89
Views
0
CrossRef citations to date
0
Altmetric
Ion Exchange

Sol-gel synthesis, physico-chemical characterization and investigations on ion exchange performance of atypical conducting polymer integrated composite cation exchangers

&
Pages 2145-2165 | Received 02 Feb 2023, Accepted 19 Jul 2023, Published online: 31 Jul 2023

References

  • Owa, F. D. Water Pollution: Sources, Effects, Control and Management. Mediterr. J. Soc. Sci. 2013, 4, 65–68. DOI: 10.5901/mjss.2013.v4n8p65.
  • Peng, X. W.; Zhong, L. X.; Ren, J. L.; Sun, R. C. Highly Effective Adsorption of Heavy Metal Ions from Aqueous Solutions by Macroporous Xylan Rich Hemicelluloses Based Hydrogel. J. Agric. Food. Chem. 2012, 60(15), 3909–3916. DOI: 10.1021/jf300387q.
  • Agustina, T. E.; Ang, H. M.; Vareek, V. K. A Review of Synergistic Effect of Photocatalysis and Ozonation on Wastewater Treatment. J. Photochem. Photobiol. C. 2005, 6(4), 264–273. DOI: 10.1016/j.jphotochemrev.2005.12.003.
  • Behera, S. S.; Sourav Das, S.; Parhi, P. K.; Tripathy, S. K.; Mohapatra, R. K.; Debata, M. Kinetics, Thermodynamics and Isotherm Studies on Adsorption of Methyl Orange from Aqueous Solution Using Ion Exchange Resin Amberlite IRA-400. Desalin. Water Treat. 2017, 60, 249–260. DOI: 10.5004/dwt.2017.0171.
  • Joo, S. H.; Kim, Y. U.; Kang, J. G.; Kumar, J. R.; Yoon, H. S.; Parhi, P. K.; Shin, S. M. Recovery of Rhenium and Molybdenum from Molybdenite Roasting Dust Leaching Solution by Ion Exchange Resins. Mater. Trans. 2012, 53(11), 2034–2037. DOI: 10.2320/matertrans.M2012208.
  • Park, K. H.; Parhi, P. K.; Kang, N. H. Studies on Removal of Low Content Copper from the Sea Nodule Aqueous Solution Using the Cationic Resin TP 207. Sep. Sci. Technol. 2012, 47(10), 1531–1541. DOI: 10.1080/01496395.2011.652285.
  • Naushad, M. Inorganic and Composite Ion Exchange Materials and Their Applications. Ion Exch. Lett. 2009, 2, 1–14.
  • Viswanathan, N.; Meenakshi, S. Development of Chitosan Supported Zr(iv) Tungstophosphate Composite for Fluoride Removal. J. Hazard. Mater. 2010, 176(1–3), 459–465. DOI: 10.1016/j.jhazmat.2009.11.051.
  • Nguyen, D. N.; Yoon, H. Recent Advances in Nanostructured Conducting Polymers: From Synthesis to Practical Applications. Polymers. 2016, 8(4), 118–138. DOI: 10.3390/polym8040118.
  • Tarmizi, E. Z. M.; Baqiah, H.; Talib, Z. A. Facile Synthesis and Characterizations of Polypyrrole/BiOcl Hybrid Composites. J. Solid State Electrochem. 2017, 21(11), 3247–3255. DOI: 10.1007/s10008-017-3670-8.
  • Tabaciarova, J.; Micusik, M.; Fedorko, P.; Omastova, M. Study of Polypyrrole Aging by XPS, FTIR and Conductivity Measurements. Polym. Degrad. Stab. 2015, 120, 392–401. DOI: 10.1016/j.polymdegradstab.2015.07.021.
  • Ahmad, H.; Rahman, M. M.; Ali, M. A.; Minami, H.; Tauer, K.; Gafur, M. A.; Rahman, M. M. A Simple Route to Synthesize Conductive Stimuli-Responsive Polypyrrole Nanocomposite Hydrogel Particles with Strong Magnetic Properties and Their Performance for Removal of Hexavalent Chromium Ions from Aqueous Solution. J. Magn. Magn. Mater. 2016, 412, 15–22. DOI: 10.1016/j.jmmm.2016.03.068.
