86
Views
0
CrossRef citations to date
0
Altmetric
Oil-Water Separation

Calcium phosphates synthesized from coralline materials (Porites) and their application as a demulsifier for water–oil separation

ORCID Icon, , &
Pages 2228-2239 | Received 18 May 2023, Accepted 20 Jul 2023, Published online: 31 Jul 2023

References

  • Xu, Y.; Ye, J.; Zhou, D.; Su, L. Research Progress on Applications of Calcium Derived from Marine Organisms. Sci. Rep. 2020, 10, 18425. DOI: 10.1038/s41598-020-75575-8.
  • Damien, E.; Revell, P. A. Coralline Hydroxyapatite Bone Graft Substitute: A Review of Experimental Studies and Biomedical Applications. J. Appl. Biomater. Biomech. 2004, 2(2), 65–73. DOI: 10.1177/2280800004002002.
  • Cottrell, D. A.; Wolford, L. M. Long-Term Evaluation of the Use of Coralline Hydroxyapatite in Orthognathic Surgery. J. Oral Maxillofac. Surg. 1998, 56(8), 935–941. DOI: 10.1016/S0278-2391(98)90654-1.
  • Vickers, P.; Slater, G.; Mathen, L. Case Series: Use of Coralline Hydroxyapatite Graft in Faciomaxillary Surgery. J. Regen. Biol. Med. 2021, 3(5), 1–16. DOI: 10.37191/Mapsci-2582-385X-3(5)-088.
  • Carter, C. B.; Norton, M. G. Ceramic Materials: Science and Engineering; Springer: New York, 2007; Vol. 716. p 712. DOI: 10.1007/978-1-4614-3523-5.
  • Xu, W.; Liu, B.; Wang, Y.; Xiao, G.; Chen, X.; Xu, W.; Lu, Y. A Facile Strategy for One-Step Hydrothermal Preparation of Porous Hydroxyapatite Microspheres with Core–Shell Structure. J. Mater. Res. Technol. 2022, 17, 320–328. DOI: 10.1016/j.jmrt.2022.01.001.
  • Gergely, G.; Wéber, F.; Lukács, I.; Tóth, A. L.; Horváth, Z. E.; Mihály, J.; Balázsi, C. Preparation and Characterization of Hydroxyapatite from Eggshell. Ceram. Int. 2010, 36(2), 803–806. DOI: 10.1016/j.ceramint.2009.09.020.
  • Odusote, J. K.; Danyuo, Y.; Baruwa, A. D.; Azeez, A. A. Synthesis and Characterization of Hydroxyapatite from Bovine Bone for Production of Dental Implants. J. Appl. Biomater. Funct. Mater. 2019, 17(2), 228080001983682. DOI: 10.1177/2280800019836829.
  • Lü, X. Y.; Bin Fan, Y.; Gu, D.; Cui, W. Preparation and Characterization of Natural Hydroxyapatite from Animal Hard Tissues, in. Key Eng. Mater. Trans Tech Publ. 2007, 342-343, 213–216. DOI: 10.4028/www.scientific.net/KEM.342-343.213.
  • Malla, K. P.; Regmi, S.; Nepal, A.; Bhattarai, S.; Yadav, R. J.; Sakurai, S.; Adhikari, R. Extraction and Characterization of Novel Natural Hydroxyapatite Bioceramic by Thermal Decomposition of Waste Ostrich Bone. Int. J. Biomater. 2020, 2020(2020), 1–10. DOI: 10.1155/2020/1690178.
  • Coelho, C. C.; Grenho, L.; Gomes, P. S.; Quadros, P. A.; Fernandes, M. H. Nano-Hydroxyapatite in Oral Care Cosmetics: Characterization and Cytotoxicity Assessment. Sci. Rep. 2019, 9, 11050. DOI: 10.1038/s41598-019-47491-z.
  • Ghosh, R.; Hale, G.; Durocher, Y.; Gatt, P. Dry-Compression Packing of Hydroxyapatite Nanoparticles within a Flat Cuboid Chromatography Device and Its Use for Fast Protein Separation. J. Chromatogr. A. 2022, 1667, 462881. DOI: 10.1016/j.chroma.2022.462881.
