931
Views
22
CrossRef citations to date
0
Altmetric
Articles

GPS telemetry for small seabirds: using hidden Markov models to infer foraging behaviour of Common Diving Petrels (Pelecanoides urinatrix urinatrix)

ORCID Icon, , , , , & show all
Pages 126-137 | Received 29 Sep 2017, Accepted 07 Dec 2018, Published online: 07 Jan 2019

References

  • Aldoumani, N., Meydan, T., Dillingham, C. M., and Erichsen, J. T. (2015, November). Enhanced tracking system based on micro inertial measurements unit to track sensorimotor responses in pigeons. IEEE Sensors Journal 16(24), 8847–8853. doi: 10.1109/JSEN.2016.2586540.
  • Amélineau, F., Grémillet, D., Bonnet, D., Le Bot, T., and Fort, J. (2016). Where to forage in the absence of sea ice? Bathymetry as a key factor for an Arctic seabird. PloS one 11(7), e0157764. doi:10.1371/journal.pone.0157764
  • Baber, M., and Craig, J. (2003). Home range size and carrying capacity of the South Island takahe (Porphyrio hochstetteri) on Tiritiri Matangi Island. Notornis 50(2), 67–74.
  • Bell, W. J. (1991). ‘Searching Behavior: The Behavioral Ecology of Finding Resources.’ (Chapman and Hall: New York.)
  • Berlincourt, M., Angel, L. P., and Arnould, J. P. Y. (2015). Combined use of GPS and accelerometry reveals fine scale three-dimensional foraging behaviour in the Short-Tailed Shearwater. PloS one 10(10), e0139351. doi:10.1371/journal.pone.0139351
  • Boyd, C., Punt, A. E., Weimerskirch, H., and Bertrand, S. (2014). Movement models provide insights into variation in the foraging effort of central place foragers. Ecological Modelling 286, 13–25. doi:10.1016/j.ecolmodel.2014.03.015
  • Bridge, E. S., Kelly, J. F., Contina, A., Gabrielson, R. M., MacCurdy, R. B., and Winkler, D. W. (2013). Advances in tracking small migratory birds: A technical review of light-level geolocation. Journal of Field Ornithology 84(2), 121–137. doi:10.1111/jofo.2013.84.issue-2
  • Calenge, C. (2011). Home range estimation in R: the adehabitat HR package. Saint Benoist, France. http://cran.r-project.org/web/packages/adehabitatHR/vignettes/adehabitatHR.pdf
  • Casper, R. M. (2009). Guidelines for the instrumentation of wild birds and mammals. Animal Behaviour 78(6), 1477–1483. doi:10.1016/j.anbehav.2009.09.023
  • Cecere, J. G., Calabrese, L., Rocamora, G., and Catoni, C. (2013). Movement patterns and habitat selection of Wedge-tailed Shearwaters (Puffinus pacificus) breeding at Aride Island, Seychelles. Waterbirds 36(4), 432–437. doi:10.1675/063.036.0414
  • Chimienti, M., Cornulier, T., Owen, E., Bolton, M., Davies, I. M., Travis, J. M., and Scott, B. E. (2016). The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data. Ecology and Evolution 6(3), 727–741. doi:10.1002/ece3.1914
  • Croxall, J. P., Butchart, S. H. M., Lascalles, B., Stattersfield, A. J., Sullivan, B., Symes, A., and Taylor, P. (2012). Seabird conservation status, threats and priority actions: A global assessment. Bird Conservation International 22, 1–34. doi:10.1017/S0959270912000020
  • Dean, B., Freeman, R., Kirk, H., Leonard, K., Phillips, R. A., Perrins, C. M., and Guilford, T. (2012). Behavioural mapping of a pelagic seabird: Combining multiple sensors and a Hidden Markov model reveals the distribution of at-sea behaviour. Journal of the Royal Society Interface rsif20120570. doi:10.1098/rsif.2012.0570
  • Dean, B., Kirk, H., Fayet, A., Shoji, A., Freeman, R., Leonard, K., Perrins, C. M., et al. (2015). Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Marine Ecology Progress Series 538, 239–248. doi:10.3354/meps11443
  • Delord, K., Pinet, P., Pinaud, D., Barbraud, C., De Grissac, S., Lewden, A., Cherel, Y., et al. (2016). Species‐specific foraging strategies and segregation mechanisms of sympatric Antarctic fulmarine petrels throughout the annual cycle. Ibis 158(3), 569–586. doi:10.1111/ibi.12365
  • Dunphy, B., Taylor, G., Landers, T., Sagar, R., Chilvers, B., Ranjard, L., and Rayner, M. (2015). Comparative seabird diving physiology: First measures of haematological parameters and oxygen stores in three New Zealand Procellariiformes. Marine Ecology Progress Series 523, 187–198. doi:10.3354/meps11195
  • Fauchald, P. (2009). Spatial interaction between seabirds and prey: Review and synthesis. Marine Ecology Progress Series 391, 139–151. doi:10.3354/meps07818
  • Fijn, R., de Jong, J., Courtens, W., Verstraete, H., Stienen, E., and Poot, M. (2016). GPS-tracking and colony observations reveal variation in offshore habitat use and foraging ecology of breeding sandwich terns. Journal of Sea Research. doi:10.1016/j.seares.2016.11.005
  • Forest and Bird. (2014). ‘New Zealand Seabirds: Important Bird Areas and Conservation.’ p. 72. (The Royal Forest and Bird Protection Society of New Zealand: Wellington, New Zealand.)
