60
Views
0
CrossRef citations to date
0
Altmetric
Adsorption

Removal of arsenic (V) from water using arsenic-imprinted nanoparticles

ORCID Icon, ORCID Icon & ORCID Icon
Pages 967-983 | Received 21 Jan 2024, Accepted 20 May 2024, Published online: 31 May 2024

References

  • Mohan, D.; Pittman, J. C. U. Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. J. Hazard. Mater. 2007, 142(1–2), 1–53. DOI: 10.1016/j.jhazmat.2007.01.006.
  • Smedley, P. L.; Kinniburgh, D. G. A Review of the Source, Behavior and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17(5), 517–568. DOI: 10.1016/S0883-2927(02)00018-5.
  • Mudhoo, A.; Sharma, S. K.; Garg, V. K.; Tseng, C. H. Arsenic: An Overview of Applications, Health, and Environmental Concerns and Removal Processes. Crit. Rev. Environ. Sci. Technol. 2011, 41(5), 435–519. DOI: 10.1080/10643380902945771.
  • Shen, S.; Li, X. F.; Cullen, W. R.; Weinfeld, M.; Le, X. C. Arsenic Binding to Proteins. Chem. Rev. 2013, 113(10), 7769–7792. DOI: 10.1021/cr300015c.
  • Li, Z.; Yang, Q.; Yang, Y.; Xie, C.; Ma, H. Hydrogeochemical Controls on Arsenic Contamination Potential and Health Threat in an Intensive Agricultural Area, Northern China. Environ. Pollut. 2019, 256, 113455. DOI: 10.1016/j.envpol.2019.113455.
  • Weerasundara, L.; Ok, Y. S.; Bundschuh, J. Selective Removal of Arsenic in Water: A Critical Review. Environ. Pollut. 2021, 268, 115668. DOI: 10.1016/j.envpol.2020.115668.
  • Dinesh, M.; Charles, U. P. Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. J. Hazard. Mater. 2007, 142(1–2), 1–53. DOI: 10.1016/j.jhazmat.2007.01.006.
  • Rathi, B. S.; Kumar, P. S. A Review on Sources, Identification and Treatment Strategies for the Removal of Toxic Arsenic from Water System. J. Hazard. Mater. 2021, 418, 126299. DOI: 10.1016/j.jhazmat.2021.126299.
  • Makavipour, F.; Pashley, R. M.; Rahman, A.; Fm, M. Low-Level Arsenic Removal from Drinking Water. Global Challenges; (Hoboken, NJ), 2018. DOI: 10.1002/gch2.201700047.
  • Awual, M. R.; Hossain, M. A.; Shenashen, M. A.; Yaita,T.; Suzuki , S.; Jyo, A. Evaluating of Arsenic(v) Removal from Water by Weak-Base Anion Exchange Adsorbents. Environ. Sci. Pollut. Res. 2013, 20(1), 421–430. DOI: 10.1007/s11356-012-0936-7.
  • Samah, N. A. Comparative Study Between Imprinted Polymer Technology and Economic Adsorption Methodologies for the Removal of Arsenic Species from Water. Curr. Sci. Technol. 2021. DOI: 10.15282/cst.v1i2.7234.
  • Chen, M.; Shafer-Peltier, K.; Randtke, S. J.; Peltier, E. Modeling Arsenic (V) Removal from Water by Micellar Enhanced Ultrafiltration in the Presence of Competing Anions. Chemosphere 2018, 213, 285–294. DOI: 10.1016/j.chemosphere.2018.09.046.
  • Kirisenage, P. M.; Zulqarnain, S. M.; Myers, J. L.; Fahlman, B. D.; Mueller, A.; Marquez, I. Development of Adsorptive Membranes for Selective Removal of Contaminants in Water. Polymers. 2022, 14(15), 3146. DOI: 10.3390/polym14153146.
  • Wang, Y.; Tsang, D. C. W. Effects of Solution Chemistry on Arsenic(v) Removal by Low-Cost Adsorbents. J. Environ. Sci. 2013, 25(11), 2291–2298. DOI: 10.1016/S1001-0742(12)60296-4.
  • Nodehi, R.; Shayesteh, H.; Kelishami, A. R. Enhanced Adsorption of Congo Red Using Cationic Surfactant Functionalized Zeolite Particles. Microchem. J. 2020, 153, 104281. DOI: 10.1016/j.microc.2019.104281.