  • Liaw, B.-S.; Chang, T.-T.; Chang, H.-K.; Liu, W.-K.; Chen, P.-Y. Fish Scale-Extracted Hydroxyapatite/Chitosan Composite Scaffolds Fabricated by Freeze Casting—An Innovative Strategy for Water Treatment. J. Hazard. Mater. 2020, 382, 121082. DOI: 10.1016/j.jhazmat.2019.121082.
  • O’Hagan-Wong, K.; Enax, J.; Meyer, F.; Ganss, B. The Use of Hydroxyapatite Toothpaste to Prevent Dental Caries. Odontology. 2022, 110, 223–230. DOI: 10.1007/s10266-021-00675-4.
  • Wen, J.; Zhang, R.; Zhao, Q.; Liu, W.; Lu, G.; Hu, X.; Sun, J.; Wang, R.; Jiang, X.; Hu, N., et al. Hydroxyapatite Nanowire-Reinforced Poly(ethylene Oxide)-Based Polymer Solid Electrolyte for Application in High-Temperature Lithium Batteries. ACS Appl. Mater. Interfaces. 2020, 12, 54637–54643. DOI: 10.1021/acsami.0c15692.
  • Yaemsunthorn, K.; Randorn, C. Hydrogen Production Using Economical and Environmental Friendly Nanoparticulate Hydroxyapatite and Its Ion Doping. Int. J. Hydrogen. Energy. 2017, 42(8), 5056–5062. DOI: 10.1016/j.ijhydene.2016.11.058.
  • Oprea, M.; Voicu, S. I. Recent Advances in Applications of Cellulose Derivatives-Based Composite Membranes with Hydroxyapatite. Mater. (Basel). 2020, 13, 2481. DOI: 10.3390/ma13112481.
  • Nayak, A.; Bhushan, B. Hydroxyapatite as an Advanced Adsorbent for Removal of Heavy Metal Ions from Water: Focus on Its Applications and Limitations, Mater. Today Proc. 2021, 46, 11029–11034. DOI: 10.1016/j.matpr.2021.02.149.
  • Koliyabandara, P. A.; Hettithanthri, O.; Rathnayake, A.; Rajapaksha, A. U.; Nanayakkara, N.; Vithanage, M. Chapter 7 - Hydroxyapatite for Environmental Remediation of Water/wastewater; V. Kumar, and S.D. Kumar M.B.T.I. M.B.T.I.E.T. for W.T Ed(s). Elsevier, 2022; pp. 167–191. 10.1016/B978-0-323-91180-1.00004-1
  • Simon, F. G.; Biermann, V.; Peplinski, B. Uranium Removal from Groundwater Using Hydroxyapatite, Appl. Geochemistry. 2008, 23(8), 2137–2145. DOI: 10.1016/j.apgeochem.2008.04.025.
  • Ibrahim, M.; Labaki, M.; Giraudon, J.-M.; Lamonier, J.-F. Hydroxyapatite, a Multifunctional Material for Air, Water and Soil Pollution Control: A Review. J. Hazard. Mater. 2020, 383, 121139. DOI: 10.1016/j.jhazmat.2019.121139.
  • Al-Sayed, E. Crude Oil and Refinery Streams Desulphurization Using Slurry Dispersed Catalysts and Ionic Liquids. 2011. DOI: 10.25560/7023.
  • Petry, T.; Bury, D.; Fautz, R.; Hauser, M.; Huber, B.; Markowetz, A.; Mishra, S.; Rettinger, K.; Schuh, W.; Teichert, T. Review of Data on the Dermal Penetration of Mineral Oils and Waxes Used in Cosmetic Applications, Toxicol. Lett. 2017, 280, 70–78. DOI: 10.1016/j.toxlet.2017.07.899.
  • Raynel, G.; Marques, D. S.; Al-Khabaz, S.; Al-Thabet, M.; Oshinowo, L. A New Method to Select Demulsifiers and Optimize Dosage at Wet Crude Oil Separation Facilities. Oil Gas Sci. Technol. d’IFP Energies Nouv. 2021, 76, 19. DOI: 10.2516/ogst/2020096.
  • Hassanshahi, N.; Hu, G.; Li, J. Application of Ionic Liquids for Chemical Demulsification: A Review. Molecules. 2020, 25, 4915. DOI: 10.3390/molecules25214915.