  • Mane, A. T.; Navale, S. T.; Pawar, R. C.; Lee, C. S.; Patil, V. B. Microstructural, Optical and Electrical Transport Properties of WO3 Nanoparticles Coated Polypyrrole Hybrid Nanocomposites. Synth. Met. 2015, 199, 187–195. DOI: 10.1016/j.synthmet.2014.11.031.
  • Yang, J.; Liu, Y.; Liu, S.; Li, L.; Zhang, C.; Liu, T. Conducting Polymer Composites: Material Synthesis and Applications in Electrochemical Capacitive Energy Storage. Mater. Chem. Front. 2017, 1(2), 251–268. DOI: 10.1039/C6QM00150E.
  • Khan, A. A.; Rao, R. A. K.; Alam, N.; Shaheen, S. Formaldehyde Sensing Properties and Electrical Conductivity of Newly Synthesized Polypyrrole/Zr(iv) Selenoiodate Cation Exchange Nanocomposite. Sens. Actuators B: Chem. 2015, 211, 419–427. DOI: 10.1016/j.snb.2015.01.054.
  • Rahman, N.; Nasir, M. Development of Zr(iv)—Doped Polypyrrole/Zr(iv) Iodate Composite for Efficient Removal of Fluoride from Water Environment. J. Water. Process. Eng. 2017, 19, 172–184. DOI: 10.1016/j.jwpe.2017.07.016.
  • Rath, P. P.; Behera, S. S.; Priyadarshini, B.; Panda, S. R.; Mandal, D.; Sahoo, T.; Mishra, S.; Sahoo, T. R.; Parhi, P. K. Influence of Mg Doping on ZnO NPs for Enhanced Adsorption Activity of Congo Red Dye. Appl. Surf. Sci. 2019, 491, 256–266. DOI: 10.1016/j.apsusc.2019.06.120.
  • Dash, S.; Das, S.; Khan, M. I.; Sinha, S.; Das, B.; Jayabalan, R.; Parhi, P. K.; Tripathy, S. K. Sonochemically Synthesized Ag/CaCO3 Nanocomposites: A Highly Efficient Reusable Catalyst for Reduction of 4-Nitrophenol. Mater. Chem. Phys. 2018, 220, 409–416. DOI: 10.1016/j.matchemphys.2018.09.019.
  • Khan, A. A.; Paquiza, L.; Khan, A. An Advanced Nanocomposite Cation Exchanger Polypyrrole/Zirconium Titanium Phosphate as a Th(iv) Selective Potentiometric Sensor: Preparation, Characterization and Its Analytical Application. J. Mater. Sci. 2010, 45, 3610–3625. DOI: 10.1007/s10853-010-4407-6.
  • Khan, A. A.; Inamuddin. Determination and Separation of Pb2+++ from Aqueous Solutions Using a Fibrous Type Organic–Inorganic Hybrid Cation-Exchange Material: Polypyrrole Thorium(iv) Phosphate. React. Funct. Polym. 2005, 63(2), 119–133. DOI: 10.1016/j.reactfunctpolym.2005.02.001.
  • Khan, A. A.; Alam, M. M. New and Novel Organic–Inorganic Type Crystalline ‘Polypyrrolel/Polyantimonic acid’ Composite System: Preparation, Characterization and Analytical Applications as a Cation-Exchange Material and Hg(ii) Ion-Selective Membrane Electrode. Anal. Chim. Acta. 2004, 504(2), 253–264. DOI: 10.1016/j.aca.2003.10.054.
  • Khan, A. A.; Khan, M. Q.; Shaheen, S. Synthesis, Characterization and Electroanalytical Studies of Pb2+ Selective Polypyrrole/Zr(iv) Phosphate Ion Exchange Membrane. J. Solid State Electrochem. 2016, 20, 2079–2091. DOI: 10.1007/s10008-016-3173-z.
  • Khan, A. A.; Khan, A.; Habiba, U.; Paquiza, L.; Ali, S. Preparation and Characterization of Electrically Conducting Polypyrrole/Sn(iv) Phosphate Cation Exchanger and Its Application as Mn(ii) Ion Selective Membrane Electrode. J. Adv. Res. 2011, 2, 341–349. DOI: 10.1016/j.jare.2011.02.007.