  • Kyzas, G. Z.; Matis, K. A. Nanoadsorbents for Pollutants Removal: A Review. J. Mol. Liq. 2015, 203, 159–168. DOI: 10.1016/j.molliq.2015.01.004.
  • Arora, R. Nano Adsorbents for Removing the Arsenic from Waste/Ground Water for Energy and Environment Management- a Review. Materials Today: Proceedings, 2021. DOI: 10.1016/j.matpr.2020.12.546.
  • Habuda-Stanić, M.; Nujić, M. Arsenic Removal by Nanoparticles: A Review. Environ. Sci. Pollut. Res. 2015, 22(11), 8094–8123. DOI: 10.1007/s11356-015-4307-z.
  • Sneh Lata, S. R. S. Removal of Arsenic from Water Using Nano Adsorbents and Challenges: A Review. J. Environ. Manage. 2016, 166, 387–406. DOI: 10.1016/j.jenvman.2015.10.039.
  • Jinadasa, K. K.; Peña-Vázquez, E.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. New Adsorbents Based on Imprinted Polymers and Composite Nanomaterials for Arsenic and Mercury Screening/Speciation: A Review. Microchem. J. 2020, 156, 104886. DOI: 10.1016/j.microc.2020.104886.
  • Akgönüllü, S.; Yavuz, H.; Denizli, A. Development of Gold Nanoparticles Decorated Molecularly Imprinted–Based Plasmonic Sensor for the Detection of Aflatoxin M1 in Milk Samples; Chemosensors, 2021. DOI: 10.3390/chemosensors9120363.
  • Rosellini, E.; Barbani, N.; Giusti, P.; Ciardelli, G.; Cristallini, C. Novel Bioactive Scaffolds with Fibronectin Recognition Nanosites Based on Molecular Imprinting Technology. J. Appl. Polym. Sci. 2010, 118(6), 3236–3244. DOI: 10.1002/app.32622.
  • Yıldırım, M.; Acet, Ö.; Yetkin, D.; Acet, B. Ö.; Karakoc, V.; Odabası, M. Anti-Cancer Activity of Naringenin Loaded Smart Polymeric Nanoparticles in Breast Cancer. J. Drug Delivery Sci. Technol. 2022, 74, 103552. DOI: 10.1016/j.jddst.2022.103552.
  • Tolkou, A. K.; Kyzas, G. Z.; Katsoyiannis, I. A. Arsenic(iii) and Arsenic(v) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments. Sustainability 2022, 14(9), 5222. DOI: 10.3390/su14095222.
  • Zhu, F.; Lu, Y.; Ren, T.; He, S.; Gao, Y. Synthesis of Ureido-Functionalized Cr (VI) Imprinted Polymer: Adsorption Kinetics and Thermodynamics Studies. Desalinat. Water Treat. 2017, 100, 126–134. DOI: 10.5004/dwt.2017.21683.
  • Zhu, F.; Lu, H.; Lu, Y. Effective Solid Phase Extraction for the Enrichment of P-Nitrophenol in Water Using Microwave-Assisted Synthesized Fly Ash@ P-Nitrophenol Surface Molecular Imprinted Polymer. J. Mater. Sci. 2023, 58(10), 4399–4415. DOI: 10.1007/s10853-023-08302-z.
  • Zhu, F.; Lu, Y.; Li, L. Synthesis, Adsorption Kinetics and Thermodynamics of Ureido-Functionalized Pb (II) Surface Imprinted Polymers for Selective Removal of Pb (II) in Wastewater. Rsc. Adv. 2016, 6(112), 111120–111128. DOI: 10.1039/C6RA18736F.
  • Yan, H.; Rui, W. Review on Fundamentals, Preparations and Applications of Imprinted Polymers; Current Organic Chemistry, 2018. DOI: 10.1016/j.jddst.2022.103552.
  • Fu, J.; Chen, L.; Li, J.; Zhang, Z. Current Status and Challenges of Ion Imprinting J. Mater. Chem. A. 2015, 3(26), 13598–13627. DOI: 10.1039/C5TA02421H.
  • Hande, P. E.; Samui, A. B.; Kulkarni, P. S. Highly Selective Monitoring of Metals by Using Ion-Imprinted Polymers. Environ. Sci. Pollut. Res. Int. 2015, 22(10), 7375–7404. DOI: 10.1007/s11356-014-3937-x.