  • Edema, N. Effects of Crude Oil Contaminated Water on the Environment. Crude Oil Emulsions–Composition Stability and Characterization. 2012, 169–180. DOI: 10.5772/36105.
  • Raya, S. A.; Mohd Saaid, I.; Abbas Ahmed, A.; Abubakar Umar, A. A Critical Review of Development and Demulsification Mechanisms of Crude Oil Emulsion in the Petroleum Industry. J. Pet. Explor. Prod. Technol. 2020, 10(4), 1711–1728. DOI: 10.1007/s13202-020-00830-7.
  • Nour, H.; Yunus, R. M.; Jemaat, Z. Chemical Demulsification of Water-In-Crude Oil Emulsions. J. Appl. Sci. 2007, 7(2), 196–201. DOI: 10.3923/jas.2007.196.201.
  • Alsabagh, A. M.; Hassan, M. E.; Desouky, S. E. M.; Nasser, N. M.; Elsharaky, E. A.; Abdelhamid, M. M. Demulsification of W/O Emulsion at Petroleum Field and Reservoir Conditions Using Some Demulsifiers Based on Polyethylene and Propylene Oxides. Egypt. J. Pet. 2016, 25(4), 585–595. DOI: 10.1016/j.ejpe.2016.05.008.
  • Alao, K. T.; Alara, O. R.; Abdurahman, N. H. Trending Approaches on Demulsification of Crude Oil in the Petroleum Industry, Appl. Petrochemical Res. 2021, 11(3), 281–293. DOI: 10.1007/s13203-021-00280-0.
  • Liu, J.; Li, X.; Jia, W.; Li, Z.; Zhao, Y.; Ren, S. Demulsification of Crude Oil-In-Water Emulsions Driven by Graphene Oxide Nanosheets. Energy. Fuels. 2015, 29, 4644–4653. DOI: 10.1021/acs.energyfuels.5b00966.
  • Saad, M. A.; Abdurahman, N. H.; Yunus, R. M. Synthesis, Characterization, and Demulsification of Water in Crude Oil Emulsion via a Corn Oil-Based Demulsifier, Mater. Today Proc. 2021, 42, 251–258. DOI: 10.1016/j.matpr.2021.01.145.
  • Ye, F.; Zhang, Z.; Ao, Y.; Li, B.; Chen, L.; Shen, L.; Feng, X.; Yang, Y.; Yuan, H.; Mi, Y. Demulsification of Water-In-Crude Oil Emulsion Driven by a Carbonaceous Demulsifier from Natural Rice Husks. Chemosphere. 2022, 288(2022), 132656. DOI: 10.1016/j.chemosphere.2021.132656.
  • Cheng, Q.; Cao, G.; Bai, Y.; Zhu, Z.; Zhang, N.; Li, D. Probing the Demulsification Mechanism of Emulsion with SPAN Series Based on the Effect of Solid Phase Particles. Molecules. 2023, 28(7), 3261. DOI: 10.3390/molecules28073261.
  • Hao, H.; Huang, X.; Gao, C.; Gao, X., Application of an Integrated System of Coagulation and Electrodialysis for Treatment of Wastewater Produced by Fracturing, Desalin. Water Treat. 55 (2015) 2034–2043. 10.1080/19443994.2014.930700.
  • Wang, Z.; Hu, L.; Zhao, M.; Dai, L.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Bamboo Charcoal Fused with Polyurethane Foam for Efficiently Removing Organic Solvents from Wastewater: Experimental and Simulation. Biochar. 2022, 4, 28. DOI: 10.1007/s42773-022-00153-2.
  • Wang, Z.; Chen, C.; Liu, H.; Hrynshpan, D.; Savitskaya, T.; Chen, J.; Chen, J. Enhanced Denitrification Performance of Alcaligenes sp. TB by Pd Stimulating to Produce Membrane Adaptation Mechanism Coupled with Nanoscale Zero-Valent Iron. Sci. Total Environ. 2020, 708(2020), 135063. DOI: 10.1016/j.scitotenv.2019.135063.
  • Szterner, P.; Biernat, M. The Synthesis of Hydroxyapatite by Hydrothermal Process with Calcium Lactate Pentahydrate: The Effect of Reagent Concentrations, pH, Temperature, and Pressure. Bioinorg. Chem. Appl. 2022, 2022, 1–13. DOI: 10.1155/2022/3481677.