  • Freeman, R., Dennis, T., Landers, T., Thompson, D., Bell, E., Walker, M., and Guilford, T. (2010). Black Petrels (Procellaria parkinsoni) patrol the ocean shelf-break: GPS tracking of a vulnerable procellariiform seabird. PloS one 5(2), e9236. doi:10.1371/journal.pone.0009236
  • Galbraith, M., and Cooper, H. (2013). Tiritiri Matangi-an overview of 25 years of ecological restoration. New Zealand Journal of Ecology 37(3), 258.
  • Gurarie, E., Bracis, C., Delgado, M., Meckley, T. D., Kojola, I., and Wagner, C. M. (2016). What is the animal doing? Tools for exploring behavioural structure in animal movements. Journal of Animal Ecology 85(1), 69–84. doi:10.1111/1365-2656.12379
  • Jakubas, D., Iliszko, L. M., Strøm, H., Darecki, M., Jerstad, K., and Stempniewicz, L. (2016). Foraging behavior of a high-Arctic zooplanktivorous alcid, the little auk, at the southern edge of its breeding range. Journal of Experimental Marine Biology and Ecology 475, 89–99. doi:10.1016/j.jembe.2015.11.010
  • Johnson, D. (2017). Crawl: Fit Continuous-time Correlated Random Walk Models to Animal Movement Data. https://CRAN.R-project.org/package-crawl.
  • Johnson, D. S., London, J. M., Lea, M. A., and Durban, J. W. (2008). Continuous‐time correlated random walk model for animal telemetry data. Ecology 89(5), 1208–1215.
  • Jonsen, I. (2016). Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Scientific Reports 6, 20625. doi:10.1038/srep20625
  • Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., and Morales, J. M. (2012). Flexible and practical modeling of animal telemetry data: hidden markov models and extensions. Ecology, 93, 2336–2342. doi: 10.1890/11-2241.1
  • Le Port, A., Montgomery, J., and Croucher, A. (2014). Biophysical modelling of snapper Pagrus auratus larval dispersal from a temperate MPA. Marine Ecology Progress Series 515, 203–215. doi:10.3354/meps10973
  • Leroux, B. G. (1992). Maximum-likelihood estimation for Hidden Markov models. Stochastic Processes and Their Applications 40(1), 127–143. doi:10.1016/0304-4149(92)90141-C
  • Marchant, S., and Higgins, P. (1990). ‘Handbook of Australian, New Zealand and Antarctic Birds. Vol. 1, ratites to ducks’. (Oxford University Press: Melbourne.)
  • Mattern, T., McPherson, M. D., Ellenberg, U., van Heezik, Y., and Seddon, P. J. (2018). High definition video loggers provide new insights into behaviour, physiology, and the oceanic habitat of a marine predator, the yellow-eyed penguin. PeerJ 6, e5459. doi:10.7717/peerj.5459
  • McClintock, B. T. (2017). Incorporating telemetry error into Hidden Markov models of animal movement using multiple imputation.Journal of Agricultural, Biological and Environmental Statistics 22(3), 249–269. doi:10.1007/s13253-017-0285-6
  • McClintock, B. T., and Michelot, T. (2017). momentuHMM: R package for generalized Hidden Markov models of animal movement. arXiv preprint arXiv:1710.03786.