  • Umadevi, R.; Mispa, K. J. Potential Utility and Design Approach on Novel Mesoporous Polyaniline Functionalized Ternary Composite Cation Exchanger. J. Mol. Struct. 2021, 1246, 1–13. DOI: 10.1016/j.molstruc.2021.131037.
  • Sharma, G.; Thakur, B.; Naushad, M.; Al-Muhtaseb, A. H.; Kumar, A.; Sillanpaa, M.; Mola, G. T. Fabrication and Characterization of Sodium Dodecyl Sulphate@ironsilicophosphate Nanocomposite: Ion Exchange Properties and Selectivity for Binary Metal Ion. Mater. Chem. Phys. 2017, 193, 129–139. DOI: 10.1016/j.matchemphys.2017.02.010.
  • Rajput, A.; Yadav, V.; Sharma, P. P.; Kulshrestha, V. Synthesis of SGO Composite Interpenetrating Network (CIPN) Cation Exchange Membranes: Stability and Salt Removal Efficiency. J. Membr. Sci. 2018, 564, 44–52. DOI: 10.1016/j.memsci.2018.07.004.
  • Upadhyay, P.; Mishra, S.; Sharma, J.; Panja, S.; Kulshrestha, V. Recovery and Enrichment of Acid from Metallurgical Wastewater Model by Electrodialysis Integrated Diffusion Dialysis System Using Poly(ethylene) Based IEMs. Sep. Purif. Technol. 2023, 304, 1–13. DOI: 10.1016/j.seppur.2022.122353.
  • Thakur, M.; Pathania, D.; Sharma, G.; Naushad, M.; Bhatnagar, A.; Khan, M. R. Synthesis, Characterization and Environmental Applications of a New Biocomposite Gelatin/Zirconium(iv) Phosphate. J. Environ. Polym. Degrad. 2018, 26, 1415–1424. DOI: 10.1007/s10924-017-1043-0.
  • Topp, N. E.; Pepper, K. W. Properties of Ion-Exchange Resins in Relation to Their Structure Part-1 Titration Curves. J. Chem. Soc. 1949, 690, 3299–3303. DOI: 10.1039/jr9490003299.
  • Iqbal, N.; Rafiquee, M. Z. A. Synthesis and Characterization of Lead(ii) Selective Sodium Dodecyl Benzene Sulphonate/Ce(iv) Phosphate Ion Exchanger. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 67–71. DOI: 10.1016/j.colsurfa.2010.04.039.
  • Ahmad, W.; Sharma, S. Synthesis, Characterisation and Ion Exchange Properties of Hybrid Organic–Inorganic Composite Material: Polyacrylamide Zirconium (IV) Iodosulphosalicylate. Int. J. Environ. Anal. Chem. 2019, 99(15), 1604–1614. DOI: 10.1080/03067319.2019.1628950.
  • Vishnuvardhan, T. K.; Kulkarni, V. R.; Basavaraja, C.; Raghavendra, S. C. Synthesis, Characterization and A.C. Conductivity of polypyrrole/Y2O3 Composites. Bull. Mater. Sci. 2006, 29(1), 77–83. DOI: 10.1007/BF02709360.
  • Rao, K. N.; Sridhar, A.; Lee, A. F.; Tavener, S. J.; Young, N. A.; Wilson, K. Zirconium Phosphate Supported Tungsten Oxide Solid Acid Catalysts for the Esterification of Palmitic Acid. Green Chem. 2006, 8(9), 790–797. DOI: 10.1039/b606088a.
  • Bhattacharyya, S. N.; Kundu, K. P. Spectrophotometric Determination of EDTA. Talanta. 1971, 18, 446–449. DOI: 10.1016/0039-9140(71)80066-8.
  • Zadeh, H. A.; Tavarid, K.; Talleb, Z. Determination of Iodate in Food, Environmental and Biological Samples After Solid-Phase Extraction with Ni-Al-Zr Ternary Layered Double Hydroxide as a Nanosorbent. Sci. World J. 2012, 2012, 1–8. DOI: 10.1100/2012/145482.