  • Lazar, M. M.; Ghiorghita, C. A.; Dragan, E. S.; Humelnicu, D.; Dinu, M. V. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution; Molecules, 2023. DOI: 10.3390/molecules28062798.
  • Türkmen, D.; Bereli, N.; E, Ç. M.; Shaikh, H.; Akgöl, S.; Denizli, A. Molecular Imprinted Magnetic Nanoparticles for Controlled Delivery of Mitomycin C. Artificial Cells, Nanomedicine, and Biotechnology. Artif. Cells Nanomed. Biotechnol. 2014, 42(5), 316–322. DOI: 10.3109/21691401.2013.823094.
  • Kosnett, M. J. The Role of Chelation in the Treatment of Arsenic and Mercury Poisoning. J. Med. Toxicol 2013, 9(4), 347–354. DOI: 10.1007/s13181-013-0344-5.
  • Picón, D.; Torasso, N.; Baudrit, J. R. V.; Cerveny, S.; Goyanes, S. Bio-Inspired Membranes for Adsorption of Arsenic via Immobilized L-Cysteine in Highly Hydrophilic Electrospun Nanofibers. Chem. Eng. Res. Des. 2022, 185, 108–118. DOI: 10.1016/j.cherd.2022.06.042.
  • Tripathy, M.; Padhiari, S.; Hota, G. L-Cysteine-Functionalized Mesoporous Magnetite Nanospheres: Synthesis and Adsorptive Application Toward Arsenic Remediation. J. Chem. Eng. Data. 2020, 65(8), 3906–3919. DOI: 10.1021/acs.jced.0c00250.
  • Türkmen, D.; Türkmen M, Ö.; Akgönüllü, S.; Denizli, A. Development of Ion Imprinted Based Magnetic Nanoparticles for Selective Removal of Arsenic (III) and Arsenic (V) from Wastewater. Sep. Sci. Technol. 2022. DOI: 10.1080/01496395.2021.1956972.
  • Wu, X.; Shen, J.; Ye, T.; Cao, H.; Yuan, M.; Yin, F.; Hao, L.; Zhang, C.; Xu, F. Thiourea Derivatives Acting As Functional Monomers of As(iii) Molecular Imprinted Polymers: A Theoretical and Experimental Study on Binding Mechanisms. SSRN J 2022. DOI: 10.2139/ssrn.3977443.
  • Teixeira, M. C.; Ciminelli, V. S. T.; Dantas, M. S. S.; Diniz, S. F.; Duarte, H. A. Raman Spectroscopy and DFT Calculations of As(iii) Complexation with a Cysteine-Rich Biomaterial. J. Colloid. Interface. Sci. 2007, 315(1), 128–134. DOI: 10.1016/j.jcis.2007.06.041.
  • Denizli, A.; Garipcan, B.; Karabakan, A.; Say, R.; Emir, S.; Patır, S. Metal-Complexing Ligand Methacryloylamidocysteine Containing Polymer Beads for Cd (II) Removal. Sep. Purif. Techn. 2003, 30(1), 3–10. DOI: 10.1016/S1383-5866(02)00094-1.
  • Perçin, I.; Karakoç, V.; Ergün, B.; Denizli, A. Metal‐Immobilized Magnetic Nanoparticles for Cytochrome C Purification from Rat Liver. Biotech. App. Biochem. 2016, 63(1), 31–40. DOI: 10.1002/bab.1347.
  • Labrou, N. E.; Clonis, Y. D. The Interaction of Candida Boidinii Formate Dehydrogenase with a New Family of Chimeric Biomimetic Dye-Ligands. Archives of Biochemistry and Biophysics. Archiv. Biochem. Biophys. 1995, 316(1), 169–178. DOI: 10.1006/abbi.1995.1025.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38(11), 2221–2295. DOI: 10.1021/ja02268a002.
  • Freundlich, H. Über Die Adsorption in Lösungen. Zeitschrift für Phys. Chemie 1906, 57U(1), 385–470. DOI: 10.1515/zpch-1907-5723.
  • Chen, X. Modeling of Experimental Adsorption Isotherm Data. Information 2015, 6(1), 14–22. DOI: 10.3390/info6010014.
  • Liu, B.; Wang, D.; Li, H.; Xu, Y.; Zhang, L. As (III) Removal from Aqueous Solution Using α-Fe2O3 Impregnated Chitosan Beads with as (III) As Imprinted Ions. Desalination. 2011, 272(1–3), 286–292. DOI: 10.1016/j.desal.2011.01.034.
