36
Views
0
CrossRef citations to date
0
Altmetric
Particle Separation

Research progress on compound force field separation equipment of fine particles

, , &
Pages 1037-1067 | Received 01 Mar 2024, Accepted 28 May 2024, Published online: 18 Jun 2024

References

  • Abramov, A. A. Theoretical and Technological Developments in Mineral Beneficiation and Multipurpose Utilization. J. Min. Sci. 2012, 48(1), 177–187. DOI: 10.1134/S1062739148010194.
  • Zhai, M.; Hu, R.; Wang, Y.; Jiang, S.; Wang, R.; Li, J.; Chen, H.; Yang, Z.; Lü, Q.; Qi, T., et al. Mineral Resource Science in China: Review and Perspective. Geogr. sustainablility. 2021, 2(2), 107–114. DOI: 10.1016/j.geosus.2021.05.002.
  • Zhu, J. China Iron Ore Beneficiation Technology; Metallurgical Industry Press: Beijing, China, 1994.
  • Chao, F. Progress and Prospects of Efficient and Clean Utilisation of Mineral Resources in China. Agri. Dev. Equip. 2018, 203(11), 82. DOI: 10.3969/j.issn.1007–2802.2014.01.002.
  • Crowson, P. Mining During the Next 25 Years: Issues and Challenges. Nat. Reso. Forum. 1997, 21(4), 231–238. DOI: 10.1111/j.1477-8947.1997.tb00697.x.
  • Rejith, R. G.; Sundararajan, M. Combined Magnetic, Electrostatic, and Gravity Separation Techniques for Recovering Strategic Heavy Minerals from Beach Sands. Marine. Geores. Geotechnol. 2018, 36(8), 959–965. DOI: 10.1080/1064119X.2017.1403523.
  • Xiao, X.; Zhang, G. Review on Enhancing Separation of Fine–Disseminated Minerals by Selective Disintegration. China Min. Mag. 2010, 19(12), 62–64. DOI: 10.3969/j.issn.1004–4051.2010.12.018.
  • Sivamohan, R. The Problem of Recovering Very Fine Particles in Mineral Processing — a Review. Int. J. Minser. Process. 1990, 28(3–4), 247–288. DOI: 10.1016/0301-7516(90)90046-2.
  • Ge, Y.; Hou, J.; Yu, J. Advanced in Micro–Fine Mineral Flotation Technology. Metal Mine 2010, 414(12), 90–106.
  • Li, F. J.; Wang, H. J.; Zhang, J. R.; Jia, Q. M.; Zhao, L. B. Development and Utilization of the Micro-Fine Weakly Magnetic Iron Ore. Adv. Mater. Res. 2013, 734-737, 925–928. DOI: 10.4028/www.scientific.net/AMR.734-737.925.
  • Liu, A.; Han, F.; Li, Z. Research Progress of Nano–Bubble in Micro–Fine Mineral Flotation. Conserv. Util. Miner. Resour. 2018, 215(3), 81–86. DOI: 10.13779/j.cnki.issn1001–0076.2018.03.015.
  • Yang, J.; Luo, J.; Wang, D. Separation Technology for Fine–Grained Minerals. Metallic Ore Dressing Abroad. 1995, 5, 5–11.
  • Yuan, Z.; Gao, T.; Yin, W. Status Quo and Development Orientation of China’s Refractory Ore Resource Utilization. Metal Mine 2007, 367(1), 1–6. DOI: 10.3321/j.issn:1001–1250.2007.01.001.
  • Zhang, M.; Guo, X.; Ren, W.; Dai, S. Mechanical Characteristics of Magnetite As a Function of Particle Size During Column-Based Magnetic Separation. Sep. Sci. Technol. 2022, 57(7), 1175–1185. DOI: 10.1080/01496395.2021.1972311.
  • Oruç, F.; Özgen, S.; Sabah, E. An Enhanced-Gravity Method to Recover Ultra-Fine Coal from Tailings: Falcon Concentrator. Fuel 2010, 89(9), 2433–2437. DOI: 10.1016/j.fuel.2010.04.009.
  • Das, A.; Sarkar, B. Advanced Gravity Concentration of Fine Particles: A Review. Mineral Process. Extr. Metall. Rev. 2018, 39(6), 359–394. DOI: 10.1080/08827508.2018.1433176.
  • Singh, R.; Sahu, K.; Ch, G.; Swain, A. K.; Singh, R. Experimental Investigation on the Separation Capabilities and Limitation of Falcon Semi-Batch Concentrator. Sep. Sci. Technol. 2021, 56(11), 1944–1955. DOI: 10.1080/01496395.2020.1797799.
  • Nayak, A.; Jena, M. S.; Mandre, N. R. Application of Enhanced Gravity Separators for Fine Particle Processing: An Overview. J. Sustain. Metall. 2021, 7(2), 315–339. DOI: 10.1007/s40831-021-00343-5.
  • Farajzadeh, S.; Chehreh Chelgani, S. Gravity Separation by Falcon Concentrator–An Over Review. Sep. Sci. Technol. 2022, 57(13), 2145–2164. DOI: 10.1080/01496395.2022.2028836.