  • Basavaraj, B.; Metri, G. P.; Shweta, G. C.; Sannakki, B. Complex Optical Studies on Conducting Polypyrrole Doped with ZnO Nanoparticles. Macromol. Symp. 2020, 393(1), 1–6. DOI: 10.1002/masy.202000096.
  • Nabi, S. A.; Shahadata, M.; Bushra, R.; Oves, M.; Ahmed, F. Synthesis and Characterization of Polyaniline/Zr(iv) Sulphosalicylate Composite and Its Applications (1) Electrical Conductivity and (2) Antimicrobial Activity Studies. Chem. Eng. J. 2011, 173, 706–714. DOI: 10.1016/j.cej.2011.07.081.
  • Lutfullah Rashid, M.; Rahman, N. Zirconium(iv) Phosphosulphosalicylate as an Important Lead(ii) Selective Ion-Exchange Material: Synthesis, Characterization and Adsorption Study. Adv. Sci. Lett. 2012, 17, 184–190. DOI: 10.1166/asl.2012.3683.
  • Rao, C. N. R. Chemical Applications of Infrared Spectroscopy; Academic Press: New York, 1963.
  • Arjomandi, J.; Shah, A. A.; Bilal, S.; Hoang, H. V.; Holze, R. In situ Raman and UV-Visible Spectroscopic Studies of Polypyrrole and Poly(pyrrole-2,6-Dimethyl-β-Cyclodextrin). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 1–6. DOI: 10.1016/j.saa.2009.12.026.
  • Shanthala, V. S.; Devi, S. N. S.; Murugendrappa, M. V. Synthesis, Characterization and DC Conductivity Studies of Polypyrrole/Copper Zinc Iron Oxide Nanocomposites. J. Asian Ceram. Soc. 2017, 5(3), 227–234. DOI: 10.1016/j.jascer.2017.02.005.
  • Nabi, S. A.; Naushad, M.; Bushra, R. A New Hybrid EDTA–Zirconium Phosphate Cation Exchanger: Synthesis, Characterization and Adsorption Behaviour for Environmental Monitoring. Adsorpt. Sci. Technol. 2009, 27, 423–434. DOI: 10.1260/026361709790252641.
  • Khan, A. A.; Hussain, R.; Shaheen, S. Electrical Conductivity and Acetaldehyde Vapour Sensing Studies on Synthetic Polypyrrole/Ti(iv) Sulphosalicylophosphate Nanocomposite Cation Exchange Material. New. J. Chem. 2016, 40, 2200–2210. DOI: 10.1039/C5NJ03129J.
  • Alam, F.; Ansari, S. A.; Khan, W.; Khan, M. E.; Naqvi, A. H. Synthesis, Structural, Optical and Electrical Properties of in-Situ Synthesized Polyaniline/Silver Nanocomposites. Funct. Mater. Lett. 2012, 5(3), 1–5. DOI: 10.1142/S1793604712500269.
  • Zhu, J.; Wei, S.; Zhang, L.; Mao, Y.; Ryu, J.; Haldolaarachchige, N.; Young, D. P.; Guo, Z. Electrical and Dielectric Properties of polyaniline/Al2O3 Nanocomposites Derived from Various Al2O3 Nanostructures. J. Mater. Chem. 2011, 21, 3952–3959. DOI: 10.1039/c0jm03908j.
  • Khan, M. D. A.; Akhtar, A.; Nabi, S. A. Investigation of the Electrical Conductivity and Optical Property of Polyaniline Based Nanocomposite and Its Application as an Ethanol Vapor Sensor. New. J. Chem. 2015, 39, 3728–3735. DOI: 10.1039/C4NJ02260B.
  • Hashim, M.; Alimuddin Kumar, S.; Shirsath, S. E.; Kotnala, R. K.; Shah, J.; Kumar, R. Synthesis and Characterizations of Ni2+ Substituted Cobalt Ferrite Nanoparticles. Mater. Chem. Phys. 2013, 139, 364–374. DOI: 10.1016/j.matchemphys.2012.09.019.
