520
Views
26
CrossRef citations to date
0
Altmetric
Soil remediation

A review on current pollution and removal methods of tetracycline in soil

, , , , &
Pages 2578-2602 | Received 30 May 2023, Accepted 08 Aug 2023, Published online: 19 Sep 2023

References

  • Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65(2), 232. DOI: 10.1128/MMBR.65.2.232-260.2001.
  • Suzuki, S.; Hoa, P. T. P. Distribution of Quinolones, Sulfonamides, Tetracyclines in Aquatic Environment and Antibiotic Resistance in Indochina. Front. Microbiol. 2012, 3, 67. DOI: 10.3389/fmicb.2012.00067.
  • Wang, H.; Yuan, X. Z.; Wu, Y.; Zeng, G. M.; Dong, H. R.; Chen, X. H.; Leng, L. J.; Wu, Z. B.; Peng, L. J. In situ Synthesis of In2S3@MIL-125(Ti) Core-Shell Microparticle for the Removal of Tetracycline from Wastewater by Integrated Adsorption and Visible-Light-Driven Photocatalysis. Appl. Catal B-Environ. 2016, 186, 19. DOI: 10.1016/j.apcatb.2015.12.041.
  • Ye, J.; Du, Y. P.; Wang, L. M.; Qian, J. R.; Chen, J. J.; Wu, Q. W.; Hu, X. J. Toxin Release of Cyanobacterium microcystis aeruginosa After Exposure to Typical Tetracycline Antibiotic Contaminants. Toxins (Basel). 2017, 9(2), 53. DOI: 10.3390/toxins9020053.
  • Daghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environ. Chem. Lett. 2013, 11(3), 209. DOI: 10.1007/s10311-013-0404-8.
  • Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchem. J. 2018, 136, 25. DOI: 10.1016/j.microc.2017.02.006.
  • Liu, X.; Zhang, G.; Liu, Y.; Lu, S.; Qin, P.; Guo, X.; Bi, B.; Wang, L.; Xi, B.; Wu, F., et al. Occurrence and Fate of Antibiotics and Antibiotic Resistance Genes in Typical Urban Water of Beijing, China. Environ. Pollut. 2019, 246, 163. DOI: 10.1016/j.envpol.2018.12.005.
  • Zhu, Y. G.; Johnson, T. A.; Su, J. Q.; Qiao, M.; Guo, G. X.; Stedtfeld, R. D.; Hashsham, S. A.; Tiedje, J. M. Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(9), 3435. DOI: 10.1073/pnas.1222743110.
  • Klein, E. Y.; Van Boeckel, T. P.; Martinez, E. M.; Pant, S.; Gandra, S.; Levin, S. A.; Goossens, H.; Laxminarayan, R. Global Increase and Geographic Convergence in Antibiotic Consumption Between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A. 2018, 115(15), 3463. DOI: 10.1073/pnas.1717295115.
  • Khan, M. H.; Bae, H.; Jung, J. Y. Tetracycline Degradation by Ozonation in the Aqueous Phase: Proposed Degradation Intermediates and Pathway. J. Hazard. Mater. 2010, 181(1–3), 659. DOI: 10.1016/j.jhazmat.2010.05.063.
  • Miao, X. S.; Bishay, F.; Chen, M.; Metcalfe, C. D. Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada. Environ. Sci. Technol. 2004, 38(13), 3533. DOI: 10.1021/es030653q.
  • Shao, B.; Chen, D.; Zhang, J.; Wu, Y.; Sun, C. Determination of 76 Pharmaceutical Drugs by Liquid Chromatography–Tandem Mass Spectrometry in Slaughterhouse Wastewater. J. Chromatogr. A. 2009, 1216(47), 8312. DOI: 10.1016/j.chroma.2009.08.038.
  • Topal, M.; Topal, A. E. I. Occurrence and Fate of Tetracycline and Degradation Products in Municipal Biological Wastewater Treatment Plant and Transport of Them in Surface Water. Environ. Monit. Assess. 2015, 187(12), 750. DOI: 10.1007/s10661-015-4978-4.
  • Zhang, M.; Liu, Y. S.; Zhao, J. L.; Liu, W. R.; He, L. Y.; Zhang, J. N.; Chen, J.; He, L. K.; Zhang, Q. Q.; Ying, G. G. Occurrence, Fate and Mass Loadings of Antibiotics in Two Swine Wastewater Treatment Systems. Sci. Total Environ. 2018, 639, 1421. DOI: 10.1016/j.scitotenv.2018.05.230.
  • Dai, Y. J.; Zhang, K. X.; Meng, X. B.; Li, J. J.; Guan, X. T.; Sun, Q. Y.; Sun, Y.; Wang, W. S.; Lin, M.; Liu, M., et al. New Use for Spent Coffee Ground as an Adsorbent for Tetracycline Removal in Water. Chemosphere. 2019, 215, 163. DOI: 10.1016/j.chemosphere.2018.09.150.
  • Chen, Y.; Zhang, H.; Luo, Y.; Song, J. Occurrence and Assessment of Veterinary Antibiotics in Swine Manures: A Case Study in East China. Chin. Sci. Bull. 2012, 57(6), 606. DOI: 10.1007/s11434-011-4830-3.
  • Ian, C.; Marilyn, R. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65(2), 232. DOI: 10.1128/MMBR.65.2.232-260.2001.
  • Nguyen, F.; Starosta, A. L.; Arenz, S.; Sohmen, D.; Dönhöfer, A.; Wilson, D. N. Tetracycline Antibiotics and Resistance Mechanisms. Biol. Chem. 2014, 395(5), 559. DOI: 10.1515/hsz-2013-0292.
  • Dai, Y.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Sun, Q.; Wang, W.; Lu, L.; Zhang, K.; Xu, J., et al. A Review on Pollution Situation and Treatment Methods of Tetracycline in Groundwater. Sep. Sci. Technol. 2019, 55(5), 1005. DOI: 10.1080/01496395.2019.1577445.
  • Bruno, F.; Curini, R.; Di Corcia, A.; Nazzari, M.; Pallagrosi, M. An Original Approach to Determining Traces of Tetracycline Antibiotics in Milk and Eggs by Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002, 16(14), 1365. DOI: 10.1002/rcm.724.
  • Agwuh, K. N. Pharmacokinetics and Pharmacodynamics of the Tetracyclines Including Glycylcyclines. J. Antimicrob. Chemother. 2006, 58(2), 256. DOI: 10.1093/jac/dkl224.
  • Kümmerer, K. Antibiotics in the Aquatic Environment – a Review – Part I. Chemosphere. 2009, 75(4), 417. DOI: 10.1016/j.chemosphere.2008.11.086.
  • Zhan, J.; Wei, S. The Distribution and Eco-Toxicology of Tetracycline in Soil and Water Environment and Its Degradation: A Review. Sheng Tai Xue Bao. 2015, 35(9), 2819. DOI: 10.5846/stxb201306111662.
  • Dai, Y.; Shi, J.; Zhang, N.; Pan, Z.; Xing, C.; Chen, X. Current Research Trends on Microplastics Pollution and Impacts on Agro-Ecosystems: A Short Review, Sep. Sci. Technol. 2022, 57(4), 656. DOI: 10.1080/01496395.2021.1927094.
  • Liu, L.; Dai, Y. J. Strong Adsorption of Metolachlor by Biochar Prepared from Walnut Shells in Water. Environ. Sci. Pollut. R. 2021, 28(35), 48379. DOI: 10.1007/s11356-021-14117-9.
  • Sassman, S. A.; Lee, L. S. Sorption of Three Tetracyclines by Several Soils: Assessing the Role of pH and Cation Exchange. Environ. Sci. Technol. 2005, 39(19), 7452. DOI: 10.1021/es0480217.