  • Montevecchi, W. A., Hedd, A., Tranquilla, L. M., Fifield, D. A., Burke, C. M., Regular, P. M., Davoren, G. K. et al. (2012). Tracking seabirds to identify ecologically important and high risk marine areas in the western North Atlantic. Biological Conservation 156, 62–71. doi:10.1016/j.biocon.2011.12.001
  • Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., and Fryxell, J. M. (2004). Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology 85(9), 2436–2445. doi:10.1890/03-0269
  • Navarro, J., Votier, S. C., Aguzzi, J., Chiesa, J. J., Forero, M. G., and Phillips, R. A. (2013). Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PloS one 8(4), e62897. doi:10.1371/journal.pone.0062897
  • Parsons, M., Mitchell, I., Butler, A., Ratcliffe, N., Frederiksen, M., Foster, S., and Reid, J. B. (2008). Seabirds as indicators of the marine environment. ICES Journal of Marine Science: Journal Du Conseil 65(8), 1520–1526. doi:10.1093/icesjms/fsn155
  • Patterson, T. A., Basson, M., Bravington, M. V., and Gunn, J. S. (2009). Classifying movement behaviour in relation to environmental conditions using Hidden Markov models. Journal of Animal Ecology 78(6), 1113–1123. doi:10.1111/j.1365-2656.2009.01583.x
  • Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., and Matthiopoulos, J. (2008). State–Space models of individual animal movement. Trends in Ecology & Evolution 23(2), 87–94. doi:10.1016/j.tree.2007.10.009
  • Pelletier, L., Chiaradia, A., Kato, A., and Ropert-Coudert, Y. (2014). Fine-scale spatial age segregation in the limited foraging area of an inshore seabird species, the little penguin. Oecologia 176(2), 399–408. doi:10.1007/s00442-014-3018-3
  • Pohle, J., Langrock, R., van Beest, F. M., and Schmidt, N. M. (2017). Selecting the number of states in Hidden markov models: Pragmatic Solutions Illustrated Using Animal Movement. Journal of Agricultural, Biological and Environmental Statistics 22(3), 270–293. doi:10.1007/s13253-017-0283-8
  • R Core team. (2015). ‘R: A Language and Environment for Statistical Computing.’ (Austria: Vienna.)
  • Rayner, M. J., Hauber, M. E., and Clout, M. N. (2007). Breeding habitat of the Cook’s Petrel (Pterodroma cookii) on Little Barrier Island (Hauturu): Implications for the conservation of a New Zealand endemic. Emu 107(1), 59–68. doi:10.1071/MU06038
  • Rayner, M. J., Hauber, M. E., Steeves, T. E., Lawrence, H. A., Thompson, D. R., Sagar, P. M., Bury, S. J., et al. (2011). Contemporary and historical separation of transequatorial migration between genetically distinct seabird populations. Nature Communications 2, 332. doi:10.1038/ncomms1330
  • Rayner, M. J., Taylor, G. A., Gaskin, C. P., and Dunphy, B. J. (2017). Seasonal activity and unpredicted polar front migration of northern New Zealand Common Diving Petrels (Pelecanoides urinatrix). Emu-Austral Ornithology 117(3), 290–298. doi:10.1080/01584197.2017.1303332
  • Recio, M. R., Mathieu, R., Denys, P., Sirguey, P., and Seddon, P. J. (2011). Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach. PloS one 6(12), e28225. doi:10.1371/journal.pone.0028225
  • Riddick, S., Dragosits, U., Blackall, T., Daunt, F., Wanless, S., and Sutton, M. (2012). The global distribution of ammonia emissions from seabird colonies. Atmospheric Environment 55, 319–327. doi:10.1016/j.atmosenv.2012.02.052
  • Soanes, L. M., Bright, J. A., Brodin, G., Mukhida, F., and Green, J. A. (2015). Tracking a small seabird: First records of foraging movements in the sooty tern. Onychoprion Fuscatus. Marine Ornithology 43, 235–239.