  • Zhu, X. N.; Tao, Y. J.; He, Y. Pre–Concentration of Graphite and LiCoo2 in Spent Lithium–Ion Batteries Using Enhanced Gravity Concentrator. Physicochem. Prob. Mineral Process 2018, 54, 293–299. DOI: 10.5277/ppmp1817.
  • Singh, R. K.; Kishore, R.; Sahu, K. K.; Chalavadi, G.; Singh, R. Estimation of the Fluid Velocity Profile in the Stratification Zone of a Falcon Concentrator. Min. Metall. Explor. 2020, 37(1), 321–331. DOI: 10.1007/s42461-019-00133-4.
  • El–Midany, A. A.; Ibrahim, S. S. Does Calcite Content Affect Its Separation from Celestite by Falcon Concentrator? Powder Technol. 2011, 213(1–3), 41–47. DOI: 10.1016/j.powtec.2011.07.003.
  • Zhang, X.; Tao, Y.; Xian, Y. Beneficiation of Low–Grade Collophane by a Novel Combined Enhanced Gravity Separation–Flotation Process. Energy Sour. Part A: Recovery, Util. Environ. Effects 2022, 44(3), 7620–7635. DOI: 10.1080/15567036.2022.2115586.
  • Xiao, J.; Dong, Y. Experimental Study on a Quartz–Vein Type Gold Ore Using Knelson Centrifugal Concentrator. Gold Sci. Technol. 2015, 23(6), 92–96. CNKI:SUN:HJKJ.0.2015–06–023.
  • Haung, Z.; Zou, S.; Wang, S. An Overview of the Research and Application of Knelson Concentrator in Gold Cave Mining Industry. Shandong Indust. Technol. 2017, 4, 57–58. DOI: 10.16640/j.cnki.37–1222/t.2017.04.048.
  • Fatahi, M.; Farzanegan, A. Computational Modeling of Water Flow Inside Laboratory Knelson Concentrator Bowl. Can. Metall. Q. 2018, 58(2), 140–155. DOI: 10.1080/00084433.2018.1549344.
  • Chen, Q, Yang, HY, Tong, LL. Research and Application of a Knelson Concentrator: A Review. Miner. Eng. 2020, 152, 106339. DOI: 10.1016/j.mineng.2020.106339.
  • Katwika, C. N.; M–B, K.; Kalenga, P. N. M.; Mbuya, B. I.; Mwilen, T. R. Application of Knelson Concentrator for Beneficiation of Copper–Cobalt Ore Tailings. Mineral Process. Extr. Metall. Rev. 2019, 40(1), 35–45. DOI: 10.1080/08827508.2018.1481057.
  • Luttrell, G. H.; Phillips, D. I.; Honaker, R. Q. Enhanced Gravity Separators: New Alternatives for Fine Coal Cleaning. 1995.
  • Aslan, N. Application of Response Surface Methodology and Central Composite Rotatable Design for Modeling the Influence of Some Operating Variables of a Multi–Gravity Separator for Coal Cleaning. Fuel 2007, 86(5–6), 769–776. DOI: 10.1016/j.fuel.2006.10.020.
  • Aslan, N. Modeling and Optimization of Multi–Gravity Separator to Produce Celestite Concentrate. Powder Technol. 2007, 174(3), 127–133. DOI: 10.1016/j.powtec.2007.01.007.
  • Aslan, N. Application of Response Surface Methodology and Central Composite Rotatable Design for Modeling and Optimization of a Multi–Gravity Separator for Chromite Concentration. Powder Technol. 2008, 185(1), 80–86. DOI: 10.1016/j.powtec.2007.10.002.
  • Aslan, N. Multi–Objective Optimization of Some Process Parameters of a Multi–Gravity Separator for Chromite Concentration. Sep. Purif. Techn. 2008, 64(2), 237–241. DOI: 10.1016/j.seppur.2008.10.004.
  • Deniz, V. Prediction of Barite Recovery and Grade by Multiple Linear Regression (MLR) Analysis in Concentrating of Barite Tailings by Using Multi–Gravity Separator (MGS). Part. Sci. Technol. 2021, 39(6), 748–756. DOI: 10.1080/02726351.2020.1815254.
  • Özgen, S.; Malkoç, Ö.; Doğancik, C.; Sabah, E.; Şapçi, F. O. Optimization of a Multi Gravity Separator to Produce Clean Coal from Turkish Lignite Fine Coal Tailings. Fuel 2011, 90(4), 1549–1555. DOI: 10.1016/j.fuel.2010.11.024.
  • Goktepe, F. Treatment of Lead Mine Waste by a Mozley Multi-Gravity Separator (MGS). J. Environ. Manage. 2005, 76(4), 277–281. DOI: 10.1016/j.jenvman.2005.01.026.
  • Yerriswamy, P.; Majumder, A.; Barnwal, J.; Govindarajan, B.; Rao, T. C. Study on Kelsey Jig Treating Indian Coal Fines. Mineral Process. Extract. Metall. 2003, 112(3), 206–210. DOI: 10.1179/037195503225003654.
  • Richards, R. G.; Jones, T. A. Kelsey Centrifugal Jig — an Update on Technology and Application. Miner. Metall. Process 2004, 21(4), 179–182. DOI: 10.1007/BF03403181.
