101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Functionalized graphene-based material as a nanofiller for high-performance thin film composite seawater reverse osmosis membrane

, &
Pages 2790-2805 | Received 24 Apr 2023, Accepted 11 Aug 2023, Published online: 29 Aug 2023

References

  • Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and Technology for Water Purification in the Coming Decades. Nature. 2008, 452(7185), 301–310. DOI: 10.1038/nature06599.
  • Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J. Direct Seawater Desalination by Ion Concentration Polarization. Nat. Nanotech. 2010, 5(4), 297–301. DOI: 10.1038/nnano.2010.34.
  • Semiat, R. Present and Future. Water Int. 2000, 25(1), 54–65. DOI: 10.1080/02508060008686797.
  • Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-Of-The-Art of Reverse Osmosis Desalination. Desalination. 2007, 216(1), 1–76. DOI: 10.1016/j.desal.2006.12.009.
  • Bar, C.; Çağlar, N.; Uz, M.; Mallapragada, S. K.; Altinkaya, S. A. Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a PH and Temperature-Responsive Pentablock Co-Polymer. ACS Appl. Mater. Interfaces. 2019, 11(34), 31367–31377. DOI: 10.1021/acsami.9b10273.
  • Al Mayyahi, A. Important Approaches to Enhance Reverse Osmosis (RO) Thin Film Composite (TFC) Membranes Performance. Membranes (Basel). 2018, 8(3), 68. DOI: 10.3390/membranes8030068.
  • Wei, J.; Jian, X.; Wu, C.; Zhang, S.; Yan, C. Influence of Polymer Structure on Thermal Stability of Composite Membranes. J. Membr. Sci. 2005, 256(1), 116–121. DOI: 10.1016/j.memsci.2005.02.012.
  • Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110(4), 2448–2471. DOI: 10.1021/cr800208y.
  • Xie, W.; Geise, G. M.; Freeman, B. D.; Lee, H.-S.; Byun, G.; McGrath, J. E. Polyamide Interfacial Composite Membranes Prepared from M-Phenylene Diamine, Trimesoyl Chloride and a New Disulfonated Diamine. J. Membr. Sci. 2012, 403–404, 152–161. DOI: 10.1016/j.memsci.2012.02.038.
  • Choi, H.; Jung, Y.; Han, S.; Tak, T.; Kwon, Y.-N. Surface Modification of SWRO Membranes Using Hydroxyl Poly(oxyethylene) Methacrylate and Zwitterionic Carboxylated Polyethyleneimine. J. Membr. Sci. 2015, 486, 97–105. DOI: 10.1016/j.memsci.2015.03.040.
  • Zou, L.; Vidalis, I.; Steele, D.; Michelmore, A.; Low, S. P.; Verberk, J. Q. J. C. Surface Hydrophilic Modification of RO Membranes by Plasma Polymerization for Low Organic Fouling. J. Membr. Sci. 2011, 369(1), 420–428. DOI: 10.1016/j.memsci.2010.12.023.
  • Li, L.; Zhang, S.; Zhang, X.; Zheng, G. Polyamide Thin Film Composite Membranes Prepared from 3,4′,5-Biphenyl Triacyl Chloride, 3,3′,5,5′-Biphenyl Tetraacyl Chloride and M-Phenylenediamine. J. Membr. Sci. 2007, 289(1), 258–267. DOI: 10.1016/j.memsci.2006.12.007.
  • Yong, Z.; Sanchuan, Y.; Meihong, L.; Congjie, G. Polyamide Thin Film Composite Membrane Prepared from M-Phenylenediamine and M-Phenylenediamine-5-Sulfonic Acid. J. Membr. Sci. 2006, 270(1), 162–168. DOI: 10.1016/j.memsci.2005.06.053.
  • Yang, Z.; Guo, H.; Yao, Z.; Mei, Y.; Tang, C. Y. Hydrophilic Silver Nanoparticles Induce Selective Nanochannels in Thin Film Nanocomposite Polyamide Membranes. Environ. Sci. Technol. 2019, 53(9), 5301–5308. DOI: 10.1021/acs.est.9b00473.
  • Yin, J.; Zhu, G.; Deng, B. Graphene Oxide (GO) Enhanced Polyamide (PA) Thin-Film Nanocomposite (TFN) Membrane for Water Purification. Desalination. 2016, 379, 93–101. DOI: 10.1016/j.desal.2015.11.001.
  • Lind, M. L.; Ghosh, A. K.; Jawor, A.; Huang, X. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes. Langmuir. 2009, 25(17), 10139–10145. DOI: 10.1021/la900938x.
