.1016/j.jhazmat.2020.122518.
  • Helfritch, D.; Bortz, S.; Beittel, R.; Bergman, P.; Toole‐o’neil, B. Combined SO2 and NOx Removal by Means of Dry Sorbent Injection. Environ. Prog. 1992, 11(1), 7–10. DOI: 10.1002/ep.670110111.
  • Hunt, G.; Sewell, M. Utilizing Dry Sorbent Injection Technology to Improve Acid Gas Control. In 34th International Conference on Thermal Treatment Technologies & Hazardous Waste Combustors, Houston, TX,October, 2015.
  • Wen, C. Y.; Wjm Jr, R. D.; Nelsen Jr, J. B.; Werkowitz, D. S.; Ketteringham, J. M.; Davidsson, L. M.,; Wiig, K. M. Scale Control in Limestone Wet Scrubbing Systems. In EPA-650/2-75-031, US Environmental Protection Agency, Industrial Environmental Research Laboratory; Research Triangle Park: Durham, North Carolina, April, 1975; pp 1–100.
  • Buecker, B. Properly Monitor Your Scrubber Chemistry. Power Eng. 2008, 112(7), 48–51.
  • Rosenberg, H. S.; Grotta, H. M. Battelle Development Corp. Scale Suppression in Lime and Limestone Scrubbers. U.S. Patent 4,177,245. 1979.
  • Mo, J. S.; Wu, Z. B.; Cheng, C. J.; Guan, B. H.; Zhao, W. R. Oxidation Inhibition of Sulfite in Dual Alkali Flue Gas Desulfurization System. J Environ Sci. 2007 Feb 1, 19(2), 226–231.
  • Fink, J. Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids; Gulf Professional Publishing: Oxford, United Kingdom, 2021.
  • Ismail, F.; Khulbe, K. C.; Matsuura, T. Reverse Osmosis; Elsevier: Oxford, United Kingdom, 2018.
  • Singh, R. Hybrid Membrane Systems for Water Purification, Chapter 2- Water and Membrane Treatment. 2005
  • Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of Heavy Metal Removals from Aqueous Solutions by Chemical Precipitation and Characteristics of Precipitates. J. Water Process Eng. 2018, 26, 289–300. DOI: 10.1016/j.jwpe.2018.11.003.
  • Entezari, M. H.; Tahmasbi, M. Water Softening by Combination of Ultrasound and Ion Exchange. Ultrason. Sonochem. 2009, 16(3), 356–360. DOI: 10.1016/j.ultsonch.2008.09.008.
  • Mercer, K. L.; Lin, Y. P.; Singer, P. C. Enhancing Calcium Carbonate Precipitation by Heterogeneous Nucleation During Chemical Softening. J. Am. Water Works Assoc. 2005, 97(12), 116–125. DOI: 10.1002/j.1551-8833.2005.tb07545.x.
  • Dey, D.; Herzog, A.; Srinivasan, V. Chemical Precipitation: Water Softening; Michigan State University: East Lancing, MI, 2007.
  • Explorer UE. United States Geological Survey. Imagens Landsat. 2020, 5.
  • Cappelle, M. A.; Davis, T. A. Ion Exchange Membranes for Water Softening and High-Recovery Desalination. Emerging Membr. Technol. Sustainable Water Treat. 2016, 1, 163.
  • Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010 Jan 1, 156(1), 11–24.
  • Apell, J. N.; Boyer, T. H. Combined Ion Exchange Treatment for Removal of Dissolved Organic Matter and Hardness. Water Res. 2010, 44(8), 2419–2430. DOI: 10.1016/j.watres.2010.01.004.
  • Canepa, P.; Garombo, C.; Szpyrkowicz, L.; Zilio-Grandi, F. Comparison Between Ion Exchange and Nanofiltration for Softening of Industrial Water. Filtr. & sep. 1996, 33(2), 131–135. DOI: 10.1016/S0015-1882(97)84206-1.
  • Hoffmann, H.; Martinola, F. Selective Resins and Special Processes for Softening Water and Solutions; a Review. React. Polym. Ion Exch. Sorbents. 1988, 7(2–3), 263–272. DOI: 10.1016/0167-6989(88)90148-1.
  • de Dardel, F. Basic Ion Exchange Processes in Water Treatment. http://dardel.info/IX/processes/processes.html/. viewed Nov 18 2019. 2020.
  • Madarász, D.; Szenti, I.; Sápi, A.; Halász, J.; Kukovecz, Á.; Kónya, Z. Exploiting the Ion-Exchange Ability of Titanate Nanotubes in a Model Water Softening Process. Chem. Phys. Lett. 2014 Jan 20, 591, 161–165.
  • Ahmed, S.; Chughtai, S.; Keane, M. A. The Removal of Cadmium and Lead from Aqueous Solution by Ion Exchange with Na?y Zeolite. Sep. Purif. Techn. 1998, 13(1), 57–64. DOI: 10.1016/S1383-5866(97)00063-4.
  • Wei, Y. -T.; Zheng, Y. -M.; Chen, J. P. Design and Fabrication of an Innovative and environmental Friendly Adsorbent for Boron Removal. Water Res. 2011, 45(6), 2297e2305. DOI: 10.1016/j.watres.2011.01.003.