  • Singh, R.; Das, A. Analysis of Separation Response of Kelsey Centrifugal Jig in Processing Fine Coal. Fuel Process. Technol. 2013, 115, 71–78. DOI: 10.1016/j.fuproc.2013.04.005.
  • Sun, S.; Zhang, L. Cyclone Magnetic Dewatering Tank. Metal Mine 1995, 4, 54.
  • Tang, Y.; Wang, H.; Zheng, L. Application and Development of Magnetic Dewatering Tanks in the Ore Beneficiation Process. Nonferrous Min. Metall. 1996, 12(3), 12–16.
  • Liu, B.; Zhao, T.; Yang, B. Development and Application of Column Magnetic Separator. Metal Mine 1995, 7, 33–37.
  • Zhao, T.; Chen, Z.; Guo, X. Theory and Technology of Column Magnetic Separator; Metallurgical Industry publisher: Beijing, China, 2021.
  • Zhao, T; Jin, W; Kraus, P. Discussion on the Application of Magnetic Separation Column in Qidashan Ore Concentrator Plant. Metal Mine 2000, 3, 021–021.
  • Cha, X.; Liu, F. Application of Magnetic Columns in the Technological Transformation of Niziba Concentrator. Modern Mining 2017, 33(10), 155–156. CNKI:SUN:KYKB.0.2017–10–045.
  • Li, B.; Peng, H.; Wang, J. Application of Magnetic Separation Column in Beneficiation of Magnetite. Mining R & D. 2012, 32(3), 47–49. DOI: 10.13827/j.cnki.kyyk.2012.03.020.
  • Ren, W.; Guo, X.; Zhang, M. Development and Application of Magnetic Separation Column for Three Products. Metal Mine. 2022, 549(3), 183–189. DOI: 10.19614/j.cnki.jsks.202203025.
  • Yue, X.; Liu, E.; Guo, X.; Ren, W.; Zhang, M.; Dai, S.; Liu, W. A Three-Product Magnetic-Separation Column: Influence of Compound Force Field on the Settlement of Magnetite. Sep. Sci. Technol. 2023, 58(3), 598–612. DOI: 10.1080/01496395.2022.2140294.
  • Zhang, M.; Guo, X.; Ren, W. Simulation and Optimization of Solenoidal Magnetic System in Magnetic Separation Column. Metal Mine 2021, 544(10), 162–167. DOI: 10.19614/j.cnki.jsks.202110021.
  • Chen, G. Development of Annular Magnetic Separator and Its Experiment Reasearch. Ph.D. Dissertation, Northeastern University, Shenyang, Liaoning, 2002.
  • Chen, G.; Jin, Z.; Wang, P. Improvement on the Structure of Annular Magnetic Separator. Metal Mine 2013, 2, 118–121. DOI: 10.3969/j.issn.1001–1250.2013.02.032.
  • Yuan, Z.; Zheng, L. Development and Test of Magnetic Column with Pulsating Vibration Magnetic Field. Metal Mine 2001, 3, 36–38. DOI: 10.3321/j.issn:1001–1250.2001.03.013.
  • Yuan, Z.; Liang, H.; Han, Y. Experimental Study on the Producti on of Super Iron Concentrate by Magnetic Separation Column with Impulse Oscillating Magnetic Field. China Min. Mag. 2003, 5, 55–56. DOI: 10.3969/j.issn.1004–4051.2003.05.014.
  • Tian, J.; Ni, L.; Song, T.; Olson, J.; Zhao, J. An Overview of Operating Parameters and Conditions in Hydrocyclones for Enhanced Separations. Sep. Purif. Techn. 2018, 206, 268–285. DOI: 10.1016/j.seppur.2018.06.015.
  • Fricker, A. G. Magnetic Hydrocyclone Separator. 1985.
  • Guo, N.; Li, M.; Cui, R. Analysis of Radial Magnetic Field in Overflow Magnetic Cyclones Mining and Metallurgical Engineering. Min. Metall. Eng. 2013, 33(5), 59–62.
  • Jin, Q.; Li, M.; Guo, N. Classification Experiment of Overflow Magnetic Cyclone. Min. Metall. Eng. 2014. DOI: 10.3969/j.issn.0253–6099.2014.08.010.
  • Shen, G.; Finch, J. A. Theoretical Analysis of Multipole Magnetic Hydrocyclones. Can. Metall. Q. 1990, 29(3), 171–176. DOI: 10.1179/cmq.1990.29.3.171.
  • Svoboda, J.; Coetzee, C.; Campbell, Q. Experimental Investigation into the Application of a Magnetic Cyclone for Dense Medium Separation. Miner. Eng. 1998, 11(6), 501–509. DOI: 10.1016/S0892-6875(98)00032-6.
  • Huang, G. Y.; Gu, X. Y.; Cao, Y. C. Properties of Magnetic Field in Separation Chamber for Magnetic Flotation Generated by Electric Coils. Min. Metall. Eng. 2016, 36(3), 31–35. DOI: 10.3969/j.issn.1000–6532.2016.01.021.
