17
Views
0
CrossRef citations to date
0
Altmetric
Water Treatment

Performance assessment and economic aspects for water reclamation from UASB reactor effluent: Influence of coagulant type and membrane pore size

, &
Pages 1020-1036 | Received 18 Nov 2023, Accepted 29 Apr 2024, Published online: 15 May 2024

References

  • Khan, A. A.; Gaur, R. Z.; Tyagi, V. K.; Khursheed, A.; Lew, B.; Mehrotra, I.; Kazmi, A. A. Sustainable Options of Post Treatment of UASB Effluent Treating Sewage: A Review, Resources. Conservation And Recycling. 2011, 55, 1232–1251. DOI: 10.1016/j.resconrec.2011.05.017
  • Chernicharo, C. A. L.; van Lier, J. B.; Noyola, A.; Bressani Ribeiro, T. Anaerobic Sewage Treatment: State of the Art, Constraints and Challenges. Rev. Environ. Sci. Biotechnol. 2015, 14(4), 649–679. DOI: 10.1007/s11157-015-9377-3
  • Von Sperling, M. Introdução à qualidade das águas e ao tratamento de esgotos, 4th ed.; Editora UFMG: Belo Horizonte, MG, BR, 2014.
  • ABNT. NBR 16783 – Uso de fontes alternativas de água não potável. 2019. pp. 1–19. https://www.normas.com.br/visualizar/abnt-nbr-nm/11516/nbr16783-uso-de-fontes-alternativas-de-agua-nao-potavel-em-edificacoes
  • Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water. 2020, 12, 971. DOI: 10.3390/w12040971
  • Lapointe, M.; Papineau, I.; Peldszus, S.; Peleato, N.; Barbeau, B. Identifying the Best Coagulant for Simultaneous Water Treatment Objectives: Interactions of Mononuclear and Polynuclear Aluminum Species with Different Natural Organic Matter Fractions. J. Water Process Eng. 2021, 40, 101829. DOI: 10.1016/j.jwpe.2020.101829
  • Ahmad, A.; Kurniawan, S. B.; Ahmad, J.; Alias, J.; Marsidi, N.; Said, N. S. M.; Yusof, A. S. M.; Buhari, J.; Ramli, N. N.; Rahim, N. F. M., et al. Dosage-Based Application versus Ratio-Based Approach for Metal- and Plant-Based Coagulants in Wastewater Treatment: Merits, Limitations, and Applicability. J. Cleaner Prod. 2022, 334, 130245. 130245. DOI: 10.1016/j.jclepro.2021.130245
  • Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment, Third ed.; IWA Publishing: London, 2016.
  • Yang, Z. L.; Gao, B. Y.; Yue, Q. Y.; Wang, Y. Effect of pH on the Coagulation Performance of Al-Based Coagulants and Residual Aluminum Speciation During the Treatment of Humic Acid–Kaolin Synthetic Water. J. Hazard. Mater. 2010, 178, 596–603. DOI: 10.1016/j.jhazmat.2010.01.127
  • Diamadopoulos, E.; Megalou, K.; Georgiou, M.; Gizgis, N. Coagulation and Precipitation As Post-Treatment of Anaerobically Treated Primary Municipal Wastewater. Water Environ. Res. 2007, 79, 131–139. DOI: 10.2175/106143006x101962
  • Jaya Prakash, K.; Tyagi, V. K.; Kazmi, A. A.; Kumar, A. Post-Treatment of UASB Reactor Effluent by Coagulation and Flocculation Process. Environ. Prog. 2007, 26, 164–168. DOI: 10.1002/ep.10192
  • Singh, N. K.; Pandey, S.; Singh, S.; Singh, S.; Kazmi, A. A. Post Treatment of UASB Effluent by Using Inorganic Coagulants: Role of Zeta Potential and Characterization of Solid Residue. J. Environ. Chem. Eng. 2016, 4, 1495–1503. DOI: 10.1016/j.jece.2016.02.020
  • Davis, M. Tratamento de águas para abastecimento e residuárias – princípios e práticas, 1st ed.; Elsevier Brasil: Rio de Janeiro, RJ, BR, 2017.
