143
Views
0
CrossRef citations to date
0
Altmetric
Membrane

Decoding transport selectivity of ions in polymer membranes by In-situ impedance spectroscopy

, &
Pages 2411-2421 | Received 15 Mar 2023, Accepted 23 May 2023, Published online: 12 Jun 2023

References

  • Chaudhury, S.; Wormser, E.; Harari, Y.; Edri, E.; Nir, O. Tuning the Ion-Selectivity of Thin-Film Composite Nanofiltration Membranes by Molecular Layer Deposition of Alucone. ACS Appl. Mater. Interfaces. 2020, 12, 53356–53364. DOI: 10.1021/acsami.0c16569.
  • Patel, S. K.; Biesheuvel, P. M.; Elimelech, M. Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Eng. 2021, 1(5), 851–864. DOI: 10.1021/acsestengg.0c00192.
  • Wormser, E. M.; Nir, O.; Edri, E. Low-Resistance Monovalent-Selective Cation Exchange Membranes Prepared Using Molecular Layer Deposition for Energy-Efficient Ion Separations. R.S.C. Adv. 2021, 11, 2427–2436. DOI: 10.1039/d0ra08725d.
  • Selvaraj, H.; Aravind, P.; Sundaram, M. Four Compartment Mono Selective Electrodialysis for Separation of Sodium Formate from Industry Wastewater. Chem. Eng. J. 2018, 333, 162–169. DOI: 10.1016/j.cej.2017.09.150.
  • Chaudhury, S.; Bhattacharyya, A.; Ansari, S. A.; Goswami, A. A New Approach for Selective Cs+ Separation from Simulated Nuclear Waste Solution Using Electrodriven Cation Transport Through Hollow Fiber Supported Liquid Membranes. J. Membr. Sci. 2018, 545, 75–80. DOI: 10.1016/j.memsci.2017.09.060.
  • Chaudhury, S.; Bhattacharyya, A.; Goswami, A. Electrodriven Selective Transport of Cs+using Chlorinated Cobalt Dicarbollide in Polymer Inclusion Membrane: A Novel Approach for Cesium Removal from Simulated Nuclear Waste Solution. Environ. Sci. Technol. 2014, 48, 12994–13000. DOI: 10.1021/es503667j.
  • Chaudhury, S.; Mishra, V. G.; Shah, D. J. Highly Selective Separation of Pertechnetate from Waste Water. J. Water. Process. Eng. 2019, 31, 100896. DOI: 10.1016/J.JWPE.2019.100896.
  • Luo, T.; Roghmans, F.; Wessling, M. Ion Mobility and Partition Determine the Counter-Ion Selectivity of Ion Exchange Membranes. J. Membr. Sci. 2020, 597, 117645. DOI: 10.1016/j.memsci.2019.117645.
  • Kumar, A.; Chaudhury, S. Transport Selectivities in Ion-Exchange Membranes: Heterogeneity Effect and Analytical Method Dependence. Sep. Sci. Technol. 2023, 58(2), 361–371. DOI: 10.1080/01496395.2022.2112224.
  • Luo, T.; Zhong, Y.; Xu, D.; Wang, X.; Wessling, M. Combining Manning’s Theory and the Ionic Conductivity Experimental Approach to Characterize Selectivity of Cation Exchange Membranes. J. Membr. Sci. 2021, 629, 119263. DOI: 10.1016/j.memsci.2021.119263.
  • Chaudhury, S.; Bhattacharyya, A.; Goswami, A. Electrodriven Ion Transport Through Crown Ether–Nafion Composite Membrane: Enhanced Selectivity of Cs + Over Na + by Ion Gating at the Surface. Ind. Eng. Chem. Res. 2014, 53, 8804–8809. DOI: 10.1021/ie500934v.
  • Geise, G. M. Experimental Characterization of Polymeric Membranes for Selective Ion Transport. Curr. Opin. Chem. Eng. 2020, 28, 36–42. DOI: 10.1016/j.coche.2020.01.002.
  • Vadhva, P.; Hu, J.; Johnson, M. J.; Stocker, R.; Braglia, M.; Brett, D. J. L.; Rettie, A. J. E. Electrochemical Impedance Spectroscopy for All‐Solid‐State Batteries: Theory, Methods and Future Outlook. Chem. ElectroChem. 2021, 8(11), 1930–1947. DOI: 10.1002/celc.202100108.