  • Wang, S.; Fan, M.; Peng, H. Feasibility Study on Online Magnetic Control of Diameter of Overflow Pipe in Dense Medium Cyclone. Mineral & Processing Equipment 2014, 42(3), 69–73. DOI: 10.16816/j.cnki.ksjx.2014.03.019.
  • Peng, H.; Fan, P.; Kong, L. Research on Influence of Permanent Magnetic Field Acting on Underflow Port on Separation Effects of Dense–Medium Cyclone. Mineral & Processing Equipment 2015, 43(5), 97–101. DOI: 10.16816/j.cnki.ksjx.2015.05.025.
  • Fan, P. P.; Kong, L. S.; Peng, H. T. Influence of an Axial Electromagnetic Located in the Conical Part on Dense Medium Cyclone Separation Effects. Meitan. Xuebao/J. China Coal Soc. 2015, 40, 1615–1621. DOI: 10.13225/j.cnki.jccs.2014.1495.
  • Fan, P. P.; Fan, M. Q.; Liu, A. Using an Axial Electromagnetic Field to Improve the Separation Density of a Dense Medium Cyclone. Miner. Eng. 2015, 72. DOI: 10.1016/j.mineng.2014.12.037.
  • Fan, P. Research on Magnetic Manipulation Method and Its Law of Separation Density in Dense Medium Cyclone. Ph.D. Dissertation, Taiyuan University of Technology, Taiyuan, Shanxi, 2016.
  • Fan, PP, Peng, HT, Fan, MQ Using a Permanent Magnetic Field to Manipulate the Separation Effect of a Dense Medium Cyclone. Sep. Sci. Technol. 2016, 51(11), 1913–1923. DOI: 10.1080/01496395.2016.1178291.
  • Zhang, CA; Gao, G.; Wei, W. Influence of Coaxial Electromagnetic Field Position on Separation Effects of Dense Medium Cyclone. Multipurpose Util. Miner. Resour. 2018, 212(4), 147–151. DOI: 10.3969/j.issn.1000–6532.2018.04.034.
  • Zhang, C. A.; Zhu, Z. I.; Gao, G. Y. Effect of Coaxial Electromagnetic Field on Separation Density of Dense–Medium Cyclone. Miner. Eng. 2019, 138, 188–194. DOI: 10.1016/j.mineng.2019.04.039.
  • Qi, K.; Ren, H.; Chen, Z. Influence of Rotating Magnetic Field on Separation Effect of Dense Medium Cyclone. Mining Res. Dev. 2021, 41(12), 161–167. DOI: 10.13827/j.cnki.kyyk.2021.12.016.
  • Ren, H, Qi, K, Wang, H Influence of Rotating Magnetic Field on Separation Effect of Dense Medium Cyclone. J. China Coal Soc. 2021, 46(S2), 970–978. DOI: 10.13225/j.cnki.jccs.2021.0379.
  • Kong, L.; Peng, H.; Fan, P. Research for the Desliming Effect of Magnetic Cyclone on Magnetite. Mining R & D 2015, 35(10), 75–79. DOI: 10.13827/j.cnki.kyyk.2015.10.018.
  • Feng, C.; Ren, X.; Xu, G. Influences of an External Magnetic Structure Located in the Conical Part on Dense Medium Cyclone Separation Effects. China Mining Magazine 2017, 26(1), 119–124. DOI: 10.3969/j.issn.1004–4051.2017.01.027.
  • Xu, L.; He, J.; Chen, J. Improvement of SSS–I–3000 Vertical Ring Pulsation High Gradient Magnetic Separator. Modern Mining 2015, 31(4), 181–290.
  • Chen, J.; Zhang, C. Application of SLon Vertical Ring and Pulsating HGMS Separators for Comprehensive Utilization of Tailings. Multipurpose Util. Miner. Resour. 2020, 3, 164–168. DOI: 10.3969/j.issn.1000–6532.2020.03.028.
  • Svoboda, J. A Realistic Description of the Process of High–Gradient Magnetic Separation. Miner. Eng. 2001, 14(11), 1493–1503. DOI: 10.1016/S0892–6875(01)00162–5.
  • Zheng, X.; Wang, Y.; Lu, D. Study on Capture Radius and Efficiency of Fine Weakly Magnetic Minerals in High Gradient Magnetic Field. Miner. Eng. 2015, 74, 79–85. DOI: 10.1016/j.mineng.2015.02.001.
  • Xiong, D. New Progress in Research and Application of Scaling Up of SLon Vertical Ring and Pulsating High Gradient Magnetic Separators. China Metallurgical Mining Enterprise Association. Ten Years Review and Prospect of China’s Mining Technology. 2012; pp 692–696.
  • Xiong, D. Applications of New SLon Vertical Ring and Pulsating High Gradient Magnetic Separator. Metal Mine 2016, 477(3), 133–138.
  • Guo, Z.; Liao, G.; Xie, M. Research and Application of Slon High Gradient Magnetic Separator in an Imported Iron Ore Min. Metall. 2022, 31(5), 111–115. DOI: 10.3969/j.issn.1005–7854.2022.05.017.
  • Guo, J.; Fan, M.; Fan, P. Study on Transport Law and Separation of Magnetite Powder in Rotating Magnetic Field. J. Central South University (Science And Technology) 2023, 54(10), 3798–3807. DOI: 10.11817/j.issn.1672–7207.2023.10.002.