  • Delhaize, E.; Ryan, P. R. Aluminum Toxicity and Tolerance in Plants. Plant Physiol. 1995, 107(2), 315–321. DOI: 10.1104/pp.107.2.315
  • Kawahara, M.; Konoha, K.; Nagata, T.; Sadakane, Y. Aluminum and Human Health: Its Intake. Bioavaila And Neurotoxicity, Biomed. Res. Trace Ele. 2007, 18, 211–220. DOI: 10.11299/brte.18.211
  • Dela Justina, M.; Rodrigues Bagnolin Muniz, B.; Mattge Bröring, M.; Costa, V. J.; Skoronski, E. Using Vegetable Tannin and Polyaluminium Chloride as Coagulants for Dairy Wastewater Treatment: A Comparative Study. J. Water Process Eng. 2018, 25, 173–181. DOI: 10.1016/j.jwpe.2018.08.001
  • Arismendi, W. A.; Ortiz-Ardila, A. E.; Delgado, C. V.; Lugo, L.; Sequeda-Castañeda, L. G.; Celis-Zambrano, C. A. Modified Tannins and Their Application in Wastewater Treatment. Water Sci. Technol. 2018, 78, 1115–1128. DOI: 10.2166/wst.2018.336
  • Lamb, L. H.; Decusati, O. G., Manufacturing Process for Quaternary Ammonium tannate, a Vegetable Coagulating/Flocculating Agent, 1 (2002) 3. https://patentimages.storage.googleapis.com/e8/7a/d1/0fa36eecc08a4b/US6478986.pdf
  • Machado, G.; dos Santos, C. A. B.; Gomes, J.; Faria, D.; Santos, F.; Lourega, R. Chemical Modification of Tannins from Acacia Mearnsii to Produce Formaldehyde Free Flocculant. Sci. Total Environ. 2020, 745, 140875. DOI: 10.1016/j.scitotenv.2020.140875
  • Sánchez-Martín, J.; Beltrán-Heredia, J.; Coco-Rivero, B. New Lab-Made Coagulant Based on Schinopsis Balansae Tannin Extract: Synthesis Optimization and Preliminary Tests on Refractory Water Pollutants. Appl. Water Sci. 2014, 4(3), 261–271. DOI: 10.1007/s13201-013-0141-y
  • Bello, A.; Virtanen, V.; Salminen, J. P.; Leiviskä, T. Aminomethylation of Spruce Tannins and Their Application as Coagulants for Water Clarification. Sep. Purif. Techn. 2020, 242, 116765. DOI: 10.1016/j.seppur.2020.116765
  • Cainglet, A.; Tesfamariam, A.; Heiderscheidt, E. Organic Polyelectrolytes As the Sole Precipitation Agent in Municipal Wastewater Treatment. J. Environ. Manage. 2020, 271, 111002. DOI: 10.1016/j.jenvman.2020.111002
  • Graham, N.; Gang, F.; Fowler, G.; Watts, M. Characterisation and Coagulation Performance of a Tannin-Based Cationic Polymer: A Preliminary Assessment, Colloids and Surfaces a. Physicochem. Eng. Aspects. 2008, 327(1–3), 9–16. DOI: 10.1016/j.colsurfa.2008.05.045
  • Özacar, M.; Şengil, I. A. Evaluation of Tannin Biopolymer As a Coagulant Aid for Coagulation of Colloidal Particles, Colloids and Surfaces a. Physicochem. Eng. Aspects. 2003, 229(1–3), 85–96. DOI: 10.1016/j.colsurfa.2003.07.006
  • Beltrán-Heredia, J.; Sánchez-Martín, J. Municipal Wastewater Treatment by Modified Tannin Flocculant Agent. Desalination. 2009, 249, 353–358. DOI: 10.1016/j.desal.2009.01.039
  • Manica, M.; Vidal, C. M. D. S.; Beber de Souza, J.; Bartiko, D.; Carvalho Neves, L.; Cé, A. Aprimoramento da Qualidade de Efluente de Reatores AnaerÓbios por CoagulaÇÃo com tanino Vegetal, Revista AIDIS de Ingeniería y Ciencias Ambientales. Rev. AIDIS Ing. Cienc. Ambient. 2019, 12(2), 234–248. DOI: 10.22201/iingen.0718378xe.2019.12.2.61223
  • Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A Review on Anaerobic Membrane Bioreactors: Applications, Membrane Fouling and Future Perspectives. Desalination. 2013, 314, 169–188. DOI: 10.1016/j.desal.2013.01.019