  • Bakonyi, P.; Koók, L.; Kumar, G.; Tóth, G.; Rózsenberszki, T.; Nguyen, D. D.; Chang, S. W.; Zhen, G.; Bélafi-Bakó, K.; Nemestóthy, N. Architectural Engineering of Bioelectrochemical Systems from the Perspective of Polymeric Membrane Separators: A Comprehensive Update on Recent Progress and Future Prospects. J. Membr. Sci. 2018, 564, 508–522. DOI: 10.1016/j.memsci.2018.07.051.
  • O’Rourke, M.; Duffy, N.; De Marco, R.; Potter, I. Electrochemical Impedance Spectroscopy—A Simple Method for the Characterization of Polymer Inclusion Membranes Containing Aliquat 336. Membranes. 2011, 1, 132–148. DOI: 10.3390/membranes1020132.
  • RezaeiNiya, S. M.; Hoorfar, M. Study of Proton Exchange Membrane Fuel Cells Using Electrochemical Impedance Spectroscopy Technique – a Review. J. Power Sources. 2013, 240, 281–293. DOI: 10.1016/j.jpowsour.2013.04.011.
  • Cuervo-Ochoa, G.; Campo-Cobo, L. F.; Gutiérrez-Valencia, T. M. Simultaneous Extraction and Reduction of Gold Using Sodium Tetraphenylborate in Polymeric Inclusion Membranes. Sep. Purif. Technol. 2021, 276, 119334. DOI: 10.1016/j.seppur.2021.119334.
  • Rotta, E. H.; Martí-Calatayud, M. C.; Pérez-Herranz, V.; Bernardes, A. M. Evaluation by Means of Electrochemical Impedance Spectroscopy of the Transport of Phosphate Ions Through a Heterogeneous Anion-Exchange Membrane at Different pH and Electrolyte Concentration. Water. 2022, 15, 9. DOI: 10.3390/w15010009.
  • Blommaert, M. A.; Vermaas, D. A.; Izelaar, B., in ’t Veen, B., & Smith, W. A.; Smith, W. A. Electrochemical Impedance Spectroscopy as a Performance Indicator of Water Dissociation in Bipolar Membranes. J. Mater. Chem. A. 2019, 7(32), 19060–19069. DOI: 10.1039/C9TA04592A.
  • Liang, Y.; Gao, F.; Wang, L.; Lin, S. In-Situ Monitoring of Polyelectrolytes Adsorption Kinetics by Electrochemical Impedance Spectroscopy: Application in Fabricating Nanofiltration Membranes via Layer-By-Layer Deposition. J. Membr. Sci. 2021, 619, 118747. DOI: 10.1016/J.memsci.2020.118747.
  • Antony, A.; Chilcott, T.; Coster, H.; Leslie, G. In situ Structural and Functional Characterization of Reverse Osmosis Membranes Using Electrical Impedance Spectroscopy. J. Membr. Sci. 2013, 425–426, 89–97. DOI: 10.1016/j.memsci.2012.09.028.
  • Ho, J. S.; Low, J. H.; Sim, L. N.; Webster, R. D.; Rice, S. A.; Fane, A. G.; Coster, H. G. L. In-Situ Monitoring of Biofouling on Reverse Osmosis Membranes: Detection and Mechanistic Study Using Electrical Impedance Spectroscopy. J. Membr. Sci. 2016, 518, 229–242. DOI: 10.1016/j.memsci.2016.06.043.
  • Zhang, W.; Wang, P.; Ma, J.; Wang, Z.; Liu, H. Investigations on Electrochemical Properties of Membrane Systems in Ion-Exchange Membrane Transport Processes by Electrochemical Impedance Spectroscopy and Direct Current Measurements. Electrochim. Acta. 2016, 216, 110–119. DOI: 10.1016/j.electacta.2016.09.018.
  • Tufa, R. A.; Piallat, T.; Hnát, J.; Fontananova, E.; Paidar, M.; Chanda, D.; Curcio, E.; di Profio, G.; Bouzek, K. Salinity Gradient Power Reverse Electrodialysis: Cation Exchange Membrane Design Based on Polypyrrole-Chitosan Composites for Enhanced Monovalent Selectivity. Chem. Eng. J. 2020, 380, 122461. DOI: 10.1016/j.cej.2019.122461.