  • Jameson, G. New Directions in Flotation Machine Design. Miner. Eng. 2010, 23(11–13), 835–841. DOI: 10.1016/j.mineng.2010.04.001.
  • Lu, S. Coarse Particles Flotation Theory, Process and Equipment. Metallic Ore Dressing Abroad. 1982, 10, 49–55.
  • Li, Q.; Shi, S.; Zhang, Y. Application and Development Fluidised–Bed Separator. Multipurpose Util. Miner. Resour 2017, 205(3), 29–32. DOI: 10.3969/j.issn.1000–6532.2017.03.004.
  • Shen, Z.; Luo, S.; Yang, Y. An Overview of Fluidized Flotation Technology. Nonferrous Met.(mine Process Sec) 2019, 5, 20–26.
  • Jameson, G. Advances in Fine and Coarse Particle Flotation. Can. Metall. Q. 2010, 49(4), 325–330. DOI: 10.1179/cmq.2010.49.4.325.
  • Kromah, V.; Powoe, S. B.; Khosravi, R.; Neisiani, A. A.; Chelgani, S. C. Coarse Particle Separation by Fluidized-Bed Flotation: A Comprehensive Review. Powder Technol. 2022, 409, 117831. DOI: 10.1016/j.powtec.2022.117831.
  • He, Q.; Yin, Q.; Wei, Z. Process Mineralogy and Fluidized–Bed Flotation Pre–Discarding of Coarse Molybdenum Ore. Chin. J. Nonferr. Met. 2022, 1–18. DOI: 10.11817/j.ysxb.1004.0609.2022–43656.
  • Kohmuench, J. N.; Mankosa, M. J.; Thanasekaran, H.; Hobert, A. Improving Coarse Particle Flotation Using the HydroFloat™ (Raising the Trunk of the Elephant Curve). Miner. Eng. 2018, 121, 137–145. DOI: 10.1016/j.mineng.2018.03.004.
  • Mankosa, M. J.; Li, C.; Xiao, L. Application of Hydrofloat with the Aid of Air. J. High Energy Phys. 2005, 2, 004–004.
  • Awatey, B.; Thanasekaran, H.; Kohmuench, J. N.; Skinner, W.; Zanin, M. Optimization of Operating Parameters for Coarse Sphalerite Flotation in the HydroFloat Fluidised-Bed Separator. Miner. Eng. 2013, 50-51, 99–105. DOI: 10.1016/j.mineng.2013.06.015.
  • Luttrell, G. H.; Westerfield, T. C.; Kohmuench, J. N.; Mankosa, M. J.; Mikkola, K. A.; Oswald, G. Development of High-Efficiency Hydraulic Separators. Mining, Metallurgy & Exploration. 2006, 23(1), 33–39. DOI: 10.1007/BF03403333.
  • Mankosa, M. J.; Liu, W.; Tong, X. Semi–Industrial Experimental Study of a Hydrofloat. Metallic Ore Dressing Abroad. 2001, 38(5), 40–44.
  • Kohmuench, J. N.; Mankosa, M. J.; Kennedy, D. G. Implementation of the HydroFloat Technology at the South Fort Meade Mine. Mining, Metallurgy & Exploration 2007, 24(4), 264–270. DOI: 10.1007/BF03403375.
  • Jameson, G. J.; Cooper, L.; Tang, K. K.; Emer, C. Flotation of Coarse Coal Particles in a Fluidized Bed: The Effect of Clusters. Miner. Eng. 2020, 146, 106099. DOI: 10.1016/j.mineng.2019.106099.
  • Jameson, G. J.; Emer, C. Coarse Chalcopyrite Recovery in a Universal Froth Flotation Machine. Miner. Eng. 2019, 134, 118–133. DOI: 10.1016/j.mineng.2019.01.024.
  • Clayton, R.; Jameson, G. J.; Manlapig, E. V. The Development and Application of the Jameson Cell. Miner. Eng. 1991, 4(7–11), 925–933. DOI: 10.1016/0892-6875(91)90074-6.
  • Galvin, K.; Doroodchi, E.; Callen, A. M.; Lambert, N.; Pratten, S. J. Pilot Plant Trial of the Reflux Classifier. Miner. Eng. 2002, 15(1–2), 19–25. DOI: 10.1016/S0892-6875(01)00193-5.
  • Galvin, K.; Callen, A. M.; Spear, S. Gravity Separation of Coarse Particles Using the Reflux Classifier. Miner. Eng. 2010, 23(4), 339–349. DOI: 10.1016/j.mineng.2009.09.014.
  • Wills, B. A.; Finch, J. A. Chapter 12–Froth Flotation. InWills’ Mineral Processing Technology, Eighth ed.; Wills, B. Finch, J., Eds.; Butterworth–Heinemann: Boston, 2016; pp. 265–380.
  • Baynham, S.; Ireland, P.; Galvin, K. Enhancing Ion Flotation Through Decoupling the Overflow Gas and Liquid Fluxes. Minerals 2020, 10(12), 1134. DOI: 10.3390/min10121134.