  • Subtil, E. L.; Hespanhol, I.; Mierzwa, J. C. Submerged Membrane Bioreactor (sMBR): A Promising Alternative to Wastewater Treatment for Water Reuse, Ambiente E Agua. Rev. ambiente água. 2013, 8(3), 17–35. DOI: 10.4136/ambi-agua.1230
  • Mierzwa, J. C.; da Silva, M. C. C.; Veras, L. R. V.; Subtil, E. L.; Rodrigues, R.; Li, T.; Landenberger, K. R. Enhancing Spiral-Wound Ultrafiltration Performance for Direct Drinking Water Treatment Through Operational Procedures Improvement: A Feasible Option for the Sao Paulo Metropolitan Region. Desalination. 2012, 307, 68–75. DOI: 10.1016/j.desal.2012.09.006
  • Lin, C. F.; Yu-Chen Lin, A.; Sri Chandana, P.; Tsai, C. Y. Effects of Mass Retention of Dissolved Organic Matter and Membrane Pore Size on Membrane Fouling and Flux Decline. Water Res. 2009, 43, 389–394. DOI: 10.1016/j.watres.2008.10.042
  • Noyola, A.; De Los Cobos-Vasconcenlos, D.; Rodríguez-Medina, A. Post Treatment of Anaerobic Effluents by Membrane Filtration. In Post Treatments of Anaerobically Treated Effluents; IWA Publishing: 2019; pp. 93–122. doi:10.2166/9781780409740_0093
  • Chon, K.; Lee, K.; Kim, I. S.; Jang, A. Performance Assessment of a Submerged Membrane Bioreactor Using a Novel Microbial Consortium. Bioresour. Technol. 2016, 210, 2–10. DOI: 10.1016/j.biortech.2016.01.013
  • Zhang, D.; Trzcinski, A. P.; Luo, J.; Stuckey, D. C.; Tan, S. K. Fate and Behavior of Dissolved Organic Matter in a Submerged Anoxic-Aerobic Membrane Bioreactor (MBR. Environ. Sci. Pollut. Res. 2018, 25(5), 4289–4302. DOI: 10.1007/s11356-017-0586-x
  • Zielińska, M.; Galik, M. Use of Ceramic Membranes in a Membrane Filtration Supported by Coagulation for the Treatment of Dairy Wastewater, Water, Air. & Soil Pollution. 2017, 228(5), 173. DOI: 10.1007/s11270-017-3365-x
  • Sánchez, A. S. Technical and Economic Feasibility of Phosphorus Recovery from Wastewater in São Paulo’s Metropolitan Region. J. Water Process Eng. 2020, 38, 101537. DOI: 10.1016/j.jwpe.2020.101537
  • Ljunggren, M. Micro Screening in Wastewater Treatment – an Overview. VATTEN. 2006, 62, 171–177.
  • Rusten, B.; Ødegaard, H. Evaluation and Testing of Fine Mesh Sieve Technologies for Primary Treatment of Municipal Wastewater. Water Sci. Technol. 2006, 54, 31–38. DOI: 10.2166/wst.2006.710
  • Shammas, N. K. Coagulation and Flocculation. In Physicochemical Treatment Processes, Wang, L. K., Hung, Y.-T. Shammas, N. K., (Eds.); Humana Press: Totowa, NJ, 2005; pp. 103–139. DOI: 10.1385/1-59259-820-x:103
  • Subtil, E. L.; Mierzwa, J. C.; Hespanhol, I. Comparison Between a Conventional Membrane Bioreactor (C-MBR) and a Biofilm Membrane Bioreactor (BF-MBR) for Domestic Wastewater Treatment. Braz. J. Chem. Eng. 2014, 31, 683–691. DOI: 10.1590/0104-6632.20140313s00002890
  • Vatanpour, V.; Madaeni, S. S.; Moradian, R.; Zinadini, S.; Astinchap, B. Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite. J. Membr. Sci. 2011, 375, 284–294. DOI: 10.1016/j.memsci.2011.03.055
  • Park, H.-D.; Chang, I.-S.; Lee, K.–J. Principles of Membrane Bioreactors for Wastewater Treatment; CRC Press, Taylor & Francis Group: Boca Raton London New York, 2015.
  • APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, D.C, 2012.
  • Almeida, R. D. Análise tecnoeconômica do tratamento de lixiviado de aterro sanitário. Revista Ineana. 2020, 6–27. DOI: 10.13140/RG.2.2.17352.06408
  • Ye, C.; Wang, D.; Shi, B.; Yu, J.; Qu, J.; Edwards, M.; Tang, H. Alkalinity Effect of Coagulation with Polyaluminum Chlorides: Role of Electrostatic Patch, Colloids and Surfaces a. Physicochem. Eng. Aspects. 2007, 294(1–3), 163–173. DOI: 10.1016/j.colsurfa.2006.08.005
  • Yan, M.; Wang, D.; Yu, J.; Ni, J.; Edwards, M.; Qu, J. Enhanced Coagulation with Polyaluminum Chlorides: Role of pH/Alkalinity and Speciation. Chemosphere. 2008, 71, 1665–1673. DOI: 10.1016/j.chemosphere.2008.01.019
  • Trinh, T. K.; Kang, L. S. Coagulation of Phosphorus: Effects of Al(iii) Species (Al a, Al B, and Al C). Desalinat. Water Treat. 2015, 53(2), 485–492. DOI: 10.1080/19443994.2013.841106
  • Jabin, S.; Kapoor, J. K. Role of Polyelectrolytes in the Treatment of Water and Wastewater. In Sustainable Green Chemical Processes and Their Allied Applications, Inamuddin, A. A., (Ed.); Springer International Publishing: Cham, 2020; pp. 289–309. DOI: 10.1007/978-3-030-42284-4_10
  • Wang, J.; Guan, J.; Santiwong, S. R.; Waite, T. D. Effect of Aggregate Characteristics Under Different Coagulation Mechanisms on Microfiltration Membrane Fouling. Desalination. 2010, 258, 19–27. DOI: 10.1016/j.desal.2010.03.056
  • Hu, H.; Ding, L.; Geng, J.; Huang, H.; Xu, K.; Ren, H. Effect of Coagulation on Dissolved Organic Nitrogen (DON) Bioavailability in Municipal Wastewater Effluents. J. Environ. Chem. Eng. 2016, 4, 2536–2544. DOI: 10.1016/j.jece.2016.04.036
  • Jiang, J. Q.; Graham, N. J. D. Pre-Polymerised Inorganic Coagulants and Phosphorus Removal by Coagulation – a Review. Water SA. 1998, 24, 237–244.
  • Hameed, Y. T.; Idris, A.; Hussain, S. A.; Abdullah, N. A Tannin-Based Agent for Coagulation and Flocculation of Municipal Wastewater: Chemical Composition, Performance Assessment Compared to Polyaluminum Chloride, and Application in a Pilot Plant. J. Environ. Manage. 2016, 184, 494–503. DOI: 10.1016/j.jenvman.2016.10.033
  • Yoon, S.-H. Membrane Bioreactor Processes: Principles and Applications; CRC Press: Boca Raton, 2016.