  • Pham Minh, D.; Rio, S.; Sharrock, P.; Sebei, H.; Lyczko, N.; Tran, N. D.; Raii, M.; Nzihou, A. Hydroxyapatite Starting from Calcium Carbonate and Orthophosphoric Acid: Synthesis, Characterization, and Applications. J. Mater. Sci. 2014, 49, 4261–4269. DOI: 10.1007/s10853-014-8121-7.
  • Basher, N. A.; Abdulkhabeer, A. Synthesis of Novel Demulsifier Nano-Materials and Their Application in the Oil Industry, Mater. Today Proc. 2022, 49, 2842–2850. DOI: 10.1016/j.matpr.2021.10.069.
  • Hajivand, P.; Vaziri, A. Optimization of Demulsifier Formulation for Separation of Water from Crude Oil Emulsions. Brazilian J. Chem. Eng. 2015, 32, 107–118. DOI: 10.1590/0104-6632.20150321s00002755.
  • Naghmash, A. A.; Ali, A. A. Evaluation of the Effectiveness of Synthesized Polymeric Demulsifies in the Petroleum Sector. Solid State Technol. 2020, 63(2), 1294–1307. https://www.researchgate.net/profile/Ali-Abdulhakeem-Naghmash/publication/353418346_Evaluation_of_the_Effectiveness_of_Synthesized_Polymeric_Demulsifies_in_the_Petroleum_Sector/links/60fb5002169a1a0103b1edd3/Evaluation-of-the-Effectiveness-of-Synthesized-Polymeric-Demulsifies-in-the-Petroleum-Sector.pdf
  • Manafi, S. A.; Yazdani, B.; Rahimiopour, M. R.; Sadrnezhaad, S. K.; Amin, M. H.; Razavi, M. Synthesis of Nano-Hydroxyapatite Under a Sonochemical/Hydrothermal Condition. Biomed. Mater. 2008, 3, 25002. DOI: 10.1088/1748-6041/3/2/025002.
  • Kusuma, H. H.; Sifah, L.; Anggita, S. S. The Characterization of Hydroxyapatite from Blood Clam Shells and Eggs Shells: Shyntesis by Hydrothermal Method. J. Phys.: Conf. Ser. 2021, 1918, 22040. DOI: 10.1088/1742-6596/1918/2/022040.
  • Widayat, W.; Hadiyanto, H.; Wardani, P. W. A.; Zuhra, U. A.; Prameswari, J., Preparation of KI/Hydroxyapatite Catalyst from Phosphate Rocks and Its Application for Improvement of Biodiesel Production, Molecules. 25 (2020) 2565. 10.3390/molecules25112565.
  • Khalid, M.; Jikan, S. S. B.; Adzila, S.; Murni, Z.; Badarulzaman, N. A.; Rosley, R.; Hameed, M. U. Synthesis and Characterizations of Hydroxyapatite Using Precursor Extracted from Chicken Egg Shell Waste, Biointerface Res. Appl. Chem. 2022, 12, 5663–5671. DOI: 10.33263/BRIAC124.56635671.
  • Wei, Q.; Lu, J.; Wang, Q.; Fan, H.; Zhang, X. Novel Synthesis Strategy for Composite Hydrogel of Collagen/hydroxyapatite-Microsphere Originating from Conversion of CaCO3templates. Nanotechnology. 2015, 26, 115605. DOI: 10.1088/0957-4484/26/11/115605.
  • Granados-Correa, F.; Bonifacio-Martinez, J.; Serrano-Gomez, J. Synthesis and Characterization of Calcium Phosphate and Its Relation to Cr (VI) Adsorption Properties. Rev. Int. Contam. Ambient. 2010, 26(2), 129–134. https://www.scielo.org.mx/scielo.php?pid=S0188-49992010000200004&script=sci_arttext&tlng=en
  • Joseph, E.; Singhvi, G. Chapter 4 - Multifunctional Nanocrystals for Cancer Therapy: A Potential Nanocarrier. A.M.B.T.N.M.B.T.N. for D.D. T. Grumezescu Ed. William Andrew Publishing; 2019. pp. 91–116. 10.1016/B978-0-12-816505-8.00007-2
  • Samimi, S.; Maghsoudnia, N.; Eftekhari, R. B.; Dorkoosh, F. Chapter 3 - Lipid-Based Nanoparticles for Drug Delivery Systems. In Mohapatra, S. S., Ranjan, S., Dasgupta, N. Mishra, R. K., and Thomas, D. D.S.B.T.C.S.B.T.C. and B. of N. for Ed(s); Micro Nano Technol. Elsevier: 2019; pp. 47–76. 10.1016/B978-0-12-814031-4.00003-9
  • Onaizi, S. A. Effect of Oil/Water Ratio on Rheological Behavior, Droplet Size, Zeta Potential, Long-Term Stability, and Acid-Induced Demulsification of Crude Oil/Water Nanoemulsions. J. Pet. Sci. Eng. 2022, 209, 109857. DOI: 10.1016/j.petrol.2021.109857.