  • Maliou, E.; Malamis, M.; Sakellarides, P. O. Lead and Cadmium Removal by Ion Exchange. Water Sci. Technol. 1992, 25(1), 133–138. DOI: 10.2166/wst.1992.0020.
  • Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. D. Removal of Metal Ions from Aqueous Solution by Chelating Polymeric Microsphers. Water Res. 1999, 33(11), 2469–2479. DOI: 10.1016/S0043-1354(98)00475-8.
  • Rengaraj, S.; Moon, S. H. Kinetics of Adsorption of Co (II) Removal from Water and Wastewater by Ion Exchange Resins. Water Res. 2002, 36(7), 1783–1793. DOI: 10.1016/S0043-1354(01)00380-3.
  • Brown, C.; Sheedy, M. A New Ion Exchange Process for Softening High TDS Produced Water. In SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, Calgary, Alberta, Canada, Society of Petroleum Engineers January, 2002
  • Seyrig, G.; Shan, W. Chemical Precipitation: Water Softening; ENE: Michigan State University, East Lansing, MI, 2007; p. 806.
  • Chen, Q.; Luo, Z.; Hills, C.; Xue, G.; Tyrer, M. Precipitation of Heavy Metals from Wastewater Using Simulated Flue Gas: Sequent Additions of Fly Ash, Lime and Carbon Dioxide. Water Res. 2009, 43(10), 2605–2614. DOI: 10.1016/j.watres.2009.03.007.
  • Demopoulos, G. P. Aqueous Precipitation and Crystallization for the Production of Particulate Solids with Desired Properties. Hydrometallurgy. 2009, 96(3), 199–214. DOI: 10.1016/j.hydromet.2008.10.004.
  • Mokone, T. P.; Van Hille, R. P.; Lewis, A. E. Effect of Solution Chemistry on Particle Characteristics During Metal Sulfide Precipitation. J. Coll. Interf. Sci. 2010, 351(1), 10–18. DOI: 10.1016/j.jcis.2010.06.027.
  • Alimi, F.; Tlili, M.; Amor, M. B.; Gabrielli, C.; Maurin, G. Influence of Magnetic Field on Calcium Carbonate Precipitation. Desalination. 2007, 206(1–3), 163–168. DOI: 10.1016/j.desal.2006.02.064.
  • MAG3. Proceedings of Anti-Scale Magnetic Treatment and Physical Conditions, Cranfield University, UK, 1999
  • Salman, M. A.; Safar, M.; Al-Nuwaibit, G. The Effect of Magnetic Treatment on Retarding Scaling Deposition. Tojsat. 2015, 5(3), 62–77.
  • Gilart, F; Deas, D; Ferrer, D; López, P; Ribeaux, G; Castillo, J. High flow capacity devices for anti-scale magnetic treatment of water. Chemical Engineering and Processing: Process Intensification. 2013 Aug 1, 70, 211–216.
  • Lipus, L. C.; Ačko, B.; Hamler, A. Electromagnets for High-Flow Water Processing. Chem. Eng. & Process. Process Intensifi. 2011, 50(9), 952–958. DOI: 10.1016/j.cep.2011.07.004.
  • Coey, J. M. D.; Cass, S. Magnetic Water Treatment. J. Magn. Magn. Mater. 2000, 209(1–3), 71–74. DOI: 10.1016/S0304-8853(99)00648-4.
  • Busch, K. W.; Busch, M. A.; Darling, R. E.; Maggard, S.; Kubala, S. W. Design of a Test Loop for the Evaluation of Magnetic Water Treatment Devices. Process Saf. Environ. Prot. 1997, 75(2), 105–114. DOI: 10.1205/095758297528878.
  • Deslouis, C.; Gabrielli, C.; Keddam, M.; Khalil, A.; Rosset, R.; Tribollet, B.; Zidoune, M. Impedance Techniques at Partially Blocked Electrodes by Scale Deposition. Electrochim. Acta. 1997, 42(8), 1219–1233. DOI: 10.1016/S0013-4686(96)00290-3.
  • Gabrielli, C.; Keddam, M.; Perrot, H.; Khalil, A.; Rosset, R.; Zidoune, M. Characterization of the Efficiency of Antiscale Treatments of Water Part I: Chemical Processes. J. Appl. Electrochem. 1996, 26(11), 1125–1132. DOI: 10.1007/BF00243737.
  • Euvrard, M.; Leroy, P.; Ledion, J. Effects and Consequences of Electric Treatment in Preventing Scaling of Drinking Water Systems. Aqua- J. Water Supply: Res. Technol. 1997, 46(2), 71–83.
  • Mahmoud, B.; Yosra, M.; Nadia, A. Effects of Magnetic Treatment on Scaling Power of Hard Waters. Sep. Purif. Techn. 2016, 171, 88–92. DOI: 10.1016/j.seppur.2016.07.027.
  • Gryta, M. The Influence of Magnetic Water Treatment on CaCO3 Scale Formation in Membrane Distillation Process. Sep. Purif. Techn. 2011, 80(2), 293–299. DOI: 10.1016/j.seppur.2011.05.008.
  • Gitis, V.; Hankins, N. Water Treatment Chemicals: Trends and Challenges. J. Water Process Eng. 2018, 25, 34–38. DOI: 10.1016/j.jwpe.2018.06.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.