  • Sztukowski, L. A., van Toor, M. L., Weimerskirch, H., Thompson, D. R., Torres, L. G., Sagar, P. M., Cotton, P. A., et al. (2017). Tracking reveals limited interactions between Campbell Albatross and fisheries during the breeding season. Journal of Ornithology 158(3), 725–735. doi:10.1007/s10336-016-1425-4
  • Thiebault, A., and Tremblay, Y. (2013). Splitting animal trajectories into fine-scale behaviorally consistent movement units: Breaking points relate to external stimuli in a foraging seabird. Behavioral Ecology and Sociobiology 67(6), 1013–1026. doi:10.1007/s00265-013-1546-1
  • Torres, L. G., Orben, R. A., Tolkova, I., and Thompson, D. R. (2017). Classification of animal movement behavior through residence in space and time. PloS one 12(1), e0168513. doi:10.1371/journal.pone.0168513
  • Torres, L. G., Sagar, P. M., Thompson, D. R., and Phillips, R. A. (2013). Scaling down the analysis of seabird-fishery interactions. Marine Ecology Progress Series 473, 275–289. doi:10.3354/meps10071
  • Tremblay, Y., Shaffer, S. A., Fowler, S. L., Kuhn, C. E., McDonald, B. I., Weise, M. J., Bost, C.-A., et al. (2006). Interpolation of animal tracking data in a fluid environment. Journal of Experimental Biology 209(1), 128–140. doi:10.1242/jeb.01970
  • Veitch, C. (2002). Eradication of Pacific rats (Rattus exulans) from Tiritiri Matangi Island, Hauraki Gulf, New Zealand. In ‘Turning the tide: the eradication of invasive species.’ (Eds C.Veitch and N.Clout) pp. 360–364. (IUCN SSC Invasive Species Specialist Group, IUCN, Gland: Switzerland and Cambridge, UK.)
  • Wakefield, E. D., Phillips, R. A., and Matthiopoulos, J. (2009). Quantifying habitat use and preferences of pelagic seabirds using individual movement data: A review. Marine Ecology Progress Series 391, 165–182. doi:10.3354/meps08203
  • Waugh, S. M., Griffiths, J. W., Poupart, T. A., Filippi, D. P., Rogers, K., and Arnould, J. Y. P. (2018). Environmental factors and fisheries influence the foraging patterns of a subtropical seabird, the Westland Petrel (Procellaria westlandica), in the Tasman Sea. The Condor 120(2), 371–387. doi:10.1650/CONDOR-17-179.1
  • Waugh, S. M., Patrick, S. C., Filippi, D. P., Taylor, G. A., and Arnould, J. P. Y. (2016). Overlap between flesh-footed shearwater Puffinus carneipes foraging areas and commercial fisheries in New Zealand waters. Marine Ecology Progress Series 551, 249–260. doi:10.3354/meps11741
  • Wilson, R. P., Grémillet, D., Syder, J., Kierspel, M. A., Garthe, S., Weimerskirch, H., Schäfer-Neth, C., et al. (2002). Remote-sensing systems and seabirds: Their use, abuse and potential for measuring marine environmental variables. Marine Ecology Progress Series 228, 241–261. doi:10.3354/meps228241
  • Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1), 164–168. doi:10.2307/1938423
  • Zeldis, J., and Willis, K. (2015). Biogeographic and trophic drivers of mesozooplankton distribution on the northeast continental shelf and in Hauraki Gulf, New Zealand. New Zealand Journal of Marine and Freshwater Research 49(1), 69–86. doi:10.1080/00288330.2014.955806
  • Zhang, J., Dennis, T. E., Landers, T. J., Bell, E., and Perry, G. L. W. (2017). Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni). Ecological Modelling 360, 425–436. doi:10.1016/j.ecolmodel.2017.07.017
  • Zhang, J., O’Reilly, K. M., Perry, G. L. W., Taylor, G. A., and Dennis, T. E. (2015). Extending the functionality of behavioural change-point analysis with k-means clustering: A case study with the Little Penguin (Eudyptula minor). PloS one 10(4), e0122811. doi:10.1371/journal.pone.0122811
  • Zhao, Q., Xu, M., and Fränti, P. (2008) Knee point detection on bayesian information criterion. In Tools with Artificial Intelligence, ICTAI’08. 20th IEEE International Conference, Dayton. Vol. 2. pp. 431–438

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.