  • Lu, G. W.; Gao, P. CHAPTER 3 - Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Pers. Care Cosmet. Technol; Kulkarni, N.-I.-D.-D.-S. Ed.; William Andrew Publishing: Boston, 2010; Vol. V.S.B.T.H.; Vol. V.S.B.T.H. of, pp. 59–94. DOI:10.1016/B978-0-8155-2025-2.10003-4
  • Jackson, M. D.; Al-Mahrouqi, D.; Vinogradov, J. Zeta Potential in Oil-Water-Carbonate Systems and Its Impact on Oil Recovery During Controlled Salinity Water-Flooding, Sci. Rep. 2016, 6(1), 37363. DOI: 10.1038/srep37363.
  • Ngouangna, E. N.; Jaafar, M. Z.; Norddin, M. N. A. M.; Agi, A.; Risal, A. R.; Mamah, S. C.; Oseh, J. O. The Effect of Hydroxyapatite Nanoparticles on Wettability and Brine-Oil Interfacial Tension as Enhance Oil Recovery Mechanisms. J. Pet. Sci. Eng. 2022, 218, 110941. DOI: 10.1016/j.petrol.2022.110941.
  • Chakravarty, M.; Vora, A. Nanotechnology-Based Antiviral Therapeutics, Drug Deliv. Transl. Res. 2021, 11(3), 748–787. DOI: https://doi.org/10.1007/s13346-020-00818-0.
  • Ngouangna, E. N.; Jaafar, M. Z.; Norddin, M.; Agi, A.; Yakasai, F.; Oseh, J. O.; Mamah, S. C.; Yahya, M. N.; Al-Ani, M. Effect of Salinity on Hydroxyapatite Nanoparticles Flooding in Enhanced Oil Recovery: A Mechanistic Study. ACS Omega. 2023, 8(20), 17819–17833. DOI: https://doi.org/10.1021/acsomega.3c00695.
  • Basher, N. A.; Ali, A. A. Hydrothermal Synthesis and Application of Nanocomposite as a Demulsifier in Crude Oil Processing. Egypt. J. Chem. 2022, 65(6), 741–752. DOI: 10.21608/ejchem.2022.117673.5304.
  • Khan, S. B.; Irfan, S.; Lam, S. S.; Sun, X.; Chen, S. 3D Printed Nanofiltration Membrane Technology for Waste Water Distillation. J. Water. Process. Eng. 2022, 49, 102958. DOI: 10.1016/j.jwpe.2022.102958.
  • Wang, Z.; Dai, L.; Yao, J.; Guo, T.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Enhanced Adsorption and Reduction Performance of Nitrate by Fe–Pd–Fe3O4 Embedded Multi-Walled Carbon Nanotubes. Chemosphere. 2021, 281, 130718. DOI: 10.1016/j.chemosphere.2021.130718.
  • Pereira, J. C.; Delgado-Linares, J.; Scorzza, C.; Rondón, M.; Rodríguez, S.; Salager, J.-L. Breaking of Water-In-Crude Oil Emulsions. 4. Estimation of the Demulsifier Surfactant Performance to Destabilize the Asphaltenes Effect. Energy. Fuels. 2011, 25(3), 1045–1050. DOI: https://doi.org/10.1021/ef100979y.
  • Wei, L.; Zhang, L.; Chao, M.; Jia, X.; Liu, C.; Shi, L. Synthesis and Study of a New Type of Nonanionic Demulsifier for Chemical Flooding Emulsion Demulsification. ACS Omega. 2021, 6(27), 17709–17719. DOI: https://doi.org/10.1021/acsomega.1c02352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.