  • Chen, J.; Chimonyo, W.; Peng, Y. Flotation Behaviour in Reflux Flotation Cell–a Critical Review. Miner. Eng. 2022, 181, 107519. DOI: 10.1016/j.mineng.2022.107519.
  • Iveson, S. M.; Sutherland, J. L.; Cole, M. J.; Borrow, D. J.; Zhou, J.; Galvin, K. P. Full-Scale Trial of the REFLUX™ Flotation Cell. Miner. Eng. 2022, 179, 107447. DOI: 10.1016/j.mineng.2022.107447.
  • Jiang, K.; Dickinson, J. E.; Galvin, K. Two-Stage Fast Flotation of Coal Tailings Using Reflux Flotation. Miner. Eng. 2016, 98, 151–160. DOI: 10.1016/j.mineng.2016.08.010.
  • Dickinson, J.; Galvin, K. Fluidized Bed Desliming in Fine Particle Flotation–Part I. Centre For Advanced Particle Processing And Transport, Newcastle Institute For Energy And Resources, The University Of Newcastle, Callaghan, NSW 2308, Australia 2014, 108(1), 283–298. DOI: 10.1016/j.ces.2013.11.006.
  • Galvin, K. P.; Dickinson, J. E. Fluidized Bed Desliming in Fine Particle Flotation–Part II: Flotation of a Model Feed. Centre For Advanced Particle Processing And Transport, Newcastle Institute For Energy And Resources, The University Of Newcastle, Callaghan, NSW 2308, Australia 2014, 108(1), 299–309. DOI: 10.1016/j.ces.2013.11.027.
  • Galvin, K. P.; Harvey, N. G.; Dickinson, J. E. Fluidized Bed Desliming in Fine Particle Flotation–Part III Flotation of Difficult to Clean Coal. Miner. Eng. 2014, 66–68(Special I), 94–101. DOI: 10.1016/j.mineng.2014.02.008.
  • Luo, C.; Tian, L.; Zhao, Z.; Yang, H.; Fan, M. Enhanced Coarse Coal Slime Separation in a Gravity–Flotation Coupled Separator with Up-Flow Feeding and Dual-Concentrate. Int. J. Coal Prep. Util. 2024, 2024, 1–14. DOI: 10.1080/19392699.2024.2330421.
  • Shen, Z.; Shi, S.; Lu, S. Overview of Flotation Equipment Development (Continued I). Nonferrous Metallurgical Equipment 2004(6), 8–11. CNKI:SUN:YSSB.0.2004–06–008.
  • Shen, Z.; Shi, S.; Lu, S. Overview of Flotation Equipment Development (Continued III). Nonferrous Metallurgical Equipment 2005(2), 4–7. CNKI:SUN:YSSB.0.2005–02–002.
  • Shen, Z.; Shi, S.; Lu, S. Overview of Flotation Equipment Development (Continued II). Nonferrous Metallurgical Equipment 2005(1), 5–8. CNKI:SUN:YSSB.0.2005–01–002.
  • Wang, B.; Jiang, H. Research and Application of Flotation Column. Chin. J. Nonferr. Met. 2021, 31(4), 1027–1041. DOI: 10.11817/j.ysxb.1004.0609.2021–36566.
  • Wang, W.; Li, D. Application Status and Development Trend of Flotation Column Technology. Nonferrous Met.(mine Process Sec) 2023, 2, 19–29. DOI: 10.3969/j.issn.1671–9492.2023.02.004.
  • Miller, J. D.; Ye, Y. Froth Characteristics in Air–Sparged Hydrocyclone Flotation. Mineral Process. Extr. Metall. Rev. 1989, 5(1–4), 307–327. DOI: 10.1080/08827508908952654.
  • Niewiadomski, M.; Nguyen, A.; Jan, H.; Nalaskowski, J.; Miller, J. D. Air Bubble and Oil Droplet Interactions in Centrifugal Fields During Air–Sparged Hydrocyclone Flotation. Int. J. Environ. Pollut. 2007, 30(2), 313–331. DOI: 10.1504/IJEP.2007.014707.
  • Liu, A. Performance of a Centrifugal Separator Assisted with Air for the Separation of Fine Coal. Ph.D. Dissertation, Taiyuan University of Technology, Taiyuan, Shanxi, 2014.
  • Liu, A.; Fan, M. Study on Influence of Nozzle Diameter on Aeration and Separation Performance of Cyclone. Mineral & Processing Equipment 2014, 42(2), 89–92. DOI: 10.16816/j.cnki.ksjx.2014.02.023.
  • Du, J.; Fan, M.; Yang, R. Influence of Inflation in Vortex Finder on the Separation Effect of Water–Only Cyclone. MINGING R & D 2024, 44(2), 215–220.
  • Dabros, M.; Afacan, A.; Masliyah, J. Fibre Fractionation Using Air‐Sparged Hydrocyclone. Can. J. Chem. Eng. 2009, 87(1), 94–98. DOI: 10.1002/cjce.20119.
  • Imhof, R.; Fletcher, M.; Vathavooran, A. Application of IMHOFLOT G–Cell Centrifugal Flotation Technology. J. S. Afr. Inst. Min. Metall. 2007, 107(10), 623–631.
