204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adsorption kinetics and equilibrium performance of Di-n-butyl phosphate on XAD-4 and XAD-7 from alkaline medium

, , , , , & show all
Pages 2767-2779 | Received 21 Mar 2023, Accepted 19 Jul 2023, Published online: 27 Jul 2023

References

  • Natarajan, R. Reprocessing of Spent Nuclear Fuel in India: Present Challenges and Future Programme, Prog. Nucl. Energy. 2017, 101, 118–132. DOI: 10.1016/j.pnucene.2017.03.001.
  • Tahraoui, A.; Morris, J. H. Decomposition of Solvent Extraction Media During Nuclear Reprocessing: Literature Review. Sep. Sci. Technol. 1995, 30(13), 2603–2630. DOI: 10.1080/01496399508013706.
  • Velavendan, P.; Ganesh, S.; Pandey, N. K.; Kamachi Mudali, U.; Natarajan, R. Comparative Studies on the Determination of di-N-Butyl Phosphate in Degraded Solvent of PUREX Process by Ion Chromatography and Gas Chromatography Methods. Desalinat. Water Treat. 2012, 49(1–3), 123–129. DOI: 10.1080/19443994.2012.708208.
  • Mishra, S.; Mallika, C.; Pandey, N. K.; Kamachi Mudali, U.; Natarajan, R. Effect of Radiolysis in Altering the Physicochemical and Metal Retention Properties of Solvent-Diluent-Acid Systems. Sep. Sci. Technol. 2015, 50(11), 1671–1676. DOI: 10.1080/01496395.2014.988359.
  • Rydberg, J. Solvent Extraction Principles and Practice, Revised and Expanded, 2nd. Blackwell’s, 2004. 10.1201/9780203021460
  • Ganesh, S.; Desigan, N.; Chinnusamy, A.; Pandey, N. K. Electrolytic and Ozone Aided Destruction of Oxalate Ions in Plutonium Oxalate Supernatant of the PUREX Process: A Comparative Study. J. Radioanal. Nucl. Chem. 2021, 328(3), 857–867. DOI: 10.1007/s10967-021-07714-y.
  • Ganesh, S.; Velavendan, P.; Chinnusamy, A.; Pandey, N. K.; Kamachi Mudali, U. 2015. Oxidative Destruction of Dissolved TBP in Simulated Raffinate Stream of Nuclear Fuel Reprocessing, Proceeding of DAE-BRNS12th National Symposium on Nuclear and Radiochemistry (NUCAR 15) Feb. 9-19. BARC: Mumbai, B-66, pp. 228–229.
  • Ganesh, S.; Chinnusamy, A.; Pandey, N. K. Sequential Destruction of Dissolved TBP and Nitric Acid in Raffinate Streams of Nuclear Fuel Reprocessing by Electrolytic Technique. J. Rad. Nucl. Appl. 2019, 4(3), 145–150.
  • Pandey, N. K.; Velavendan, P.; Geetha, R.; Ahmed, M. K.; Koganti, S. B. Adsorption Kinetics and Breakthrough Behaviour of Tri-N-Butyl Phosphate on Amberlite XAD-4 Resin. J. Nucl. Sci. Technol. 1998, 35(5), 370–378. DOI: 10.1080/18811248.1998.9733874.
  • Navratil, J. D. Removal of Solubilized Solvent Extractants from Aqueous Waste Streams. J. Nucl. Sci. Technol. 1981, 18(7), 561–562. DOI: 10.1080/18811248.1981.9733290.
  • Pandey, N. K.; Velavendan, P.; Kamachi Mudali, U.; Natarajan, R. Adsorption of Dibutyl Phosphate on Activated Alumina: Equilibrium and Kinetics. Desalinat. Water Treat. 2013, 53(2), 1–10. DOI: 10.1080/19443994.2013.839397.
  • Arai, Y.; Ogino, H.; Takeuchi, M.; Kase, T.; Nakajima, Y. Study on Cleaning Solvents Using Activated Alumina in PUREX Process. Radiochim. Acta. 2011, 1(1), 71–74. DOI: 10.1524/rcpr.2011.0012.
  • Mailen, J. C.; Mattingly, C. D., PUREX Solvent regeneration using macroporous, high-sodium activated alumina, ORNL-TM-11393, Oak Ridge, 1992. D 3. 4-version 2, issued on 28/05/2021.
  • Reif, D. J. Restoring Solvent for Nuclear Separation Process. Sep. Sci. Tech. 1988, 23(12–13), 1285–1295. DOI: 10.1080/01496398808075630.
  • Tallent, O. K.; Mailen, J. C.; Pannell, K. D. Solvent Cleanup Using Base-Treated Silica Gel Solid Adsorbent, ORNL-TM-8948; Oak Ridge National Laboratory: Oak Ridge, Tennessee, 1984.
  • Drissi, R.; Mouats, C., Removal of Phosphate by Ion Exchange Resin: Kinetics and Thermodynamics Study, Rasayan J Chem. 11, 3 (2018) 1126–1132
  • Mailen, J. C.; Tallent, O. K., Recovery of Uranium from 30 Vol % Tributyl Phosphate Solvents Containing Dibutyl Phosphate,” in First International Conference on Separations Science and Technology, New York, 1986.
  • Natarajan, R. Reprocessing and Recycling of Spent Nuclear Fuel; Indira Gandhi Centre for Atomic Research, 2015, pp. 213–243, 10.1016/B978-1-78242-212-9.00009-5
  • Bibler, J. P. Removal of TBP from Low Level Radioactive Waste Water at the Savannah River Plant Using Non-Functionalized Resin. Proceedings of International topical meeting on nuclear and hazardous waste management, Pasco, WA, 1988. 307–310.