  • Zhang, J.; Wei, Y.; Chen, M.; Tong, J.; Xiong, J.; Ao, Z. Occurrence and Fate of Antibiotic and Heavy Metal Resistance Genes in the Total Process of Biological Treatment and Land Application of Animal Manure: A Review. Huanjing Kexue Xuebao. 2015, 35(4), 935.
  • Qu, J. H.; Li, Z.; Wu, Z.; Bi, F.; Wei, S.; Dong, M.; Hu, Q.; Wang, Y.; Yu, H.; Zhang, Y. Cyclodextrin-Functionalized Magnetic Alginate Microspheres for Synchronous Removal of Lead and Bisphenol a from Contaminated Soil. Chem. Eng. J. 2023, 461, 142079. DOI: 10.1016/j.cej.2023.142079.
  • Zeng, Q.; Ding, D.; Tan, X. Pollution Status and Sources of Tetracycline Antibiotics in Agricultural Soil in China: A Review. Ecol. Environ. Sci. 2018, 27(9), 1774.
  • Babić, S.; Ašperger, D.; Mutavdžić, D.; Horvat, A. J. M.; Kaštelan-Macan, M. Solid Phase Extraction and HPLC Determination of Veterinary Pharmaceuticals in Wastewater. Talanta. 2006, 70(4), 732. DOI: 10.1016/j.talanta.2006.07.003.
  • Deng, W. J.; Li, N.; Ying, G. G. Antibiotic Distribution, Risk Assessment, and Microbial Diversity in River Water and Sediment in Hong Kong. Environ. Geochem. Health. 2018, 40(5), 2191. DOI: 10.1007/s10653-018-0092-1.
  • Hu, X.; Zhou, Q.; Luo, Y. Occurrence and Source Analysis of Typical Veterinary Antibi-Otics in Manure, Soil, Vegetables and Groundwater from Organic Vegetable Bases, Northern China. Environ. Pollut. 2010, 158(9), 2992. DOI: 10.1016/j.envpol.2010.05.023.
  • Ke, Y.; Cui, S.; Fu, Q.; Hough, R.; Zhang, Z.; Li, Y. Effects of Pyrolysis Temperature and Aging Treatment on the Adsorption of Cd2+ and Zn2+ by Coffee Grounds Biochar. Chemosphere. 2022, 296, 134051. DOI: 10.1016/j.chemosphere.2022.134051.
  • Qu, J.; Zhang, B.; Tong, H.; Liu, Y.; Wang, S.; Wei, S.; Wang, L.; Wang, Y.; Zhang, Y. High-Efficiency Decontamination of Pb(ii) and Tetracycline in Contaminated Water Using Ball-Milled Magnetic Bone Derived Biochar. J. Clean. Prod. 2023, 385, 135683. DOI: 10.1016/j.jclepro.2022.135683.
  • Fuoco, D. Classification Framework and Chemical Biology of Tetracycline-Structure-Based Drugs. Antibiotics. 2012, 1(1), 1. DOI: 10.3390/antibiotics1010001.
  • Thiele-Bruhn, S.; Beck, I. Effects of Sulfonamide and Tetracycline Antibiotics on Soil Microbial Activity and Microbial Biomass. Chemosphere. 2005, 59(4), 457. DOI: 10.1016/j.chemosphere.2005.01.023.
  • Liu, D.; Lu, L.; Wang, M.; Hussain, B.; Tian, S.; Luo, W.; Zhou, J.; Yang, X. Tetracycline Uptake by Pak Choi Grown on Contaminated Soils and Its Toxicity in Human Liver Cell Line HL-7702. Environ. Pollut. 2019, 253, 312. DOI: 10.1016/j.envpol.2019.06.086.
  • Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J. Food Prot. 2018, 81(4), 619. DOI: 10.4315/0362-028X.JFP-17-086.
  • Nhung, N. T.; Chansiripornchai, N.; Carrique-Mas, J. J. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front. Vet. Sci. 2017, 4, 126. DOI: 10.3389/fvets.2017.00126.
  • Moullan, N.; Mouchiroud, L.; Wang, X.; Ryu, D.; Williams, E. G.; Mottis, A.; Jovaisaite, V.; Frochaux, M. V.; Quiros, P. M.; Deplancke, B., et al. Tetracyclines Disturb Mitochondrial Function Across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell. Rep. 2015, 10(10), 1681. DOI: 10.1016/j.celrep.2015.02.034.
  • Asha, K. K.; Sankar, T. V. Effect of Tetracycline on Pancreas and Liver Function of Adult Male Albino Rats. J. Pharm. Pharmacol. 2007, 59(9), 1241. DOI: 10.1211/jpp.59.9.0008.
  • Yin, H. Q.; Kim, M.; Kim, J. H.; Kong, G.; Lee, M. O.; Kang, K. S.; Yoon, B. I. L.; Kim, H. L.; Lee, B. H. Hepatic Gene Expression Profiling and Lipid Homeostasis in Mice Exposed to Steatogenic Drug, Tetracycline. Toxicol. Sci. 2006, 94(1), 206. DOI: 10.1093/toxsci/kfl078.
  • Aikawa, N. A Novel Screening Test to Predict the Developmental Toxicity of Drugs Using Human Induced Pluripotent Stem Cells. J. Toxicol. Sci. 2020, 45(4), 187. DOI: 10.2131/jts.45.187.
  • Salama, N. A.; Abou-Raya, S. H.; Shalaby, A. R.; Emam, W. H.; Mehaya, F. M. Incidence of Tetracycline Residues in Chicken Meat and Liver Retailed to Consumers. Food Addit. Contam. Part B. 2011, 4(2), 88. DOI: 10.1080/19393210.2011.585245.
  • Boonsaner, M.; Hawker, D. W. Investigation of the Mechanism of Uptake and Accumulation of Zwitterionic Tetracyclines by Rice (Oryza Sativa L.). Ecotoxicol. Environ. Saf. 2012, 78, 142. DOI: 10.1016/j.ecoenv.2011.11.023.
  • Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of Antibiotics in Crops Under Long-Term Manure Application: Occurrence, Biomass Response and Human Exposure. Chemosphere. 2019, 219, 882. DOI: 10.1016/j.chemosphere.2018.12.076.
  • Bowman, S. M.; Drzewiecki, K. E.; Mojica, E.-R. E.; Zielinski, A. M.; Siegel, A.; Aga, D. S.; Berry, J. O. Toxicity and Reductions in Intracellular Calcium Levels Following Uptake of a Tetracycline Antibiotic in Arabidopsis. Environ. Sci. Technol. 2011, 45(20), 8958. DOI: 10.1021/es200863j.
  • Hillis, D. G.; Fletcher, J.; Solomon, K. R.; Sibley, P. K. Effects of ten Antibiotics on Seed Germination and Root Elongation in Three Plant Species. Arch. Environ. Contam. Toxicol. 2011, 60(2), 220. DOI: 10.1007/s00244-010-9624-0.
  • Gopal, G.; Alex, S.; Chandrasekaran, N.; Mukherjee, A. A Review on Tetracycline Removal from Aqueous Systems by Advanced Treatment Techniques. Rsc. Adv. 2020, 10(45), 27081. DOI: 10.1039/D0RA04264A.
  • Hui, L.; Jin, D.; Freitag, T. E.; Sun, W.; Yu, Q.; Fu, J.; Ma, J. A Compositional Shift in the Soil Microbiome Induced by Tetracycline, Sulfamonomethoxine and Ciprofloxacin Entering a Plant-Soil System. Environ. Pollut. 2016, 212, 440. DOI: 10.1016/j.envpol.2016.02.043.
  • Liu, H.; Yang, Y. K.; Sun, H. F.; Zhao, L.; Liu, Y. Effect of Tetracycline on Microbial Community Structure Associated with Enhanced Biological N&P Removal in Sequencing Batch Reactor. Bioresources Technol. 2018, 256, 414. DOI: 10.1016/j.biortech.2018.02.051.