  • Rajaeian, B.; Rahimpour, A.; Tade, M. O.; Liu, S. Fabrication and Characterization of Polyamide Thin Film Nanocomposite (TFN) Nanofiltration Membrane Impregnated with TiO2 Nanoparticles. Desalination. 2013, 313, 176–188. DOI: 10.1016/j.desal.2012.12.012.
  • Rui, C. O.; Chung, T.-S.; de Wit, J. S. Novel Cellulose Ester Substrates for High Performance Flat-Sheet Thin-Film Composite (TFC) Forward Osmosis (FO) Membranes. J. Membr. Sci. 2015, 473, 63–71. DOI: 10.1016/j.memsci.2014.08.046.
  • Cui, Y.; Liu, X.-Y.; Chung, T.-S. Enhanced Osmotic Energy Generation from Salinity Gradients by Modifying Thin Film Composite Membranes. Chem. Eng. J. 2014, 242, 195–203. DOI: 10.1016/j.cej.2013.12.078.
  • Rana, D.; Kim, Y.; Matsuura, T.; Arafat, H. A. Development of Antifouling Thin-Film-Composite Membranes for Seawater Desalination. J. Membr. Sci. 2011, 367(1), 110–118. DOI: 10.1016/j.memsci.2010.10.050.
  • Sun, J.; Zhu, L.-P.; Wang, Z.-H.; Hu, F.; Zhang, P.-B.; Zhu, B.-K. Improved Chlorine Resistance of Polyamide Thin-Film Composite Membranes with a Terpolymer Coating. Sep. Purif. Techn. 2016, 157, 112–119. DOI: 10.1016/j.seppur.2015.11.034.
  • Ni, L.; Meng, J.; Li, X.; Zhang, Y. Surface Coating on the Polyamide TFC RO Membrane for Chlorine Resistance and Antifouling Performance Improvement. J. Membr. Sci. 2014, 451, 205–215. DOI: 10.1016/j.memsci.2013.09.040.
  • Xu, G.-R.; Wang, J.-N.; Li, C.-J. Strategies for Improving the Performance of the Polyamide Thin Film Composite (PA-TFC) Reverse Osmosis (RO) Membranes: Surface Modifications and Nanoparticles Incorporations. Desalination. 2013, 328, 83–100. DOI: 10.1016/j.desal.2013.08.022.
  • Bidsorkhi, H. C.; Riazi, H.; Emadzadeh, D.; Ghanbari, M.; Matsuura, T.; Lau, W. J.; Ismail, A. F. Preparation and Characterization of a Novel Highly Hydrophilic and Antifouling Polysulfone/Nanoporous TiO2 Nanocomposite Membrane. Nanotechnology. 2016, 27(41), 415706. DOI: 10.1088/0957-4484/27/41/415706.
  • Ameen, J. G.; Elmore, G. V.; Peter, A. E. Strippable Solder Mask Material Comprising Polysulfone, Silicon Dioxide Filler, and Solvent. US4120843A, October 17, 1978. https://patents.google.com/patent/US4120843A/en (accessed 08 26, 2020).
  • Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P. J. J. Polysulfone Ultrafiltration Membranes Impregnated with Silver Nanoparticles Show Improved Biofouling Resistance and Virus Removal. Water Res. 2009, 43(3), 715–723. DOI: 10.1016/j.watres.2008.11.014.
  • Ganesh, B. M.; Isloor, A. M.; Ismail, A. F. Enhanced Hydrophilicity and Salt Rejection Study of Graphene Oxide-Polysulfone Mixed Matrix Membrane. Desalination. 2013, 313, 199–207. DOI: 10.1016/j.desal.2012.11.037.
  • Ghanbari, M.; Emadzadeh, D.; Lau, W. J.; Riazi, H.; Almasi, D.; Ismail, A. F. Minimizing Structural Parameter of Thin Film Composite Forward Osmosis Membranes Using Polysulfone/Halloysite Nanotubes as Membrane Substrates. Desalination. 2016, 377, 152–162. DOI: 10.1016/j.desal.2015.09.019.
  • Vercellino, T.; Morse, A.; Tran, P.; Song, L.; Hamood, A.; Reid, T.; Moseley, T. Attachment of Organo-Selenium to Polyamide Composite Reverse Osmosis Membranes to Inhibit Biofilm Formation of S. Aureus and E. Coli. Desalination. 2013, 309, 291–295. DOI: 10.1016/j.desal.2012.10.020.