  • Pius, I. C.; Charyulu, M. M.; Venkataramani, B.; Sivaramakrishnan, C. K.; Patil, S. K. Studies on Sorption of Plutonium on Inorganic Ion Exchangers from Sodium Carbonate Medium. J. Radioanal. Nucl. Chem. Lett. 1995, 199(1), 1–7. DOI: 10.1007/BF02163586.
  • Ruthven, D. M. Principles of Adsorption and Adsorption Processes; Wiley: New York, 1984.
  • Edet, U. A.; Ifelebuegu, A. O.; Kinetics. Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste, Uduakobong a. Ed. Et And Augustine O. Ifelebuegu, Processes.2020, 8(6), 665. DOI: 10.3390/pr8060665.
  • Ganesh, S.; Velavendan, P.; Pandey, N. K.; Ahmed, M. K.; Kamachi Mudali, U. Spectrophotometric Determination of Dissolved Tri-N-Butyl Phosphate in Aqueous Streams of PUREX Process. J.Radioanal.Nucl.Chem. 2012, 293(2), 529–533. DOI: 10.1007/s10967-012-1731-0.
  • Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62(7), 1723–1732. DOI: 10.1021/ja01864a025.
  • Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas-solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57(4), 603–619. DOI: 10.1351/pac198557040603.
  • Inglezakis, V. J.; Poulopoulos, S. G.; Kazemian, H. Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous Mesoporous Mater. 2018, 272, 166–176. DOI: 10.1016/j.micromeso.2018.06.026.
  • Limousin, G.; Gaudet, J. P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement. Appl. Geochem. 2007, 22(2), 249–275. DOI: 10.1016/j.apgeochem.2006.09.010.
  • Smith, J. A.; Jaffe, P. R.; Chiou, C. T. Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water. Environ. Sci. Technol. 1990, 24(8), 1167–1172. DOI: 10.1021/es00078a003.
  • Smith, J. A.; Galan, A. Sorption of non-ionic organic contaminants to single and dual organic cationbentonite from water. Environ. Sci. Technol. 1995, 29(3), 685–692. DOI: 10.1021/es00003a016.
  • Groisman, L.; Rav-Acha, C.; Gerstl, Z.; Mingelgrin, U. Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain orgnao clays. Appl. Clay Sci. 2004, 24(3–4), 159–166. DOI: 10.1016/j.clay.2003.02.001.
  • Nakagaki, M.; Handa, T.; Shimabayashi, S. S—shaped adsorption isotherms of surface active electrolytes from aqueous solutions. J. Coll. Interf. Sci. May 1973, 43(2), 521–529. DOI: 10.1016/0021-9797(73)90398-6.
  • Giles, C. H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I: Theoretical. J. Colloid. Interface. Sci. 1974, 47(3), 755–765. DOI: 10.1016/0021-9797(74)90252-5.
  • Hinz, C. Description of sorption data with isotherm equations. Geoderma. 2001, 99(3–4), 225–243. DOI: 10.1016/S0016-7061(00)00071-9.
  • Sips, R. On the structure of a catalyst surface. J. Chem. Phy. 1948, 16(5), 490. DOI: 10.1063/1.1746922.
  • Zhu, B. Y.; Gu, T. Surfactant adsorption at solid-liquid interfaces. Adv. Colloid Interface Sci. 1991, 37(1–2), 1–32. DOI: 10.1016/0001-8686(91)80037-K.
  • Gu, B.; Schmitt, J.; Chen, Z.; Liang, L.; McCarthy, J. F. Adsorption and Desorption of Natural Organic Matter on Iron Oxide: Mechanisms and Models. Environ. Sci. Technol. 1994, 28(1), 38–46. DOI: 10.1021/es00050a007.
  • Lee, J. W.; Shim, W. G.; Yang, M. S.; Moon, H. Adsorption Isotherms of Polar and Nonpolar Organic Compounds on MCM-48 at (303.15, 313.15, and 323.15) K. J. Chem. Eng, Data. 2004, 49(3), 502–509. DOI: 10.1021/je030208a.
  • Inglezakis, V. J. Solubility-normalized Dubinin–Astakhov adsorption isotherm for ion-exchange systems. Microporous. Mesoporous. Mater. 2007, 103(1–3), 72–81. DOI: 10.1016/j.micromeso.2007.01.039.
  • Do, D. D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: London, 1998.
  • Jeppu, G. P.; Clement, T. P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 2012, 129-130(129–130), 46–53. DOI: 10.1016/j.jconhyd.2011.12.001.
  • Sharipova, A. A.; Aidarova, S. B.; Bekturganova, N. Y.; Tleuova, A.; Miller, R. Triclosan adsorption from model system by mineral sorbent diatomite. Colloids Surf. A. 2017, 532, 97–101. DOI: 10.1016/j.colsurfa.2017.06.012.
  • Langmuir, I. The constitution and fundamental properties of solids and liquids part-I. J. Am. Chem. Soc. 1916, 38(11), 2221–2295. DOI: 10.1021/ja02268a002.
  • Seader, J. D.; Henley, E. J.; Keith Roper, D. Separation Process Principles, 3rd ed.; John Wiley & Sons: New York, NY, 2010.
  • Lagergren, S. About the theory of so-called adsorption of solution substances, Kungliasrenskavertens Kapsakademiens. Handlinger. 1898, 24, 147–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.