  • Ma, J.; Lin, H.; Sun, W.; Wang, Q.; Yu, Q.; Zhao, Y.; Fu, J. Soil Microbial Systems Respond Differentially to Tetracycline, Sulfamonomethoxine, and Ciprofloxacin Entering Soil Under Pot Experimental Conditions Alone and in Combination. Environ. Sci. Pollut. R. 2014, 21(12), 7436. DOI: 10.1007/s11356-014-2685-2.
  • Aydın, E.; Şahin, M.; Taşkan, E.; Hasar, H.; Erdem, M. Chlortetracycline Removal by Using Hydrogen Based Membrane Biofilm Reactor. J. Hazard. Mater. 2016, 320, 88. DOI: 10.1016/j.jhazmat.2016.08.014.
  • Zhao, J.; Gao, F.; Sun, Y.; Fang, W.; Li, X.; Dai, Y. New Use for Biochar Derived from Bovine Manure for Tetracycline Removal. J. Environ. Chem. Eng. 2021, 9(4), 105585. DOI: 10.1016/j.jece.2021.105585.
  • Raghavan, D. S. S.; Qiu, G. L.; Ting, Y. P. Fate and Removal of Selected Antibiotics in an Osmotic Membrane Bioreactor. Chem. Eng. J. 2018, 334, 198. DOI: 10.1016/j.cej.2017.10.026.
  • Wang, X. C.; Li, J.; Zhang, X. L.; Chen, Z. L.; Shen, J. M.; Kang, J. The Performance of Aerobic Granular Sludge for Simulated Swine Wastewater Treatment and the Removal Mechanism of Tetracycline. J. Hazard. Mater. 2021, 408, 124762. DOI: 10.1016/j.jhazmat.2020.124762.
  • Huang, X. C.; Zhang, X. Y.; Feng, F. X.; Xu, X. P. Biodegradation of Tetracycline by the Yeast Strain Trichosporon Mycotoxinivorans XPY-10. Prep. Biochem. Biotechnol. 2016, 46(1), 15. DOI: 10.1080/10826068.2014.970692.
  • Chen, X. L.; Shen, W.; Chen, J. F.; Zhu, Y.; Chen, C.; Xie, S. G. Tetracycline Biotransformation by a Novel Bacterial Strain Alcaligenes sp. T17. Sci. Total Environ. 2022, 832, 155130. DOI: 10.1016/j.scitotenv.2022.155130.
  • Shi, Y. K.; Lin, H.; Ma, J. W.; Zhu, R. R.; Sun, W. C.; Lin, X. Y.; Zhang, J.; Zheng, H. B.; Zhang, X. Degradation of Tetracycline Antibiotics by Arthrobacter Nicotianae OTC-16. J. Hazard. Mater. 2021, 403, 123996. DOI: 10.1016/j.jhazmat.2020.123996.
  • Qu, J.; Bi, F.; Hu, Q.; Wu, P.; Ding, B.; Tao, Y.; Ma, S.; Qian, C.; Zhang, Y. A Novel PEI-Grafted N-Doping Magnetic Hydrochar for Enhanced Scavenging of BPA and Cr(vi) from Aqueous Phase. Environ. Pollut. 2023, 321, 121142. DOI: 10.1016/j.envpol.2023.121142.
  • Liu, R.; Guo, Z.; Li, J.; Wu, F. Y.; Cui, K. P.; Cheng, P.; Chen, Y. H.; Ding, Y.; Cui, M. S.; Wu, Z. Z. Mechanism of Phanerochaete Chrysosporium-Mediated Tetracycline Hydrochloride Removal Promoted by Low-Dose Silver Nanoparticles. J. Environ. Chem. Eng. 2022, 10(3), 107474. DOI: 10.1016/j.jece.2022.107474.
  • Huang, X. C.; Zhang, X. Y.; Huang, Y. Y.; Xu, X. P. Optimization of Media Composition for Enhancing Tetracycline Degradation by Trichosporon Mycotoxinivorans XPY-10 Using Response Surface Methodology. Environmental Technology. 2020, 42(27), 4279. DOI: 10.1080/09593330.2020.1754472.
  • Tian, Q. P.; Dou, X.; Huang, L.; Wang, L.; Meng, D.; Zhai, L. X.; Shen, Y.; You, C. P.; Guan, Z. B.; Liao, X. R. Characterization of a Robust Cold-Adapted and Thermostable Laccase from Pycnoporus sp. SYBC-L10 with a Strong Ability for the Degradation of Tetracycline and Oxytetracycline by Laccase-Mediated Oxidation. J. Hazard. Mater. 2020, 382, 121084. DOI: 10.1016/j.jhazmat.2019.121084.
  • Leng, Y. F.; Bao, J. G.; Chang, G. F.; Zheng, H.; Li, X. X.; Du, J. K.; Daniel, S.; Li, X. Biotransformation of Tetracycline by a Novel Bacterial Strain Stenotrophomonas maltophilia DT1. J. Hazard. Mater. 2016, 318, 125. DOI: 10.1016/j.jhazmat.2016.06.053.
  • Tan, Z. W.; Chen, J. C.; Liu, Y. L.; Chen, L.; Xu, Y. Q.; Zou, Y. X.; Li, Y. T.; Gong, B. N. The Survival and Removal Mechanism of Sphingobacterium Changzhouense TC931 Under Tetracycline Stress and its’ Ecological Safety After Application. Bioresources Technol. 2021, 333, 125067. DOI: 10.1016/j.biortech.2021.125067.
  • He, Q. L.; Xie, Z. Y.; Fu, Z. D.; Wang, M.; Xu, P.; Yu, J.; Ma, J. W.; Gao, S. X.; Chen, L.; Zhang, W., et al. Interaction and Removal of Oxytetracycline with Aerobic Granular Sludge. Bioresources Technol. 2021, 320, 124358. DOI: 10.1016/j.biortech.2020.124358.
  • He, T.; Bao, J. G.; Leng, Y. F.; Snow, D.; Kong, S. Q.; Wang, T.; Li, X. Biotransformation of Doxycycline by Brevundimonas Naejangsanensis and Sphingobacterium Mizutaii Strains. J. Hazard. Mater. 2021, 411, 125. DOI: 10.1016/j.jhazmat.2021.125126.
  • Hong, X. X.; Zhao, Y. C.; Zhuang, R. D.; Liu, J. Y.; Guo, G. T.; Chen, J. M.; Yao, Y. M. Bioremediation of Tetracycline Antibiotics-Contaminated Soil by Bioaugmentation. R.S.C. Adv. 2020, 10(55), 33086. DOI: 10.1039/D0RA04705H.
  • Wu, X. L.; Gu, Y. C.; Wu, X. Y.; Zhou, X. Y.; Zhou, H.; Amanze, C.; Shen, L.; Zeng, W. M. Construction of a Tetracycline Degrading Bacterial Consortium and Its Application Evaluation in Laboratory-Scale Soil Remediation. Microorganisms. 2020, 8(2), 292. DOI: 10.3390/microorganisms8020292.
  • Yin, Z. F.; Xia, D.; Shen, M.; Zhu, D. W.; Cai, H. J.; Wu, M.; Zhu, Q. R.; Kang, Y. J. Tetracycline Degradation by Klebsiella sp. Strain TR5: Proposed Degradation Pathway and Possible Genes Involved. Chemosphere. 2020, 253, 126729. DOI: 10.1016/j.chemosphere.2020.126729.
  • Liu, L.; Wang, X.; Fang, W.; Li, X.; Shan, D.; Dai, Y. Adsorption of Metolachlor by a Novel Magnetic Illite–Biochar and Recovery from Soil. Environ. Res. 2022, 204, 111919. DOI: 10.1016/j.envres.2021.111919.
  • Ahumada-Rudolph, R.; Novoa, V.; Sáez, K.; Martínez, M.; Rudolph, A.; Torres-Diaz, C.; Becerra, J. Marine Fungi Isolated from Chilean Fjord Sediments Can Degrade Oxytetracycline. Environ. Monit. Assess. 2016, 188(8), 468. DOI: 10.1007/s10661-016-5475-0.