  • Parvatikar, N.; Jain, S.; Bhoraskar, S. V.; Prasad, M. V. N. A. Spectroscopic and Electrical Properties of polyaniline/CeO2 Composites and Their Application as Humidity Sensor. J. Appl. Polym. Sci. 2006, 102(6), 5533–5537. DOI: 10.1002/app.24636.
  • Parvatikar, N.; Jain, S.; Khasim, S.; Revansiddappa, M.; Bhoraskar, S. V.; Prasad, M. V. N. A. Electrical and Humidity Sensing Properties of polyaniline/WO3composites. Sens. Actuators B: Chem. 2006, 114(2), 599–603. DOI: 10.1016/j.snb.2005.06.057.
  • Nabi, S. A.; Shalla, A. H. Synthesis, Characterization and Analytical Application of Hybrid Acrylamide/Zr(iv) Arsenate a Cation Exchanger, Effect of Dielectric Constant on Distribution Coefficient of Metal Ions. J. Hazard. Mater. 2009, 163, 657–664. DOI: 10.1016/j.jhazmat.2008.07.011.
  • Nabi, S. A.; Islam, A. Synthesis and Characterization of a New Cation Exchanger Zr(iv) Iodotungstate: Separation and Determination of Metal Ion Contents of Synthetic Mixtures, Pharmaceutical Preparations and Standard Reference Material. J. Hazard. Mater. 2009, 172, 202–207. DOI: 10.1016/j.jhazmat.2009.06.168.
  • Demirbas, A.; Pehlivan, E.; Gode, F.; Altun, T.; Arslan, G. Adsorption of Cu(ii), Zn(ii), Ni(ii), Pb(ii) and Cd(ii) from Aqueous Solution on Amberlite IR-120 Synthetic Resin. J. Colloid. Interface. Sci. 2005, 282, 20–25. DOI: 10.1016/j.jcis.2004.08.147.
  • Khan, A. A.; Khan, M. Q.; Hussain, R. Determination of Cu2+ in Aqueous Solution Using a Polyindole/Sn(iv) Molybdophosphate Conductive Nanocomposite Ion-Selective Membrane Electrode. J. Phys. Chem. Solids. 2018, 123, 113–123. DOI: 10.1016/j.jpcs.2018.06.011.
  • Siddiqui, W. A.; Khan, S. A.; Inamuddin. Synthesis, Characterization and Ion-Exchange Properties of a New and Novel ‘Organic–inorganic’ Hybrid Cation Exchanger: Poly(methyl Methacrylate)/Zr(iv) Phosphate. Colloids Surf. A Physicochem. Eng. Asp. 2007, 295, 193–199. DOI: 10.1016/j.colsurfa.2006.08.053.
  • Nabi, S. A.; Akhtar, A.; Khan, M. D. A.; Khan, M. A. Synthesis, Characterization and Electrical Conductivity of Polyaniline/Sn(iv) Tungstophosphate Hybrid Cation Exchanger: Analytical Application for Removal of Heavy Metal Ions from Wastewater. Desalination. 2014, 340, 73–83. DOI: 10.1016/j.desal.2014.02.020.
  • Iqbal, N.; Mobin, M.; Rafiquee, M. Z. A.; Al-Lohedan, H. A. Removal of Cu2+ and Pb2+ Ions by Surfactant Based Cationic Exchanger Using Cetylpyridinium Chloride/Cerium(iv) Phosphate. Desalin. Water Treat. 2016, 57, 19917–19926. DOI: 10.1080/19443994.2015.1109556.
  • Bhatti, A. A.; Memon, S.; Memon, N.; Bhatti, A. A.; Solangi, I. B. Evaluation of Chromium(vi) Sorption Efficiency of Modified Amberlite XAD-4 Resin. Arab J. Chem. 2017, 10, S1111–S1118. DOI: 10.1016/j.arabjc.2013.01.020.
  • Elfeghe, S.; Sheng, Q.; Mamudu, A.; James, L. A.; Zhang, Y. Recovery of Lead(ii) Ions from Aqueous Solutions Using G-26 and MTS9570 Resins with Sulfonic/Phosphonic Functional Groups. Minerals. 2022, 12, 1312–1316. DOI: 10.3390/min12101312.