  • Mohanty, M. K.; Huang, Z.; Gupta, V. Performance Optimisation of the Imhoflot G–Cell for Fine Coal Cleaning. 2005.
  • Battersby, M.; Brown, J.; Services, M. The Imhoflot G–Cell–An Advanced Pneumatic Flotation Technology for the Recovery of Coal Slurry from Impoundments, SME Annual Meeting, Cincinnati, Ohio. 2003.
  • Hassanzadeh, A.; Safari, M.; Huu Duong, H. Technological Assessments on Recent Developments in Fine and Coarse Particle Flotation Systems. Miner. Eng. 2022, 180, 180. DOI: 10.1016/j.mineng.2022.107509.
  • Huu Hoang, D.; Imhof, R.; Sambrook, T.; Bakulin, A. E.; Murzabekov, K. M.; Abubakirov, B. A.; Baygunakova, R. K.; Rudolph, M. Recovery of Fine Gold Loss to Tailings Using Advanced Reactor Pneumatic Flotation ImhoflotTM. Miner. Eng. 2022, 184, 107649. DOI: 10.1016/j.mineng.2022.107649.
  • Gao, M.; Zhng, W. Development of FCMC Cyclone Microbubble Column Flotation. Industrial Min. Processing 1998, 27(5), 5–9.
  • Peng, Y.; Ni, C.; Tan, J.; Jie, S.; Guangyuan, X. Separation Performance of Flotation Column with Inclined Plates in the Froth Zone. Int. J. Miner. Process. 2016, 148, 124–127. DOI: 10.1016/j.minpro.2016.01.023.
  • Xie, G.; Ou, Z.; Gao, M. Application Research of FCMC–1500 Cyclone Microbubble Flotation Column in Coal Slurry Flotation. Coal Environ. Pollut. 1997, 11, 26–28. DOI: 10.13199/j.cst.1997.11.26.xiegy.008.
  • Lu, Q.; Xie, G.; Wu, L. New Developments in Flotation Column Technology. China Coal 200, 4, 37–40. DOI: 10.19880/j.cnki.ccm.2002.04.012.
  • Li, C.; Xie, G. Application of Cyclone Microbubble Flotation Column at Shanjiaoshu Mine Coal Preparation Plant. Coal Preparation Technol. 2020, 281(4), 43–46. DOI: 10.16447/j.cnki.cpt.2020.04.010.
  • Zhang, H.; Liu, J.; Wang, Y. Cyclonic–Static Micro–Bubble Flotation Column(article). Miner. Eng. 2013, 45(1), 1–3. DOI: 10.1016/j.mineng.2013.01.006.
  • Gao, X.; Ma, Z.; Liu, C. Study on Distribution of Mineral in Cyclone Zone of Cyclonic Static Micro–Bubble Flotation Column. Multipurpose Util. Miner. Resour 2016, 1, 92–96. DOI: 10.3969/j.issn.1000–6532.2016.01.021.
  • Cheng, G.; Cao, Y.; Zhang, C. Application of Novel Flotation Systems to Fine Coal Cleaning. College Of Chemistry And Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, China Synergism Innovative Center Of Coal Safety Production In Henan Province, Henan Polytechni. 2020, 40(1), 24–36. DOI: 10.1080/19392699.2018.1476348.
  • Yan, X.; Liu, J.; Cao, Y.; Wang, L. A Single–Phase Turbulent Flow Numerical Simulation of a Cyclonic–Static Micro Bubble Flotation Column. Int. J. Min. Sci. Technol. 2012, 22(1), 95–100. DOI: 10.1016/j.ijmst.2011.07.009.
  • Yan, X. K.; Liu, J. T.; Zhou, C. C. Two–Phase Numerical Simulation on the Pipe Flow Unit of Cyclonic–Static Micro Bubble Flotation Column. J. China Coal Soc. 2012, 37(03), 506–510. DOI: 10.13225/j.cnki.jccs.2012.03.011.
  • Lijun, W.; Jia, Y.; Yan, X.; Zhou, C. Gas–Liquid Numerical Simulation on Micro-Bubble Generator and Optimization on the Nozzle-To-Throat Spacing. Asia–Pacific J. Chem. Engineering 2015, 10(6), 893–903. DOI: 10.1002/apj.1926.
  • Wang, A.; Yan, X.; Wang, L.; Cao, Y.; Liu, J. Effect of Cone Angles on Single–Phase Flow of a Laboratory Cyclonic–Static Micro–Bubble Flotation Column: PlV Measurement and CFD Simulations. Sep. Purif. Techn. 2015, 149, 308–314. DOI: 10.1016/j.seppur.2015.06.004.
  • Lijun, W.; Wang, Y.; Yan, X. A Numerical Study on Efficient Recovery of Fine–Grained Minerals with Vortex Generators in Pipe Flow Unit of a Cyclonic–Static Micro Bubble Flotation Column. In Centre for Advanced Particle Processing and Transport; Newcastle Institute for Energy and Resources, The University of Newcastle: Callaghan, NSW 2308, Australia, 2016; p. 158. DOI: 10.1016/j.ces.2016.10.037.