  • Qi, W. N.; Long, J.; Feng, C. Q.; Feng, Y.; Cheng, D. M.; Liu, Y. W.; Xue, J. M.; Li, Z. Fe3+ Enhanced Degradation of Oxytetracycline in Water by Pseudomonas. Water Res. 2019, 160, 361. DOI: 10.1016/j.watres.2019.05.058.
  • Wang, Q.; Li, X. N.; Yang, Q. X.; Chen, Y. L.; Du, B. B. Evolution of Microbial Community and Drug Resistance During Enrichment of Tetracycline-Degrading Bacteria. Ecotox. Environ. Safe. 2019, 171, 746. DOI: 10.1016/j.ecoenv.2019.01.047.
  • Shao, S. C.; Hu, Y. Y.; Cheng, C.; Cheng, J. H.; Chen, Y. C. Simultaneous Degradation of Tetracycline and Denitrification by a Novel Bacterium, Klebsiella Sp SQY5. Chemosphere. 2018, 209, 35. DOI: 10.1016/j.chemosphere.2018.06.093.
  • Shao, S. C.; Hu, Y. Y.; Cheng, J. H.; Chen, Y. C. Degradation of Oxytetracycline (OTC) and Nitrogen Conversion Characteristics Using a Novel Strain. J. Chem. Eng. 2018, 354, 758. DOI: 10.1016/j.cej.2018.08.032.
  • Wu, X. L.; Wu, X. Y.; Shen, L.; Li, J. K.; Yu, R. L.; Liu, Y. D.; Qiu, G. Z.; Zeng, W. M. Whole Genome Sequencing and Comparative Genomics Analyses of Pandoraea sp. XY-2, a New Species Capable of Biodegrade Tetracycline. Front. Microbiol. 2019, 10, 33. DOI: 10.3389/fmicb.2019.00033.
  • Zhao, J.; Dai, Y. Tetracycline Adsorption Mechanisms by NaOh-Modified Biochar Derived from Waste Auricularia Auricula Dregs. Environ. Sci. Pollut. R. 2022, 29(6), 9142. DOI: 10.1007/s11356-021-16329-5.
  • Ahumada-Rudolph, R.; Novoa, V.; Becerra, J.; Cespedes, C.; Cabrera-Pardo, J. R. Mycoremediation of Oxytetracycline by Marine Fungi Mycelium Isolated from Salmon Farming Areas in the South of Chile. Food. Chem. Toxicol. 2021, 152, 112198. DOI: 10.1016/j.fct.2021.112198.
  • Suda, T.; Hata, T.; Kawai, S.; Okamura, H.; Nishida, T. Treatment of Tetracycline Antibiotics by Laccase in the Presence of 1-Hydroxybenzotriazole. Bioresources Technol. 2012, 103(1), 498. DOI: 10.1016/j.biortech.2011.10.041.
  • Wen, X. H.; Jia, Y. N.; Li, J. X. Degradation of Tetracycline and Oxytetracycline by Crude Lignin Peroxidase Prepared from Phanerochaete Chrysosporium – a White Rot Fungus. Chemosphere. 2009, 75(8), 1003. DOI: 10.1016/j.chemosphere.2009.01.052.
  • Wong, D. W. S. Structure and Action Mechanism of Ligninolytic Enzymes. Appl. Biochem. Biotechnol. 2009, 157(2), 174. DOI: 10.1007/s12010-008-8279-z.
  • Yang, S. D.; Zhao, L. X.; Chang, X. P.; Pan, Z.; Zhou, B.; Sun, Y.; Li, X. J.; Weng, L. P.; Li, Y. T. Removal of Chlortetracycline and Antibiotic Resistance Genes in Soil by Earthworms (Epigeic Eisenia Fetida and Endogeic Metaphire Guillelmi). Sci. Total Environ. 2021, 781, 146679. DOI: 10.1016/j.scitotenv.2021.146679.
  • He, Q.; Cui, C. Y.; Zhang, X. J.; Lin, Z. Y.; Jia, Q. L.; Li, C.; Ren, H.; Cai, D. T.; Zheng, Z. J.; Long, T. F., et al. Reducing Tetracycline Antibiotics Residues in Aqueous Environments Using Tet(x) Degrading Enzymes Expressed in Pichia Pastoris. Sci. Total Environ. 2021, 799, 149360. DOI: 10.1016/j.scitotenv.2021.149360.
  • Christl, I.; Ruiz, M.; Schinidt, J. R.; Pedersen, J. A. Clarithromycin and Tetracycline Binding to Soil Humic Acid in the Absence and Presence of Calcium. Environ. Sci. Technol. 2016, 50(18), 9933. DOI: 10.1021/acs.est.5b04693.
  • Sun, K.; Huang, Q. G.; Li, S. Y. Transformation and Toxicity Evaluation of Tetracycline in Humic Acid Solution by Laccase Coupled with 1-Hydroxybenzotriazole. J. Hazard. Mater. 2017, 331, 182. DOI: 10.1016/j.jhazmat.2017.02.058.
  • Chao, H. Z.; Zheng, X. X.; Xia, R.; Sun, M. M.; Hu, F. Incubation Trial Indicated the Earthworm Intestinal Bacteria as Promising Biodigestor for Mitigating Tetracycline Resistance Risk in Anthropogenic Disturbed Forest Soil. Sci. Total Environ. 2021, 798, 149337. DOI: 10.1016/j.scitotenv.2021.149337.
  • Cao, J.; Ji, D.; Wang, C. Interaction Between Earthworms and Arbuscular Mycor- Rhizal Fungi on the Degradation of Oxytetracycline in Soils. Soil Biol. Biochem. 2015, 90, 283. DOI: 10.1016/j.soilbio.2015.08.020.
  • Carvalho, P. N.; Basto, M. C. P.; Almeida, C. M. R.; Brix, H. A Review of Plant–Pharmaceutical Interactions: From Uptake and Effects in Crop Plants to Phytoremediation in Constructed Wetlands. Environ. Sci. Pollut. Res. 2014, 21(20), 11729. DOI: 10.1007/s11356-014-2550-3.
  • Syranidou, E.; Christofilopoulos, S.; Politi, M.; Weyens, N.; Venieri, D.; Vangronsveld, J.; Kalogerakis, N. Bisphenol-A Removal by the Halophyte Juncus Acutus in a Phytoremediation Pilot: Characterization and Potential Role of the Endophytic Community. J. Hazard. Mater. 2017, 323, 350. DOI: 10.1016/j.jhazmat.2016.05.034.
  • Chen, X. J.; Li, F. Y.; Hao, Y. B. The Preliminary Exploration of Remediation the Antibiotics Polluted Water by Two Hydrophytes. Subtropical Plant Sciences. 2012, 41(4), 1.
  • Pei, M.; Liang, Y. T.; Yi, L. Y.; Cao, S. N.; Yang, Z. P.; Wang, D. D.; Zhao, Y. Degradation of Residual Antibiotics in Soils by Ryegrass and Its Effect on Microbial Activity. Chinese J. Environ. Eng. 2017, 11(5), 3719.
  • Liao, J.; Xu, X. A.; Liu, Y. H.; Li, R. X.; Liu, L.; Liu, C. X. Removal and Response of Antibiotics and Antibiotic Resistance Genes During Advanced Treatment of Livestock Wastewater by Aquatic Plant Filter Bed. Acta Scientific. 2015, 35(8), 2464.
  • Liu, J.; Zhou, J.; Wu, Z. H.; Tian, X.; An, X. Y.; Zhang, Y.; Zhang, G. S.; Deng, F. X.; Meng, X. L.; Qu, J. H. Concurrent Elimination and Stepwise Recovery of Pb(ii) and Bisphenol a from Water Using β–Cyclodextrin Modified Magnetic Cellulose: Adsorption Performance and Mechanism Investigation. J. Hazard. Mater. 2022, 432, 128758. DOI: 10.1016/j.jhazmat.2022.128758.