  • Ghosh, A. K.; Bhoje, R.; Bindal, R. C. Performance Enhancement of Bio-Fouling Resistant Cellulose Triacetate-Based Osmosis Membranes Using Functionalized Multiwalled Carbon Nanotube & Graphene Oxide. J. Polym. Mater. 2020, 37(1/2), 109–120. DOI: 10.32381/JPM.2020.37.1-2.8.
  • Ghosh, A. K.; Tewari, P. K. Next Generation Nanocomposite Ultrafiltration Membranes for Water Purification. In Nanotechnology: Recent Trends, Emerging Issues & Future Directions; Islam N., Ed.; Nova Science Publishers, Incorporated: New York, 2014; pp. 349–361.
  • Perreault, F.; Tousley, M. E.; Elimelech, M. Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets. Environ. Sci. Technol. 2014, 1(1), 71–76. DOI: 10.1021/ez4001356.
  • Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, S. R. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39(1), 228–240. DOI: 10.1039/B917103G.
  • Zinadini, S.; Zinatizadeh, A. A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a Novel Antifouling Mixed Matrix PES Membrane by Embedding Graphene Oxide Nanoplates. J. Membr. Sci. 2014, 453, 292–301. DOI: 10.1016/j.memsci.2013.10.070.
  • Lee, J.; Chae, H.-R.; Won, Y. J.; Lee, K.; Lee, C.-H.; Lee, H. H.; Kim, I.-C.; Lee, J. Graphene Oxide Nanoplatelets Composite Membrane with Hydrophilic and Antifouling Properties for Wastewater Treatment. J. Membr. Sci. 2013, 448, 223–230. DOI: 10.1016/j.memsci.2013.08.017.
  • Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18(11), 2740–2749. DOI: 10.1021/cm060258+.
  • Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V., et al. Tunable Sieving of Ions Using Graphene Oxide Membranes. Nat. Nanotech. 2017, 12(6), 546–550. DOI: 10.1038/nnano.2017.21.
  • Mahmoudi, E.; Ng, L. Y.; Ba-Abbad, M. M.; Mohammad, A. W. Novel Nanohybrid Polysulfone Membrane Embedded with Silver Nanoparticles on Graphene Oxide Nanoplates. Chem. Eng. J. 2015, 277, 1–10. DOI: 10.1016/j.cej.2015.04.107.
  • Kang, Y.; Obaid, M.; Jang, J.; Ham, M.-H.; Kim, I. S. Novel Sulfonated Graphene Oxide Incorporated Polysulfone Nanocomposite Membranes for Enhanced-Performance in Ultrafiltration Process. Chemosphere. 2018, 207, 581–589. DOI: 10.1016/j.chemosphere.2018.05.141.
  • Kang, Y.; Obaid, M.; Jang, J.; Kim, I. S. Sulfonated Graphene Oxide Incorporated Thin Film Nanocomposite Nanofiltration Membrane to Enhance Permeation and Antifouling Properties. Desalination. 2019, 470, 114125. DOI: 10.1016/j.desal.2019.114125.
  • Bhoje, R.; Ghosh, A. K.; Nemade, P. R. Development of Performance-Enhanced Graphene Oxide-Based Nanostructured Thin-Film Composite Seawater Reverse Osmosis Membranes. ACS Appl. Polym. Mater. 2022, 4(3), 2149–2159. DOI: 10.1021/acsapm.2c00094.
  • Yoo, M. J.; Park, H. B. Effect of Hydrogen Peroxide on Properties of Graphene Oxide in Hummers Method. Carbon. 2019, 141, 515–522. DOI: 10.1016/j.carbon.2018.10.009.
  • Rezaei, M. T.; Valizadeh, S.; Naji, L. Influences of Sulfonation Level on the Nanofiltration Performance of Sulfonated Graphene Oxide Polyamide Nanocomposite Membranes. Thin Solid Films. 2021, 728, 138688. DOI: 10.1016/j.tsf.2021.138688.
  • Prakash Rao, A.; Joshi, S. V.; Trivedi, J. J.; Devmurari, C. V.; Shah, V. J. Structure–Performance Correlation of Polyamide Thin Film Composite Membranes: Effect of Coating Conditions on Film Formation. J. Membr. Sci. 2003, 211(1), 13–24. DOI: 10.1016/S0376-7388(02)00305-8.
  • Yu, L.; Zhang, Y.; Zhang, B.; Liu, J.; Zhang, H.; Song, C. Preparation and Characterization of HPEI-GO/PES Ultrafiltration Membrane with Antifouling and Antibacterial Properties. J. Membr. Sci. 2013, 447, 452–462. DOI: 10.1016/j.memsci.2013.07.042.