  • Wang, J.; Xu, W.; Chen, L.; Huang, X.; Liu, J. Preparation and Evaluation of Magnetic Nanoparticles Impregnated Chitosan Beads for Arsenic Removal from Water. Chem. Eng. J. 2014, 251, 25–34. DOI: 10.1016/j.cej.2014.04.061.
  • Sadani, M.; Rasolevandi, T.; Azarpira, H.; Mahvi, A. H.; Ghaderpoori, M.; Mohseni, S. M.; Atamaleki, A. Arsenic Selective Adsorption Using a Nanomagnetic Ion Imprinted Polymer: Optimization, Equilibrium, and Regeneration Studies. J. Mol. Liq. 2020, 317, 114246. DOI: 10.1016/j.molliq.2020.114246.
  • Song, X.; Li, L.; Geng, Z.; Zhou, L.; Ji, L. Effective and Selective Adsorption of As(iii) via Imprinted Magnetic Fe3O4/HTCC Composite Nanoparticles. J. Environ. Chem. Eng. 2017, 5(1), 16–25. DOI: 10.1016/j.jece.2016.11.016.
  • Mankar, J. S.; Sharma, M. D.; Krupadam, R. J. Molecularly Imprinted Nanoparticles (Nanomips): An Efficient New Adsorbent for Removal of Arsenic from Water. J. Mater. Sci. 2020, 55(16), 6810–6825. DOI: 10.1007/s10853-020-04377-0.
  • Yin, F.; Liu, X.; Wu, M.; Yang, H.; Wu, X.; Hao, L.; Yu, J.; Wang, P.; Xu, F. “One-pot” Synthesis of Mesoporous Ion Imprinted Polymer for Selective Adsorption and Detection of as (V) in Aqueous Phase via Cooperative Extraction Mechanism. Microchem. J. 2022, 177, 107272. DOI: 10.1016/j.microc.2022.107272.
  • Yin, F.; Mo, Y.; Liu, X.; Pang, Y.; Wu, X.; Hao, L.; Yu, J.; Xu, F. Surface-Imprinted Polymer Microspheres for Rapid and Selective Adsorption of as (V) Ions from the Aqueous Phase. Mater. Chem. Phys. 2022, 281, 125687. DOI: 10.1016/j.matchemphys.2021.125687.
  • Önnby, L.; Pakade, V.; Mattiasson, B.; Kirsebom, H. Polymer Composite Adsorbents Using Particles of Molecularly Imprinted Polymers or Aluminium Oxide Nanoparticles for Treatment of Arsenic Contaminated Waters. Water Res. 2012, 46(13), 4111–4120. DOI: 10.1016/j.watres.2012.05.028.
  • Fang, L.; Min, X.; Kang, R.; Yu, H.; Pavlostathis, S. G.; Luo, X. Development of an Anion Imprinted Polymer for High and Selective Removal of Arsenite from Wastewater. Sci. Total Environ. 2018, 639, 110–117. DOI: 10.1016/j.scitotenv.2018.05.103.
  • Abu Samah, N.; Mat Rosli, N. A.; Abdul Manap, A. H.; Abdul Aziz, Y. F.; Mohd Yusoff, M. Synthesis Characterization of Ion Imprinted Polymer for Arsenic Removal from Water: A Value Addition to the Groundwater Resources. Chem. Eng. J. 2020, 394, 124900. DOI: 10.1016/j.cej.2020.124900.
  • Chi, Z.; Zhu, Y.; Liu, W.; Huang, H.; Li, H. Selective Removal of as (III) Using Magnetic Graphene Oxide Ion-Imprinted Polymer in Porous Media: Potential Effect of External Magnetic Field. J. Envir. Chem. Engi. 2021, 9(4), 105671. DOI: 10.1016/j.jece.2021.105671.
  • Fan, H. T.; Fan, X.; Li, J.; Guo, M.; Zhang, D.; Yan, F.; Sun, T. Selective Removal of Arsenic(v) from Aqueous Solution Using a Surface-Ion-Imprinted Amine-Functionalized Silica Gel Sorbent. Ind. Eng. Chem. Res. 2012, 51(14), 5216–5223. DOI: 10.1021/ie202655x.