  • Carvalho, P. N.; Pirra, A.; Basto, M. C. P.; Almeida, C. M. R. Activated Sludge Systems Removal Efficiency of Veterinary Pharmaceuticals from Slaughterhouse Wastewater. Environ. Sci. Pollut. Res. 2013, 20(12), 8790. DOI: 10.1007/s11356-013-1867-7.
  • Norvill, Z. N.; Toledo-Cervantes, A.; Blanco, S.; Shilton, A.; Guieysse, B.; Muñoz, R. Photodegradation and Sorption Govern Tetracycline Removal During Wastewater Treatment in Algal Ponds. Bioresources Technol. 2017, 232, 35. DOI: 10.1016/j.biortech.2017.02.011.
  • Peng, J.; Wang, X.; Yin, F.; Xu, G. Characterizing the Removal Routes of Seven Pharmaceuticals in the Activated Sludge Process. Sci. Total Environ. 2019, 650, 2437. DOI: 10.1016/j.scitotenv.2018.10.004.
  • Vo, T. K. Q.; Bui, X. T.; Chen, S. S.; Nguyen, P. D.; Cao, N. D. T.; Vo, T. D. H.; Nguyen, T. T.; Nguyen, T. B. Hospital Wastewater Treatment by Sponge Membrane Bioreactor Coupled with Ozonation Process. Chemosphere. 2019, 230, 377. DOI: 10.1016/j.chemosphere.2019.05.009.
  • Xu, D.; Wang, Y.; Rao, G. Toxic Effects of Tetracycline Antibiotics on Freshwater Green Algae. Environ. Sci. 2013, 34(9), 3386.
  • Anjali, R.; Shanthakumar, S. Insights on the Current Status of Occurrence and Removal of Antibiotics in Wastewater by Advanced Oxidation Processes. J. Environ. Manage. 2019, 246, 51. DOI: 10.1016/j.jenvman.2019.05.090.
  • Gu, J. Y.; Chen, C. Y.; Huang, X. Y.; Mo, J. C.; Xie, Q. L.; Zeng, Q. Y. Occurrence and Risk Assessment of Tetracycline Antibiotics in Soils and Vegetables from Vegetable Fields in Pearl River Delta, South China. Sci. Total Environ. 2021, 776, 145959. DOI: 10.1016/j.scitotenv.2021.145959.
  • Wang, X. Y.; Tang, B.; Bao, L.; Zhang, H.; He, M. X.; Yuan, S. L. Degradation Evaluation of Acrylamide in Advanced Oxidation Processes Based on Theoretical Method: Mechanisms, Kinetics, Toxicity Evaluation and the Role of Soil Particles. J. Hazard. Mater. 2022, 424, 127592. DOI: 10.1016/j.jhazmat.2021.127592.
  • Wang, H. J.; Li, X.; Zhao, X. X.; Li, C. Y.; Song, X. H.; Zhang, P.; Huo, P. W.; Li, X. A Review on Heterogeneous Photocatalysis for Environmental Remediation: From Semiconductors to Modification Strategies. Chin. J. Catal. 2022, 43(2), 178. DOI: 10.1016/S1872-2067(21)63910-4.
  • Zhao, T.; Zheng, M.; Fu, C. X.; L, G. R.; Xiong, Y.; Qiu, W. H.; Zhang, T.; Zhang, J.; Zheng, C. M. Effect of Low-Level H2O2 and Fe (II) on the UV Treatment of Tetracycline Antibiotics and the Toxicity of Reaction Solutions to Zebrafish Embryos. Chem. Eng. J. 2022, 394, 125021. DOI: 10.1016/j.cej.2020.125021.
  • Gu, J. L.; Dong, D. B.; Kong, L. X.; Zheng, R.; Li, X. J. Photocatalytic Degradation of Phenanthrene on Soil Surfaces in the Presence of Nanometer Anatase TiO2 Under UV-Light. J Environ Sci. 2012, 24(12), 2122. DOI: 10.1016/S1001-0742(11)61063-2.
  • Espíndola, J. C.; Cristóvão, R. O.; Santos, S. G. S.; Boaventura, R. A. R.; Dias, M. M.; Lopes, G. C. B.; Vilar, V. J. R. Intensification of Heterogeneous TiO2 Photocatalysis Using the NETmix Mili-Photoreactor Under Microscale Illumination for Oxytetracycline Oxidation. Sci.Total Environ. 2019, 681, 467. DOI: 10.1016/j.scitotenv.2019.05.066.
  • Dantas, R. F.; Contreras, S.; Sans, C.; Esplugas, S. Sulfamethoxazole Abatement by Means of Ozonation. J. Hazard. Mater. 2008, 150(3), 790. DOI: 10.1016/j.jhazmat.2007.05.034.
  • Wang, L.; Ben, W. W.; Li, Y. G.; Liu, C.; Qiang, Z. M. Behavior of Tetracycline and Macrolide Antibiotics in Activated Sludge Process and Their Subsequent Removal During Sludge Reduction by Ozone. Chemosphere. 2018, 206, 184–191. Chemosphere 206, 184 DOI: 10.1016/j.chemosphere.2018.04.180.
  • Li, K. X.; Yediler, A.; Yang, M.; Schulte-Hostede, S.; Wong, M. H. Ozonation of Oxytetracycline and Toxicological Assessment of Its Oxidation By-Products. Chemosphere. 2008, 72(3), 473. DOI: 10.1016/j.chemosphere.2008.02.008.
  • Moreno, J. D.; Poznyak, T.; Chairez, I.; Dorantes-Rosales, H. J. Effect of the Type of Soil on Dimethyl Phthalate Degradation by Ozone. J. Environ. Manage. 2020, 270, 110863. DOI: 10.1016/j.jenvman.2020.110863.
  • Huang, D. L.; Hu, C. J.; Zeng, G. M.; Cheng, M.; Xu, P.; Gong, X. M.; Wang, R. Z.; Xue, W. J. Combination of Fenton Processes and Biotreatment for Wastewater Treatment and Soil Remediation. Sci. Total Environ. 2017, 574, 1599. DOI: 10.1016/j.scitotenv.2016.08.199.
  • Jiang, Y.; Ran, J. B.; Mao, K.; Yang, X. F.; Zhong, L.; Yang, C. Y.; Feng, X. B.; Zhang, H. Recent Progress in Fenton/Fenton-Like Reactions for the Removal of Antibiotics in Aqueous Environments. Ecotoxicol. Environ. Saf. 2022, 236, 113464. DOI: 10.1016/j.ecoenv.2022.113464.
  • Gu, L.; Nie, J. Y.; Zhu, N. W.; Wang, L.; Yuan, H. P.; Shou, Z. Q. Enhanced Fenton’s Degradation of Real Naphthalene Dye Intermediate Wastewater Containing 6-Nitro-1-Diazo-2-Naphthol-4-Sulfonic Acid: A Pilot Scale Study. Chem. Eng. J. 2012, 189, 108. DOI: 10.1016/j.cej.2012.02.038.
  • Qin, J.; Ruan, Y. H.; Yi, L. D.; Sun, H. S.; Qi, Q. Q.; Zhao, L.; Xiong, Y.; Wang, J.; Fang, D. W. Tetracycline Degradation via Hydrodynamic Cavitation Combined Fenton’s Reagent: Optimizing Geometric and Operation Parameters. Chem. Eng. Process. 2022, 172, 108801. DOI: 10.1016/j.cep.2022.108801.
  • Jiang, H.; Xiong, Q.; Chen, X.; Pan, W.; Dai, Y. Carrier Effect of S-Metolachlor by Microplastics and Environmental Risk Assessment. J. Water. Process. Eng. 2021, 44, 102451. DOI: 10.1016/j.jwpe.2021.102451.