  • Rao, K. S.; Chaudhury, G. R.; Mishra, B. K. Kinetics and Equilibrium Studies for the Removal of Cadmium Ions from Aqueous Solutions Using Duolite ES 467 Resin. Int. J. Miner. Process. 2010, 97(1–4), 68–73. DOI: 10.1016/j.minpro.2010.08.003.
  • Zhi-Liang, Z.; Hong-Mei, M. A.; Rong-Hua, Z.; Yuan-Xin, G. E.; Jian-Fu, Z. Removal of Cadmium Using MnO2 Loaded D301 Resin. J. Environ. Sci. 2007, 19, 652–656. DOI: 10.1016/S1001-0742(07)60109-0.
  • Elfeghe, S.; Sheng, Q.; Zhang, Y. Separation of Lead and Copper Ions in Acidic Media Using an Ion-Exchange Resin with a Thiourea Functional Group. ACS Omega. 2022, 7(15), 13042–13049. DOI: 10.1021/acsomega.2c00417.
  • Pehlivan, E.; Altun, T. The Study of Various Parameters Affecting the Ion Exchange of Cu2+, Zn2+, Ni2+, Cd2+ and Pb2+ from Aqueous Solution on Dowex 50W Synthetic Resin. J. Hazard. Mater. 2006, 134, 149–156. DOI: 10.1016/j.jhazmat.2005.10.052.
  • An, H. Crab Shell for the Removal of Heavy Metals from Aqueous Solution. Water Res. 2001, 35(15), 3551–3556. DOI: 10.1016/S0043-1354(01)00099-9.
  • El-Bahy, S. M.; El-Bahy, Z. M. Synthesis and Characterization of a New Iminodiacetate Chelating Resin for Removal of Toxic Heavy Metal Ions from Aqueous Solution by Batch and Fixed Bed Column Methods. Korean J. Chem. Eng. 2016, 33(8), 2492–2501. DOI: 10.1007/s11814-016-0070-1.
  • Dizge, N.; Keskinler, B.; Barlas, H. Sorption of Ni(ii) Ions from Aqueous Solution by Lewatit Cation Exchange Resin. J. Hazard. Mater. 2009, 167, 915–926. DOI: 10.1016/j.jhazmat.2009.01.073.
  • Liu, X.; Chen, H.; Wang, C.; Qu, R.; Ji, C.; Sun, C.; Zhang, Y. Synthesis of Porous Acrylonitrile/Methyl Acrylate Copolymer Beads by Suspended Emulsion Polymerization and Their Adsorption Properties After Amidoximation. J. Hazard. Mater. 2010, 175(1–3), 1014–1021. DOI: 10.1016/j.jhazmat.2009.10.111.
  • Baby, R.; Saifullah, B.; Hussein, M. Z. Carbon Nanomaterials for the Treatment of Heavy Metal Contaminated Water and Environmental Remediation. Nanoscale Res. Lett. 2019, 14, 1–17. DOI: 10.1186/s11671-019-3167-8.
  • Iqbal, N.; Mobin, M.; Rafiquee, M. Z. A. Synthesis and Characterization of Sodium Bis(2-Ethylhexyl)sulfosuccinate Based Sn(iv) Phosphate Cation Exchanger: Selective for Cd2+, Zn2+ and Hg2+ Ions. Chem. Eng. J. 2011, 169, 43–49. DOI: 10.1016/j.cej.2011.02.048.
  • Rathore, B. S.; Sharma, G.; Pathania, D.; Gupta, V. K. Synthesis, Characterization and Antibacterial Activity of Cellulose Acetate/Sn(iv) Phosphate Nanocomposite. Carbohydr. Polym. 2014, 103, 221–227. DOI: 10.1016/j.carbpol.2013.12.011.
  • Rahman, N.; Haseen, U.; Rashid, M. Synthesis and Characterization of Polyacrylamide/Zr(iv) Iodate Ion Exchanger: Its Application for Selective Removal of Lead(ii) from Wastewater. Arab J. Chem. 2017, 10, S1765–S1773. DOI: 10.1016/j.arabjc.2013.06.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.