  • Jalilian, R.; Shahmari, M.; Taheri, A.; Gholami, K. Ultrasonic-Assisted Micro Solid Phase Extraction of Arsenic on a New Ion-Imprinted Polymer Synthesized from Chitosan-Stabilized Pickering Emulsion in Water, Rice and Vegetable Samples. Ultrason. Sonochem. 2020, 61, 104802. DOI: 10.1016/j.ultsonch.2019.104802.
  • Pan, M.; Zhu, Z.; Zhu, L.; Qiu, Y.; Zhang, R. Synthesis of Magnetic as (V)-Imprinted Polymers and Their Adsorption Performances for Arsenate in Water Solutions. Fresenius Environ. Bull. 2014, 23, 122–129.
  • JagiraniMS, B. A.; Mahesar, S. A.; Mahesar, S. A.; Kumar, A.; Mustafai, F. A.; Bhanger, M. I. Preparation of Novel Arsenic-Imprinted Polymer for the Selective Extraction and Enhanced Adsorption of Toxic As3+ Ions from the Aqueous Environment. Polym. Bull. 2019, 77(10), 5261–5279. DOI: 10.1007/s00289-019-03008-2.
  • Bektaş, H.; Andac, A. M.; Çetin, K.; Qureshi, T.; Denizli, A. Development of Ion-Imprinted Cryogels for Selective Removal of Arsenic from Environmental Waters. Biointerface Res. Appl. Chemistry 2019. DOI: 10.33263/BRIAC94.119125.
  • Karakoç, V.; Erçağ, E. New Generation Nanoadsorbents and Conventional Techniques for Arsenic Removal from Waters. J. Turkish Chem. Society Section A: Chem. 2024, 11(2), 845–868. DOI: 10.18596/jotcsa.1438869.
  • Wang, Y.; Tsang, D. C. Effects of Solution Chemistry on Arsenic (V) Removal by Low-Cost Adsorbents. J. Environ. Sci 2013, 25(11), 2291–2298. DOI: 10.1016/S1001-0742(12)60296-4.
  • Savina, I. N.; English, C. J.; Whitby, R. L.; Zheng, Y.; Leistner, A.; Mikhalovsky, S. V.; Cundy, A. B. High Efficiency Removal of Dissolved as (III) Using Iron Nanoparticle-Embedded Macroporous Polymer Composites. J. Hazard. Mater. 2011, 192(3), 1002–1008. DOI: 10.1016/j.jhazmat.2011.06.003.
  • Zheng, Y. M.; Yu, L.; Wu, D.; Chen, J. P. Removal of Arsenite from Aqueous Solution by a Zirconia Nanoparticle. Chem. Eng. J. 2012, 188, 15–22. DOI: 10.1016/j.cej.2011.12.054.
  • Yin, L.; Liu, L.; Lin, S.; Owens, G.; Chen, Z. Synthesis and Characterization of Nanoscale Zero-Valent Iron (nZVI) as an Adsorbent for the Simultaneous Removal of As (III) and As (V) from Groundwater. J. Water Process Eng. 2022, 47, 102677. DOI: 10.1016/j.jwpe.2022.102677.
  • Vitela-Rodriguez, A. V.; Rangel-Mendez, J. R. Arsenic Removal by Modified Activated Carbons with Iron Hydro (Oxide) Nanoparticles. J. Environ. Manage. 2013, 114, 225–231. DOI: 10.1016/j.jenvman.2012.10.004.
  • Bhaumik, M.; Noubactep, C.; Gupta, V. K.; Ri, M.; Maity, A. Polyaniline/Fe0 Composite Nanofibers: An Excellent Adsorbent for the Removal of Arsenic from Aqueous Solutions. Chem. Eng. J. 2015, 271, 135–146. DOI: 10.1016/j.cej.2015.02.079.
  • Min, L. L.; Zhong, L. B.; Zheng, Y. M.; Liu, Q.; Yuan, Z. H.; Yang, L. M. Functionalized Chitosan Electrospun Nanofiber for Effective Removal of Trace Arsenate from Water. Sci. Rep. 2016, 6(1), 32480. DOI: 10.1038/srep32480.
  • Chai, F.; Wang, R.; Yan, L.; Li, G.; Cai, Y.; Xi, C. Facile Fabrication of pH-Sensitive Nanoparticles Based on Nanocellulose for Fast and Efficient As (V) Removal. Carbohydr. Polym. 2020, 245, 116511. DOI: 10.1016/j.carbpol.2020.116511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.