  • Gao, F.; Xu, Z.; Dai, Y. Removal of Tetracycline from Wastewater Using Magnetic Biochar: A Comparative Study of Performance Based on the Preparation Method. Environ. Technol. Inno. 2021, 24, 101916. DOI: 10.1016/j.eti.2021.101916.
  • Pan, Y.; Zhang, Y.; Zhou, M.; Cai, J.; Tian, Y. Enhanced Removal of Antibiotics from Secondary Wastewater Effluents by Novel UV/pre-Magnetized FeO/H2O2 Process. Water Res. 2018, 153, 144. DOI: 10.1016/j.watres.2018.12.063.
  • Liu, Z.; Cui, S.; Zhang, L.; Zhang, Z.; Hough, R.; Fu, Q.; Li, Y.; An, L.; Huang, M.; Li, K. Occurrence, Variations, and Risk Assessment of Neonicotinoid Insecticides in Harbin Section of the Songhua River, Northeast China. Environ. Sci. Ecotechnol. 2021, 8, 100128. DOI: 10.1016/j.ese.2021.100128.
  • Valério, A.; Wang, J. F.; Tong, S.; Souza, A. A. U. D.; Hotza, D.; González, S. Y. J. Synergetic Effect of Photocatalysis and Ozonation for Enhanced Tetracycline Degradation Using Highly Macroporous Photocatalytic Supports. Chem. Eng. Process. 2020, 149, 107838. DOI: 10.1016/j.cep.2020.107838.
  • Rodayan, A.; Roy, R.; Yargeau, V. Oxidation Products of Sulfamethoxazole in Ozonated Secondary Effluent. J. Hazard. Mater. 2010, 177(1–3), 237. DOI: 10.1016/j.jhazmat.2009.12.023.
  • Bembibre, A.; Benamara, M.; Hjiri, M.; Gomez, E.; Alamri, H. R.; Dhahri, R.; Serra, A. Visible-Light Driven Sonophotocatalytic Removal of Tetracycline Using Ca-Doped ZnO Nanoparticles. Chem. Eng. J. 2022, 427, 132006. DOI: 10.1016/j.cej.2021.132006.
  • Han, C. H.; Park, H. D.; Kim, S. B.; Yargeau, V.; Choi, J. W.; Lee, S. H.; Park, J. A. Oxidation of Tetracycline and Oxytetracycline for the Photo-Fenton Process: Their Transformation Products and Toxicity Assessment. Water Res. 2020, 172, 115514. DOI: 10.1016/j.watres.2020.115514.
  • Bautitz, L. R.; Nogueira, R. F. P. Degradation of Tetracycline by Photo-Fenton Process—Solar Irradiation and Matrix Effects. J. Photochem. Photobiol. A. 2007, 187(1), 33. DOI: 10.1016/j.jphotochem.2006.09.009.
  • Kumar, G.; Dutta, R. K. Sunlight Mediated Photo-Fenton Degradation of Tetracycline Antibiotic and Methylene Blue Dye in Aqueous Medium Using FeWO4/Bi2MoO6 Nanocomposite. Process Saf. Environ. Prot. 2022, 159, 862–873. Process Safe Environ.159, 862 DOI: 10.1016/j.psep.2022.01.063.
  • Zhu, X. D.; Wang, Y. J.; Sun, R. J.; Zhou, D. W. Photocatalytic Degradation of Tetracycline in Aqueous Solution by Nanosized TiO2. Chemosphere. 2013, 92(8), 925–932. Chemosphere 92, 925. DOI: 10.1016/j.chemosphere.2013.02.066.
  • Huang, X. H.; Xiao, J. F.; Yi, Q.; Li, D. J.; Liu, C. R.; Liu, Y. Construction of Core-Shell Fe3O4@GO-CoPc Photo-Fenton Catalyst for Superior Removal of Tetracycline: The Role of GO in Promotion of H2O2 to •oh Conversion. J. Environ. Manage. 2022, 308, 114613. DOI: 10.1016/j.jenvman.2022.114613.
  • Wang, Y.; Zhang, H.; Zhang, J. H.; Lu, C.; Huang, Q. Q.; Wu, J.; Liu, F. Degradation of Tetracycline in Aqueous Media by Ozonation in an Internal Loop-Lift Reactor. J. Hazard. Mater. 2011, 192, 35. DOI: 10.1016/j.jhazmat.2011.04.086.
  • Bangari, R. S.; Sinha, N. Adsorption of Tetracycline, Ofloxacin and Cephalexin Antibiotics on Boron Nitride Nanosheets from Aqueous Solution. J. Mol. Liq. 2019, 293, 111376. DOI: 10.1016/j.molliq.2019.111376.
  • Maged, A.; Iqbal, J.; Kharbish, S.; Ismael, I.; Bhatnagar, A. Tuning Tetracycline Removal from Aqueous Solution Onto Activated 2: 1 Layered Clay Mineral: Characterization, Sorption and Mechanistic Studies. J. Hazard. Mater. 2020, 384, 121320. DOI: 10.1016/j.jhazmat.2019.121320.
  • Wang, B.; Gao, B.; Fang, J. Recent Advances in Engineered Biochar Productions and Applications. Crit. Rev. Environ. Sci. Technol. 2017, 47(22), 2158. DOI: 10.1080/10643389.2017.1418580.
  • Fan, Q. Y.; Sun, J. X.; Chu, L.; Cui, L. Q.; Quan, G. X.; Yan, J. L.; Hussain, Q.; Iqbal, M. Effects of Chemical Oxidation on Surface Oxygen-Containing Functional Groups and Adsorption Behavior of Biochar. Chemosphere. 2018, 207, 33. DOI: 10.1016/j.chemosphere.2018.05.044.
  • Bo, L.; Gao, F.; Shuangbao; Bian, Y.; Liu, Z.; Dai, Y. A Novel Adsorbent Auricularia Auricular for the Removal of Methylene Blue from Aqueous Solution: Isotherm and Kinetics Studies. Environ. Technol. Inno. 2021, 23, 101576. DOI: 10.1016/j.eti.2021.101576.
  • Li, X. J.; Li, Y.; Zhang, X. L.; Zhao, X. D.; Chen, X. D.; Li, Y. T. The Metolachlor Degradation Kinetics and Bacterial Community Evolution in the Soil Bioelectrochemical Remediation. Chemosphere. 2020, 248, 125915. DOI: 10.1016/j.chemosphere.2020.125915.
  • Qu, J. H.; Yuan, Y. H.; Zhang, X. M.; Wang, L.; Tao, Y.; Jiang, Z.; Yu, H.; Dong, M.; Zhang, Y. Stabilization of Lead and Cadmium in Soil by Sulfur-Iron Functionalized Biochar: Performance, Mechanisms and Microbial Community Evolution. J. Hazard. Mater. 2022, 425, 127876. DOI: 10.1016/j.jhazmat.2021.127876.
  • Jiang, H.; Dai, Y. J. Vitamin C Modified Crayfish Shells Biochar Efficiently Remove Tetracycline from Water: A Good Medicine for Water Restoration. Chemosphere. 2023, 311, 136884. DOI: 10.1016/j.chemosphere.2022.136884.
  • Liu, X.; Shao, Z.; Wang, Y.; Liu, Y.; Wang, S.; Gao, F.; Dai, Y. New Use for Lentinus Edodes Bran Biochar for Tetracycline Removal. Environ. Res. 2023, 216, 114651. DOI: 10.1016/j.envres.2022.114651.
  • Dai, Y.; Liu, Y.; Wang, Y.; Fang, W.; Chen, Y.; Sui, Y. A Practice of Conservation Tillage in the Mollisol Region in Heilongjiang Province of China: A Mini Review. Polish J. Environ. Studies. 2023, 32(2), 1479. DOI: 10.15244/pjoes/156473.