  • Rezaee, R.; Nasseri, S.; Mahvi, A. H.; Nabizadeh, R.; Mousavi, S. A.; Rashidi, A.; Jafari, A.; Nazmara, S. Fabrication and Characterization of a Polysulfone-Graphene Oxide Nanocomposite Membrane for Arsenate Rejection from Water. J. Environ. Health Sci. Eng. 2015, 13(1), 61. DOI: 10.1186/s40201-015-0217-8.
  • Lind, M. L.; Ghosh, A. K.; Jawor, A.; Huang, X.; Hou, W.; Yang, Y.; Hoek, E. M. V. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes. Langmuir. 2009, 25(17), 10139–10145. DOI: 10.1021/la900938x.
  • Liang, S.; Kang, Y.; Tiraferri, A.; Giannelis, E. P.; Huang, X.; Elimelech, M. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles. Appl. Mater. Interfaces. 2013, 5(14), 6694–6703. DOI: 10.1021/am401462e.
  • Ghosh, A. K.; Hoek, E. M. V. Impacts of Support Membrane Structure and Chemistry on Polyamide–Polysulfone Interfacial Composite Membranes. J. Membr. Sci. 2009, 336(1–2), 140–148. DOI: 10.1016/j.memsci.2009.03.024.
  • Mulder, M. Basic Principles of Membrane Technology | Marcel Mulder | Springer, 2nd ed.; Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991. DOI: 10.1007/978-94-017-0835-7.
  • Neelakandan, S.; Jacob, K. N.; Kanagaraj, P.; Sabarathinam, M. R.; Muthumeenal, A.; Nagendran, A. Effect of Sulfonated Graphene Oxide on the Performance Enhancement of Acid–Base Composite Membranes for Direct Methanol Fuel Cells. R.S.C. Adv. 2016, 6(57), 51599–51608. DOI: 10.1039/C5RA27655A.
  • Zahid, M.; Khalid, T.; Rehan, Z.; Akram, S.; Rashid, A.; Mustafa, S.; Shabbir, R.; Mora-Poblete, F.; Liaquat, R.; Hassan, M., et al. Fabrication and Characterization of Sulfonated Graphene Oxide (SGO) Doped PVDF Nanocomposite Membranes with Improved Anti-Biofouling Performance. Membranes. 2021, 11, 749. DOI: 10.3390/membranes11100749.
  • Chien, H.-C.; Tsai, L.-D.; Huang, C.-P.; Kang, C.; Lin, J.-N.; Chang, F.-C. Sulfonated Graphene Oxide/Nafion Composite Membranes for High-Performance Direct Methanol Fuel Cells. Int. J. Hydrogen Energy. 2013, 38(31), 13792–13801. DOI: 10.1016/j.ijhydene.2013.08.036.
  • Brahmayya, M.; Dai, S. A.; Suen, S.-Y. Sulfonated Reduced Graphene Oxide Catalyzed Cyclization of Hydrazides and Carbon Dioxide to 1,3,4-Oxadiazoles Under Sonication. Sci. Rep. 2017, 7(1), 4675. DOI: 10.1038/s41598-017-04143-4.
  • Ji, J.; Zhang, G.; Chen, H.; Wang, S.; Zhang, G.; Zhang, F.; Fan, X. Sulfonated Graphene as Water-Tolerant Solid Acid Catalyst. Chem. Sci. 2011, 2(3), 484–487. DOI: 10.1039/C0SC00484G.
  • Ma, J.; Meng, Q.; Michelmore, A.; Kawashima, N.; Izzuddin, Z.; Zamanb, C.; Kuan, H. Covalently bonded interfaces for polymer/graphene composites. J. Mater. Chem. A. 2013, 1, 4255–4264. DOI: 10.1039/C3TA01277H.
  • Naim, R.; Ismail, A.; Saidi, H.; Saion, E. Development of Sulfonated Polysulfone Membranes as a Material for Proton Exchange Membrane (PEM). Proc. Reg. Symp. Membr. Sci. Technol., Puteri Pan Pacific Hotel, Johor Bharu, Malaysia. 2004.
  • Asadollahi, M.; Bastani, D.; Musavi, S. A. Enhancement of Surface Properties and Performance of Reverse Osmosis Membranes After Surface Modification: A Review. Desalination. 2017, 420, 330–383. DOI: 10.1016/j.desal.2017.05.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.