60
Views
0
CrossRef citations to date
0
Altmetric
Membrane

Membrane distillation for algal supernatant reuse from hydrothermal carbonization aqueous product

&
Pages 2178-2188 | Received 10 Apr 2023, Accepted 24 Jul 2023, Published online: 02 Aug 2023

References

  • MacDonald, R.; Cessna, J. M.; Mosheim, J. Changing Structure, Financial Risks, and Government Policy for the U.S. Dairy Ind. 2016, 1–75. https://www.ers.usda.gov/webdocs/publications/45519/56833_err205_errata.pdf?v=0.
  • Burkholder, J. A.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P. S.; Wichman, M. Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality. Environ. Health Perspect. 2007, 115, 308–312. DOI: https://doi.org/10.1289/ehp.8839.
  • Todd, R. W.; Cole, N. A.; Casey, K. D.; Hagevoort, R.; Auvermann, B. W. Methane Emissions from Southern High Plains Dairy Wastewater Lagoons in the Summer. Anim. Feed Sci. Technol. 2011, 166-167, 575–580. DOI: 10.1016/j.anifeedsci.2011.04.040.
  • Reza, T. M.; Freitas, A.; Yang, X.; Hiibel, S.; Lin, H.; Coronella, C. J. Hydrothermal Carbonization (HTC) of Cow Manure: Carbon and Nitrogen Distributions in HTC Products. Environ. Prog. Sustain. Energy. 2016, 35, 1002–1011. DOI: https://doi.org/10.1002/ep.12312.
  • Wu, K.; Gao, Y.; Zhu, G.; Zhu, J.; Yuan, Q.; Chen, Y.; Cai, M.; Feng, L. Characterization of Dairy Manure Hydrochar and Aqueous Phase Products Generated by Hydrothermal Carbonization at Different Temperatures. J. Anal. Appl. Pyrolysis. 2017, 127, 335–342. DOI: 10.1016/j.jaap.2017.07.017.
  • Belete, Y. Z.; Mau, V.; Yahav Spitzer, R.; Posmanik, R.; Jassby, D.; Iddya, A.; Kassem, N.; Tester, J. W.; Gross, A. Hydrothermal Carbonization of Anaerobic Digestate and Manure from a Dairy Farm on Energy Recovery and the Fate of Nutrients. Bioresources Technol. 2021, 333, 125164. DOI: 10.1016/j.biortech.2021.125164.
  • Qaramaleki, S. V.; Villamil, J. A.; Mohedano, A. F.; Coronella, C. J. Factors Affecting Solubilization of Phosphorus and Nitrogen Through Hydrothermal Carbonization of Animal Manure. ACS Sustain. Chem. Eng. 2020, 8(33), 12462–12470. DOI: 10.1021/acssuschemeng.0c03268.
  • Silva, N. A.; Hiibel, S. R. Nutrient Recovery of the Hydrothermal Carbonization Aqueous Product from Dairy Manure Using Membrane Distillation. Environ. Technol. 2021, 0, 1–10. DOI: 10.1080/09593330.2021.1995785.
  • Langone, M.; Basso, D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. Int. J. Environ. Res. Public Health. 2020, 17(18), 6618–6631. DOI: 10.3390/ijerph17186618.
  • Nakason, K.; Panyapinyopol, B.; Kanokkantapong, V.; Viriya-Empikul, N.; Kraithong, W.; Pavasant, P. Characteristics of Hydrochar and Liquid Fraction from Hydrothermal Carbonization of Cassava Rhizome. J. Energy Inst. 2018, 91, 184–193. DOI: 10.1016/j.joei.2017.01.002.
  • Gustafson, R. D.; Hiibel, S. R.; Childress, A. E. Membrane Distillation Driven by Intermittent and Variable-Temperature Waste Heat: System Arrangements for Water Production and Heat Storage. Desalinat. 2018, 448, 49–59. DOI: 10.1016/j.desal.2018.09.017.
  • Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane Distillation: A Comprehensive Review. Desalinat. 2012, 287, 2–18. DOI: 10.1016/j.desal.2011.08.027.
  • Salls, K. A.; Won, D.; Kolodziej, E. P.; Childress, A. E.; Hiibel, S. R. Evaluation of Semi-Volatile Contaminant Transport in a Novel, Gas-Tight Direct Contact Membrane Distillation System. Desalinat. 2018, 427, 35–41. DOI: 10.1016/j.desal.2017.11.001.
  • Hamzah, N.; Leo, C. P. Fouling Evaluation on Membrane Distillation Used for Reducing Solvent in Polyphenol Rich Propolis Extract. Chin. J. Chem. Eng. 2018, 26, 477–483. DOI: 10.1016/j.cjche.2017.03.041.
  • Bagger-Jørgensen, R.; Meyer, A. S.; Pinelo, M.; Varming, C.; Jonsson, G. Recovery of Volatile Fruit Juice Aroma Compounds by Membrane Technology: Sweeping Gas versus Vacuum Membrane Distillation. Innovat. Food Sci. Emerg. Technol. 2011, 12, 388–397. DOI: 10.1016/j.ifset.2011.02.005.
  • Kozák, Á.; Békássy-Molnár, E.; Vatai, G. Production of Black-Currant Juice Concentrate by Using Membrane Distillation. Desalinat. 2009, 241, 309–314. DOI: 10.1016/j.desal.2008.02.033.
  • Quist-Jensen, C. A.; Macedonio, F.; Conidi, C.; Cassano, A.; Aljlil, S.; Alharbi, O. A.; Drioli, E. Direct Contact Membrane Distillation for the Concentration of Clarified Orange Juice. J. Food Eng. 2016, 187, 37–43. DOI: 10.1016/j.jfoodeng.2016.04.021.
  • Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R. R. Anaerobic Digested Dairy Manure as a Nutrient Supplement for Cultivation of Oil-Rich Green Microalgae Chlorella Sp. Bioresources Technol. 2010, 101, 2623–2628. DOI: 10.1016/j.biortech.2009.10.062.
  • Clarens, A. F.; Resurreccion, E. P.; White, M. A.; Colosi, L. M. Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Environ. Sci. Technol. 2010, 44, 1813–1819. DOI: 10.1021/es902838n.
  • Higgins, B. T.; Kendall, A. Life Cycle Environmental and Cost Impacts of Using an Algal Turf Scrubber to Treat Dairy Wastewater. J. Ind. Ecol. 2012, 16, 436–447. DOI: 10.1111/j.1530-9290.2011.00427.x.
  • Wu, W.; Cheng, L. C.; Chang, J.-S. Chang, Environmental Life Cycle Comparisons of Pig Farming Integrated with Anaerobic Digestion and Algae-Based Wastewater Treatment. J. Environ. Manage. 2020, 264, 110512. DOI: 10.1016/j.jenvman.2020.110512.
  • Tarhan, S. Z.; Koçer, A. T.; Özçimen, D.; Gökalp, İ. Cultivation of Green Microalgae by Recovering Aqueous Nutrients in Hydrothermal Carbonization Process Water of Biomass Wastes. J. Water Process Eng. 2021, 40. DOI: 10.1016/j.jwpe.2020.101783.
  • Tsarpali, M.; Arora, N.; Kuhn, J. N.; Philippidis, G. P. Beneficial Use of the Aqueous Phase Generated During Hydrothermal Carbonization of Algae as Nutrient Source for Algae Cultivation. Algal Res. 2021, 60, 102485. DOI: 10.1016/j.algal.2021.102485.
  • Zora Tarhan, S.; Koçer, A. T.; Özçimen, D.; Gökalp, I. Utilization of Hydrothermal Process Water for Microalgal Growth. Eurasian J. Biolog. Chem. Sci. 2020, 42–47. DOI: 10.46239/ejbcs.733899.
  • Madeira, M. S.; Cardoso, C.; Lopes, P. A.; Coelho, D.; Afonso, C.; Bandarra, N. M.; Prates, J. A. M. Microalgae as Feed Ingredients for Livestock Production and Meat Quality: A Review. Livest. Sci. 2017, 205, 111–121. DOI: 10.1016/j.livsci.2017.09.020.
  • Silva, N. A.; Glover, C. J.; Hiibel, S. R. Nutrient Recovery by Microalgae in Aqueous Product of Hydrothermal Carbonization of Dairy Manure, Cleaner Waste Systems. 2023; p. 100110. DOI: 10.1016/j.clwas.2023.100110.
  • Glover, C. J.; McDonnell, A.; Rollins, K. S.; Hiibel, S. R.; Cornejo, P. K. Assessing the Environmental Impact of Resource Recovery from Dairy Manure. J. Environ. Manage. 2023, 330. DOI: 10.1016/j.jenvman.2022.117150.
  • Glover, C. J.; Cornejo, P. K.; Hiibel, S. R. Life Cycle Assessment of Integrated Nutrient, Energy, and Water Recovery on Large-Scale Dairy Farms. Environ. Eng. Sci. 2022, 39, 811–820. DOI: 10.1089/ees.2021.0376.
  • Taylor, C. R.; Ahmadiannamini, P.; Hiibel, S. R. Identifying Pore Wetting Thresholds of Surfactants in Direct Contact Membrane Distillation. Sep. Purif. Technol. 2019, 217, 17–23. DOI: 10.1016/j.seppur.2019.01.061.
  • Rao, G.; Hiibel, S. R.; Childress, A. E. Simplified Flux Prediction in Direct-Contact Membrane Distillation Using a Membrane Structural Parameter. Desalinat. 2014, 351, 151–162. DOI: 10.1016/j.desal.2014.07.006.
  • Morrow, C. P.; Furtaw, N. M.; Murphy, J. R.; Achilli, A.; Marchand, E. A.; Hiibel, S. R.; Childress, A. E. Integrating an Aerobic/Anoxic Osmotic Membrane Bioreactor with Membrane Distillation for Potable Reuse. Desalinat. 2018, 432, 46–54. DOI: 10.1016/j.desal.2017.12.047.
  • Lakowicz, J. R. Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy; Lakowicz, J. R., Ed.; Springer US: Boston, MA, 2006; pp. 27–61. DOI: 10.1007/978-0-387-46312-4_2.
  • Bahram, M.; Bro, R.; Stedmon, C.; Afkhami, A. Handling of Rayleigh and Raman Scatter for PARAFAC Modeling of Fluorescence Data Using Interpolation. J. Chemom. 2006, 20, 99–105. DOI: 10.1002/cem.978.
  • Faris, G. W.; Copeland, R. A. Wavelength Dependence of the Raman Cross Section for Liquid Water. Appl. Opt. 1997, 36(12), 2686. DOI: 10.1364/AO.36.002686.
  • Lawaetz, A. J.; Stedmon, C. A. Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water. Appl. Spectros. 2009, 63, 936–940. DOI: 10.1366/000370209788964548.
  • Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. DOI: 10.1021/es034354c.
  • Zarebska, A.; Nieto, D. R.; Christensen, K.; Norddahl, B. Ammonia Recovery from Agricultural Wastes by Membrane Distillation: Fouling Characterization and Mechanism. Water Res. 2014, 56, 1–10. DOI: 10.1016/j.watres.2014.02.037.
  • Pouneva, I. D. Effect of Humic Substances on the Growth of Microalgal Cultures. Russ. J. Plant Physiol. 2005, 52, 410–413. DOI: 10.1007/s11183-005-0060-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.