  • Ahmed, M. J.; Theydan, S. K. Physical and Chemical Characteristics of Activated Carbon Prepared by Pyrolysis of Chemically Treated Date Stones and Its Ability to Adsorb Organics. Powder Technology. 2012, 229, 237. DOI: 10.1016/j.powtec.2012.06.043.
  • Yang, Q.; Wang, Y.; Wang, J.; Liu, F.; Hu, N.; Pei, H.; Yang, W.; Li, Z.; Suo, Y.; Wang, J. High Effective Adsorption/Removal of Illegal Food Dyes from Contaminated Aqueous Solution by Zr-MOFs (UiO-67). Food Chem. 2018, 254, 241. DOI: 10.1016/j.foodchem.2018.02.011.
  • Gao, Y.; Liu, K.; Kang, R.; Xia, J.; Yu, G.; Deng, S. A Comparative Study of Rigid and Flexible MOFs for the Adsorption of Pharmaceuticals: Kinetics, Isotherms and Mechanisms. J. Hazard. Mater. 2018, 359, 248. DOI: 10.1016/j.jhazmat.2018.07.054.
  • Cao, J.; Yang, Z. H.; Xiong, W. P.; Zhou, Y. Y.; Peng, Y. R.; Li, X.; Zhou, C. Y.; Xu, R.; Zhang, Y. R. One-Step Synthesis of Co-Doped UiO-66 Nanoparticle with Enhanced Removal Efficiency of Tetracycline: Simultaneous Adsorption and Photocatalysis. Chem. Eng. J. 2018, 353, 126. DOI: 10.1016/j.cej.2018.07.060.
  • Zango, Z. U.; Jumbri, K.; Sambudi, N. S.; Bakar, H. H.; Garba, Z. N.; Isiyaka, H. A.; Saad, B. Selective Adsorption of Dyes and Pharmaceuticals from Water by UiO Metal–Organic Frameworks: A Comprehensive Review. Polyhedron. 2021, 210, 115515. DOI: 10.1016/j.poly.2021.115515.
  • Liu, L.; Fang, W.; Yuan, M.; Li, X.; Wang, X.; Dai, Y. J. Metolachlor-Adsorption on the Walnut Shell Biochar Modified by the Fulvic Acid and Citric Acid in Water. J. Environ. Chem. Eng. 2021, 9(5), 106238. DOI: 10.1016/j.jece.2021.106238.
  • Akintola, A.; Akinlabi, E.; Masebinu, S. Biochar as an adsorbent: A short overview. Valorization of Biomass to Value-Added Commodities. In Part of the Green Energy and Technology book series, Daramola, Michael O., Ayeni, Augustine O. Eds. Springer Chem, 2020; pp 399–442.
  • Yue, Y.; Liu, Y. J.; Wang, J. C.; Vukanti, R.; Ge, Y. Enrichment of Potential Degrading Bacteria Accelerates Removal of Tetracyclines and Their Epimers from Cow Manure Biochar Amended Soil. Chemosphere. 2021, 278, 130358. DOI: 10.1016/j.chemosphere.2021.130358.
  • Duan, M. L.; Li, H. C.; Gu, J.; Tuo, X. X.; Sun, W.; Qian, X.; Wang, X. J. Effects of Biochar on Reducing the Abundance of Oxytetracycline, Antibiotic Resistance Genes, and Human Pathogenic Bacteria in Soil and Lettuce. Environ. Pollut. 2017, 224, 787. DOI: 10.1016/j.envpol.2017.01.021.
  • Huízar-Félix, A. M.; Aguilar-Flores, C.; Martínez-De-La Cruz, A.; Barandiarán, J. M.; Sepúlveda-Guzmán, S.; Cruz-Silva, R. Removal of Tetracycline Pollutants by Adsorption and Magnetic Separation Using Reduced Graphene Oxide Decorated with α-Fe2O3 Nanoparticles. Nanomaterials. 2019, 9(3), 313. DOI: 10.3390/nano9030313.
  • Yi, L.; Zuo, L.; Wei, C.; Fu, H.; Qu, X.; Zheng, S.; Xu, Z.; Guo, Y.; Li, H.; Zhu, D. Enhanced Adsorption of Bisphenol A, Tylosin, and Tetracycline from Aqueous Solution to Nitrogen-Doped Multiwall Carbon Nanotubes via Cation-π and π-π Electron-Donor-Acceptor (EDA) Interactions. Sci. Total Environ. 2020, 719, 137389. DOI: 10.1016/j.scitotenv.2020.137389.
  • Zhang, Y.; Jiao, Z.; Hu, Y.; Lv, S.; Fan, H.; Zeng, Y.; Hu, J.; Wang, M. Removal of Tetracycline and Oxytetracycline from Water by Magnetic Fe3O4@graphene. Environ. Sci. Pollut. R. 2017, 24(3), 2987. DOI: 10.1007/s11356-016-7964-7.
  • Hao, H.; Liu, G.; Wang, Y.; Shi, B.; Han, K.; Zhuang, Y.; Kong, Y. Simultaneous Cationic Cu (II)‒Anionic Sb (III) Removal by NH2-Fe3O4-NTA Core-Shell Magnetic Nanoparticle Sorbents Synthesized via a Facile One-Pot Approach. J. Hazard. Mater. 2019, 362, 246. DOI: 10.1016/j.jhazmat.2018.08.096.
  • Qu, J. H.; Wei, S. Q.; Liu, Y.; Zhang, X. M.; Jiang, Z.; Tao, Y.; Zhang, G. S.; Zhang, B.; Wang, L.; Zhang, Y. Effective Lead Passivation in Soil by Bone Char/cmc-Stabilized FeS Composite Loading with Phosphate-Solubilizing Bacteria. J. Hazard. Mater. 2022, 423, 127043. DOI: 10.1016/j.jhazmat.2021.127043.
  • Rouhani, M.; Ashrafi, S. D.; Taghavi, K.; Joubani, M. N.; Jaafari, J. Evaluation of Tetracycline Removal by Adsorption Method Using Magnetic Iron Oxide Nanoparticles (Fe3O4) and Clinoptilolite from Aqueous Solutions. J. Mol. Liq. 2022, 356, 119040. DOI: 10.1016/j.molliq.2022.119040.
  • Dehghan, A.; Zarei, A.; Jaafari, J.; Shams, M.; Khaneghah, A. M. Tetracycline Removal from Aqueous Solutions Using Zeolitic Imidazolate Frameworks with Different Morphologies: A Mathematical Modeling. Chemosphere. 2019, 217, 250. DOI: 10.1016/j.chemosphere.2018.10.166.
  • Hamoudi, S. A.; Hamdi, B.; Brendlé, J. Tetracycline Removal from Water by Adsorption on Geomaterial, Activated Carbon and Clay Adsorbents. Ecol. Chem. Eng. 2021, 28(3), 303–328. DOI: 10.2478/eces-2021-0021.
  • Garcia-Segura, S.; Ocon, J. D.; Chong, M. N. Electrochemical Oxidation Remediation of Real Wastewater Effluents - a Review. Process Saf. Envrion. 2018, 113, 48. DOI: 10.1016/j.psep.2017.09.014.
  • Liu, Y.; Cui, S.; Ma, Y.; Jiang, Q.; Zhao, X.; Cheng, Q.; Guo, L.; Jia, H.; Lin, L. Brominated Flame Retardants (BFRs) in Marine Food Webs from Bohai Sea, China. Sci. Total Environ. 2021, 772, 145036. DOI: 10.1016/j.scitotenv.2021.145036.
  • Liu, L.; Li, X.; Wang, X.; Wang, Y.; Shao, Z.; Liu, X.; Shan, D.; Liu, Z.; Dai, Y. J. Metolachlor Adsorption Using Walnut Shell Biochar Modified by Soil Minerals. Environ. Pollut. 2022, 308, 119610. DOI: 10.1016/j.envpol.2022.119610.