  • Moya, A. A. Electrochemical Impedance of Ion-Exchange Membranes in Ternary Solutions with Two Counterions. J. Phys. Chem. C. 2018, 118(5), 2539–2553. DOI: 10.1021/jp4108238.
  • Kim, J.-R.; Yi, J. S.; Song, T.-W. Investigation of Degradation Mechanisms of a High-Temperature Polymer-Electrolyte-Membrane Fuel Cell Stack by Electrochemical Impedance Spectroscopy. J. Power Sources. 2012, 220, 54–64. DOI: 10.1016/j.jpowsour.2012.07.129.
  • Kwon, O. J.; Kang, M. S.; Ahn, S. H.; Choi, I.; Lee, K. U.; Jeong, J. H.; Han, I.-S.; Yang, J. C.; Kim, J. J. Development of Flow Field Design of Polymer Electrolyte Membrane Fuel Cell Using in-Situ Impedance Spectroscopy. Int. J. Hydrogen. Energy. 2011, 36(16), 9799–9804. DOI: 10.1016/j.ijhydene.2010.10.040.
  • Chaudhury, S.; Thakur, A. K.; Gojman, R. S.; Arnusch, C. J.; Nir, O. Ion Transport in Laser-Induced Graphene Cation-Exchange Membrane Hybrids. J. Phys. Chem. Lett. 2020, 11, 1397–1403. DOI: 10.1021/acs.jpclett.0c00036.
  • Chaudhury, S.; Agarwal, C.; Pandey, A. K.; Goswami, A. Self-Diffusion of Ions in Nafion-117 Membrane Having Mixed Ionic Composition. J. Phys. Chem B. 2012, 116, 1605–1611. DOI: 10.1021/jp211282z.
  • Roghmans, F.; Martí-Calatayud, M. C.; Abdu, S.; Femmer, R.; Tiwari, R.; Walther, A.; Wessling, M. Electrochemical Impedance Spectroscopy Fingerprints the Ion Selectivity of Microgel Functionalized Ion-Exchange Membranes. Electrochem. Commun. 2016, 72, 113–117. DOI: 10.1016/j.elecom.2016.09.009.
  • Mohapatra, P. K.; Lakshmi, D. S.; Bhattacharyya, A.; Manchanda, V. K. Evaluation of Polymer Inclusion Membranes Containing Crown Ethers for Selective Cesium Separation from Nuclear Waste Solution. J. Hazard. Mater. 2009, 169(1–3), 472–479. DOI: 10.1016/j.jhazmat.2009.03.124.
  • Ershad, M.; Almeida, M. I. G. S.; Spassov, T. G.; Cattrall, R. W.; Kolev, S. D. Polymer Inclusion Membranes (PIMs) Containing Purified Dinonylnaphthalene Sulfonic Acid (DNNS): Performance and Selectivity. Sep. Purif. Technol. 2018, 195, 446–452. DOI: 10.1016/j.seppur.2017.12.037.
  • Długołecki, P.; Ogonowski, P.; Metz, S. J.; Saakes, M.; Nijmeijer, K.; Wessling, M. On the Resistances of Membrane, Diffusion Boundary Layer and Double Layer in Ion Exchange Membrane Transport. J. Membr. Sci. 2010, 349(1–2), 369–379. DOI: 10.1016/j.memsci.2009.11.069.
  • Park, J. S.; Choi, J. H.; Woo, J. J.; Moon, S. H. An Electrical Impedance Spectroscopic (EIS) Study on Transport Characteristics of Ion-Exchange Membrane Systems. J. Colloid. Interface. Sci. 2006, 300(2), 655–662. DOI: 10.1016/J.JCIS.2006.04.040.
  • Barsoukov, E.; Macdonald, J. R.; Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy: Theory, Experiment, and Applications, Wiley:Hoboken, NJ, 2018.10.1002/9781119381860
  • Chaudhury, S.; Bhattacharya, A.; Agarwal, C.; Goswami, A. Temperature Dependence of Ion and Water Diffusion in Crown Ether Loaded Nafion Matrix. J. Phys. Chem B. 2011, 115, 9395–9400. DOI: 10.1021/jp203821h.
  • Křivčík, J.; Neděla, D.; Hadrava, J.; Brožová, L. Increasing Selectivity of a Heterogeneous Ion-Exchange Membrane. Desalin. Water. Treat. 2014, 1–7. DOI: 10.1080/19443994.2014.980970.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.