  • Ji, J.; Sakuma, S.; Ni, J.; Chen, Y.; Hu, Y.; Ohtsu, A.; Chen, R.; Cheng, H.; Qin, Y.; Hojo, T., et al. Application of Two Anaerobic Membrane Bioreactors with Different Pore Size Membranes for Municipal Wastewater Treatment. Sci. Total Environ. 2020, 745, 140903. DOI: 10.1016/j.scitotenv.2020.140903
  • Marais, S. S.; Ncube, E. J.; Msagati, T. A. M.; Mamba, B. B.; Nkambule, T. T. I. Comparison of Natural Organic Matter Removal by Ultrafiltration, Granular Activated Carbon Filtration and Full Scale Conventional Water Treatment. J. Environ. Chem. Eng. 2018, 6(5), 6282–6289. DOI: 10.1016/j.jece.2018.10.002
  • Mai, D. T.; Kunacheva, C.; Stuckey, D. C. A Review of Posttreatment Technologies for Anaerobic Effluents for Discharge and Recycling of Wastewater. Crit. Rev. Environ. Sci. Technol. 2018, 48, 167–209. DOI: 10.1080/10643389.2018.1443667
  • Ragio, R. A.; Miyazaki, L. F.; Oliveira, M. A. D.; Coelho, L. H. G.; Bueno, R. D. F.; Subtil, E. L. Pre-Coagulation Assisted Ultrafiltration Membrane Process for Anaerobic Effluent. J. Environ. Chem. Eng. 2020, 8(5), 104066. DOI: 10.1016/j.jece.2020.104066
  • Gouveia, J.; Plaza, F.; Garralon, G.; Fdz-Polanco, F.; Peña, M. Long–Term Operation of a Pilot Scale Anaerobic Membrane Bioreactor (AnMBR) for the Treatment of Municipal Wastewater Under Psychrophilic Conditions. Bioresour. Technol. 2015, 185, 225–233. DOI: 10.1016/j.biortech.2015.03.002
  • Fleischer, E. J.; Broderick, T. A.; Daigger, G. T.; Fonseca, A. D.; Holbrook, R. D.; Murthy, S. N. Evaluation of Membrane Bioreactor Process Capabilities to Meet Stringent Effluent Nutrient Discharge Requirements. Water Environ. Res. 2005, 77, 162–178. DOI: 10.2175/106143005x41735
  • Gonçalves, J.; Baldovi, A.; Chyoshi, B.; Zanata, L.; Moyano, A.; Subtil, E. L.; Coelho, L. H. Effect of Aluminum Sulfate and Cationic Polymer Addition in Single-Stage Submerged Membrane Bioreactors (SMBRs): Orthophosphate Removal and Sludge Filterability Improvement. Braz. J. Chem. Eng. 2019, 36(2), 693–703. DOI: 10.1590/0104-6632.20190362s20180128
  • Bae, T. H.; Tak, T. M. Interpretation of Fouling Characteristics of Ultrafiltration Membranes During the Filtration of Membrane Bioreactor Mixed Liquor. J. Membr. Sci. 2005, 264, 151–160. DOI: 10.1016/j.memsci.2005.04.037
  • Howe, K. J.; Clark, M. M. Effect of Coagulation Pretreatment on Membrane Filtration Performance. Journal – American Water Works Association. 2006, 98(4), 133–146. DOI: 10.1002/j.1551-8833.2006.tb07641.x
  • Di Bella, G.; Di Trapani, D. A Brief Review on the Resistance-In-Series Model in Membrane Bioreactors (MBRs. Membranes. 2019, 9(2), 29. DOI: 10.3390/membranes9020024
  • Ragio, R. A.; Arantes, C. C.; García, J.; Subtil, E. L. Assessment of Natural Tannin-Based Coagulant for Effective Ultrafiltration (UF) of UASB Effluent: Fouling Mechanisms, Pollutant Removal and Water Reclamation Feasibility. J. Environ. Chem. Eng. 2023, 11, 109778. DOI: 10.1016/j.jece.2023.109778
  • He, Y.; Xu, P.; Li, C.; Zhang, B. High-Concentration Food Wastewater Treatment by an Anaerobic Membrane Bioreactor. Water Res. 2005, 39, 4110–4118. DOI: 10.1016/j.watres.2005.07.030
  • Jin, L.; Ong, S. L.; Ng, H. Y. Comparison of Fouling Characteristics in Different Pore-Sized Submerged Ceramic Membrane Bioreactors. Water Res. 2010, 44, 5907–5918. DOI: 10.1016/j.watres.2010.07.014
  • Guo, T.; Englehardt, J.; Wu, T. Review of Cost versus Scale: Water and Wastewater Treatment and Reuse Processes. Water Sci. Technol. 2014, 69, 223–234. DOI: 10.2166/wst.2013.734
  • Lebron, Y. A. R.; Moreira, V. R.; Furtado, T. P. B.; da Silva, S. C.; Lange, L. C.; Amaral, M. C. S. Vinasse Treatment Using Hybrid Tannin-Based Coagulation-Microfiltration-Nanofiltration Processes: Potential Energy Recovery, Technical and Economic Feasibility Assessment. Sep. Purif. Techn. 2020, 248, 117152. DOI: 10.1016/j.seppur.2020.117152
  • Pérez, G.; Gómez, P.; Ortiz, I.; Urtiaga, A. Techno-Economic Assessment of a Membrane–Based Wastewater Reclamation Process. Desalination. 2022, 522, 115409. DOI: 10.1016/j.desal.2021.115409

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.