  • Ganiyu, S. O.; van Hullebusch, E. D.; Cretin, M.; Esposito, G.; Oturan, M. A. Coupling of Membrane Filtration and Advanced Oxidation Processes for Removal of Pharma-Ceutical Residues: A Critical Review. Sep. Purif. Technol. 2015, 156, 891. DOI: 10.1016/j.seppur.2015.09.059.
  • Soliu, O. G.; Carlos, A. M.; Manuel, A. R. Renewable Energies Driven Electrochemical Wastewater/Soil Decontamination Technologies: A Critical Review of Fundamental Concepts and Applications. Appl. Catal. B. 2020, 270, 118857. DOI: 10.1016/j.apcatb.2020.118857.
  • Nidheesh, P. V.; Kumar, A.; Babu, D. S.; Scaria, J.; Kumar, M. S. Treatment of Mixed Industrial Wastewater by Electrocoagulation and Indirect Electrochemical Oxidation. Chemosphere. 2020, 251, 126437. DOI: 10.1016/j.chemosphere.2020.126437.
  • Radjenovic, J.; Sedlak, D. L. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environ. Sci. Technol. 2015, 49(19), 11292. DOI: 10.1021/acs.est.5b02414.
  • Oturan, N.; Wu, J.; Zhang, H.; Sharma, V. K.; Oturan, M. A. Electrocatalytic Destruction of the Antibiotic Tetracycline in Aqueous Medium by Electrochemical Advanced Oxidation Processes: Effect of Electrode Materials. Appl. Catal. B. 2013, 140, 92. DOI: 10.1016/j.apcatb.2013.03.035.
  • Zhou, J. P.; Chen, Y.; Liu, S. S.; Xing, Q. J.; Dong, W. H.; Luo, X. B.; Dai, W. L.; Xiao, X.; Luo, J. M.; Rittenden, J. Electrochemical Oxidation and Advanced Oxidation Processes Using a 3D Hexagonal CO3O4 Array Anode for 4-Nitrophenol Decomposition Coupled with Simultaneous CO2 Conversion to Liquid Fuels via a Flower-Like CuO Cathode. Water Res. 2019, 150, 330. DOI: 10.1016/j.watres.2018.11.077.
  • Geng, P.; Su, J. Y.; Miles, C.; Comninellis, C.; Chen, G. H. Highly-Ordered Magnéli Ti4O7 Nanotube Arrays as Effective Anodic Material for Electro-Oxidation. Electrochim. Acta. 2015, 153, 316. DOI: 10.1016/j.electacta.2014.11.178.
  • Padilha, A. C. M.; Osorio-Guillén, J. M.; Rocha, A. R.; Dalpian, G. M. TinO2 n−1 Magnéli Phases Studied Using Density Functional Theory. Phys. Rev. B. 2014, 90(3), 035213. DOI: 10.1103/PhysRevB.90.035213.
  • Lin, H.; Niu, J. F.; Liang, S. T.; Wang, C.; Wang, Y. J.; Jin, F. Y.; Luo, Q.; Huang, Q. G. Development of Macroporous Magnéli Phase Ti4O7 Ceramic Materials: As an Efficient Anode for Mineralization of Poly- and Perfluoroalkyl Substances. Chem. Eng. J. 2018, 354, 1058. DOI: 10.1016/j.cej.2018.07.210.
  • Wang, J. B.; Zhi, D.; Zhou, H.; He, X. W.; Zhang, D. Y. Evaluating Tetracycline Degradation Pathway and Intermediate Toxicity During the Electrochemical Oxidation Over a Ti/Ti4O7 Anode. Water Res. 2018, 137, 324. DOI: 10.1016/j.watres.2018.03.030.
  • Cao, X.; Song, H. L.; Yu, C. Y.; Li, X. N. Simultaneous Degradation of Toxic Refractory Organic Pesticide and Bioelectricity Generation Using a Soil Microbial Fuel Cell. Bioresources Technol. 2015, 189, 87. DOI: 10.1016/j.biortech.2015.03.148.
  • Domínguez-Garay, A.; Esteve-Nú˜nez, A. Designing Strategies for Operating Microbial Electrochemical Systems to Clean Up Polluted Soils Under Non-Flooded Conditions. Bioelectrochemistry. 2018, 124, 142. DOI: 10.1016/j.bioelechem.2018.03.006.
  • Huang, D. Y.; Zhou, S. G.; Chen, Q.; Zhao, B.; Yuan, Y.; Zhuang, L. Enhanced Anaerobic Degradation of Organic Pollutants in a Soil Microbial Fuel Cell. J. Chem. Eng. 2011, 172(2–3), 647. DOI: 10.1016/j.cej.2011.06.024.
  • Wang, X.; Cai, Z.; Zhou, Q. X.; Zhang, Z. N.; Chen, C. H. Bioelectrochemical Stimulation of Petroleum Hydrocarbon Degradation in Saline Soil Using U-Tube Microbial Fuel Cells. Biotechnol. Bioeng. 2012, 109(2), 426. DOI: 10.1002/bit.23351.
  • Wu, Y. C.; Jing, X. X.; Gao, C. H.; Huang, Q. Y.; Cai, P. Recent Advances in Microbial Electrochemical System for Soil Bioremediation. Chemosphere. 2018, 211, 156. DOI: 10.1016/j.chemosphere.2018.07.089.
  • Li, X. J.; Wang, X.; Zhao, Q.; Wan, L. L.; Li, Y. T.; Zhou, Q. X. Carbon Fiber Enhanced Bioelectricity Generation in Soil Microbial Fuel Cells. Biosens. Bioelectron. 2016, 85, 135. DOI: 10.1016/j.bios.2016.05.001.
  • Zhao, X. D.; Li, X. J.; Li, Y.; Zhang, X. L.; Zhai, F. H.; Ren, T. Z.; Li, Y. T. Metagenomic Analysis Reveals Functional Genes in Soil Microbial Electrochemical Removal of Tetracycline. J. Hazard. Mater. 2021, 408, 124880. DOI: 10.1016/j.jhazmat.2020.124880.
  • Zhao, X. D.; Li, X. J.; Zhang, X. L.; Li, Y.; Weng, L. P.; Ren, T. Z.; Li, Y. T. Bioelectrochemical Removal of Tetracycline from Four Typical Soils in China: A Performance Assessment. Bioelectrochemistry. 2019, 129, 26. DOI: 10.1016/j.bioelechem.2019.04.016.
  • Gimsing, A. L.; Borggaard, O. K.; Bang, M. Influence of Soil Composition on Adsorption of Glyphosate and Phosphate by Contrasting Danish Surface Soils. Eur. J. Soil Sci. 2004, 55(1), 183. DOI: 10.1046/j.1365-2389.2003.00585.x.
  • Wang, Y. J.; Sun, R. J.; Xiao, A. Y.; Wang, S. Q.; Zhou, D. M. Phosphate Affects the Adsorption of Tetracycline on Two Soils with Different Characteristics. Geoderma. 2010, 156(3–4), 237. DOI: 10.1016/j.geoderma.2010.02.022.
  • Chatterjee, P.; Dessì, P.; Kokko, M.; Lakaniemi, A. M.; Lens, P. Selective Enrichment of Biocatalysts for Bioelectrochemical Systems: A Critical Review. Renew. Sustain. Energy Rev. 2019, 109, 10. DOI: 10.1016/j.rser.2019.04.012.
  • Liu, X. B.; Shi, L.; Gu, J. D. Microbial Electrocatalysis: Redox Mediators Responsible for Extracellular Electron Transfer. Biotechnol. Adv. 2018, 36(7), 1815. DOI: 10.1016/j.biotechadv.2018.07.001.
  • Chiranjeevi, P.; Patil, S. A. Strategies for Improving the Electroactivity and Specific Metabolic Functionality of Microorganisms for Various Microbial Electrochemical Technologies. Biotechnol. Adv. 2020, 39, 107468. DOI: 10.1016/j.biotechadv.2019.107468.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.