  • Li, L.; Liu, J. T.; Wang, Y. Application of Flotation Column in Reverse Flotation of Hematite Ore. Metal Mine 2007, 375(9), 59–61. DOI: 10.3321/j.issn:1001–1250.2007.09.015.
  • Zheng, G.; Liu, J.; Li, L. Reverse Flotation of the Iron Concentrate from Magnetic Separation by Cyclone Static Micro–Bubble Flotation Column. Metal Mine 2008, 386(8), 40–44. DOI: 10.3321/j.issn:1001–1250.2008.08.011.
  • Zhang, H. J.; Liu, J. T.; Wang, Y. T. Research on Cationic Reverse Flotation of Magnetite Using a Flotation Column. J. China University Of Mining & Technol. 2008, 160(1), 67–71. DOI: 10.3321/j.issn:1000–1964.2008.01.014.
  • Li, L.; Liu, J. T.; You, X. Research on the Middling in Reverse Flotat Ion of Magnetite by Flot. Metal Mine 2008, 387(9), 46–7+151. DOI: 10.3321/j.issn:1001–1250.2008.09.013.
  • Xu, H.; Sun, X.; Huang, G. A Classification–Cyclone–Microbubble Flotation Column and Process for Reverse Flotation of Iron Ore. 2018.
  • Yalcin, T.; Wang, W. New Technology for Magnetic Flotation of Iron Ore. Metallic Ore Dressing Abroad. 1994, 3, 1–8.
  • Deng, R.; Liu, Q.; Hu, T.; Ye, F. Concentration of High-Sulfur Copper Ore Using a Three-Product Magnetic Flotation Column. Mining, Metallurgy & Exploration 2013, 30(2), 122–128. DOI: 10.1007/BF03402415.
  • Yousef, A. A.; Boulos, T. R.; Arafa, M. A. Magnetic Flotation Beneficiation of Chromite Ore. Can. Metall. Q. 1971, 10(4), 323–326. DOI: 10.1179/cmq.1971.10.4.323.
  • Ersayin, S.; Iwasaki, I. Magnetic Field Application in Cationic Silica Flotation of Magnetic Taconite Concentrates. Miner. Metall. Process. 2002, 19(3), 148–153. DOI: 10.1007/bf03403167.
  • Birinci, M.; Miller, J.; Sarıkaya, M.; Wang, X. The Effect of an External Magnetic Field on Cationic Flotation of Quartz from Magnetite. Mine. Eng. 2010, 23(10), 813–818. DOI: 10.1016/j.mineng.2010.06.001.
  • Lopez–Valdivieso, A.; Corona–Arroyo, M. A.; Encinas–Oropesa, A.; García-Martínez, H. A.; Aquino-Rosalío, C. E.; Nahmad-Molinari, Y. Inhibiting the Amine Flotation of Magnetite Through Aggregation with Uniform Low Magnetic Fields and No Chemical Depressants. Miner. Eng. 2018, 119, 130–136. DOI: 10.1016/j.mineng.2018.01.033.
  • Sobhy, A.; Lu, J.; Chen, L. Z.; Ahmed, N. Development of Magnetic Flotation Hybrid Separation Process for Cleaner Coal Preparation. Miner. Eng. 2023, 203, 203. DOI: 10.1016/j.mineng.2023.108372.
  • Ran, H. X.; Liang, D. Y. Experimental study on separation of magnetite in the magnetic and buoyant force field. Mining & Metallurgy 2004, 3, 30–32. DOI: 10.3969/j.issn.1005–7854.2004.03.008.
  • Cao, Y.; Huang, G.; Yang, L. A Kind of Pulse Low Magnetic Field Mechanical Agitation Flotation Machine. CN 201420834326. 2014.
  • Li, C.; Cao, Y.; Yang, X. Application of the Pulsed Magnetic Field in the Cyclone–Static Microbubble Flotation Column. Metal Mine 2011, 417(3), 126–128.
  • Niu, G.; Cao, Y.; Yang, X. Experimental Study on Application of Pulsed Magnetic Field in Reverse Flotation of a Magnetite. Mining R & D 2012, 32(2), 48–50. DOI: 10.13827/j.cnki.kyyk.2012.02.020.
  • Liao, Y.; Ma, Z.; Cao, Y. Improving Reverse Flotation of Magnetite Ore Using Pulse Magnetic Field. Miner. Eng. 2019, 138, 108–111. DOI: 10.1016/j.mineng.2019.04.042.
  • Liu, Y.; Cao, Y.; Gui, X. Semi–Industrial Experiment of Cleaning Low Intensity Weak Magnetic Concentrate by Magnetic Flotation Column. Metal Mine 2011, 425(11), 72–74. CNKI:SUN:JSKS.0.2011–11–018.
  • Wang, K.; Zhao, X.; Cao, Z. Research and Practice of Replacing a Flotation Machine in an Iron Ore Concentrator with a Magnetic Flotation Column. Modern Mining 2020, 36(5), 145–169. DOI: 10.3969/j.issn.1674–6082.2020.05.042.
  • Huo, T.; Cao, Y.; Yang, X. Experimental Study on Reverse Flotation of Magnetic Flotation Column Anshan Low Magnetic Separation of Iron Ore Concentrate. In The 4th China Mining Science and Technology Conference; 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.