280
Views
5
CrossRef citations to date
0
Altmetric
Short Communication

UV sensitive vision in cardinals and tanagers is ubiquitous

ORCID Icon, , , & ORCID Icon
Pages 355-359 | Received 05 Sep 2020, Accepted 24 Nov 2020, Published online: 04 Jan 2021

References

  • Aidala, Z., Huynen, L., Brennan, P. L. R., Musser, J., Fidler, A., Chong, N., Machovsky Capuska, G. E., et al. (2007). Ultraviolet visual sensitivity in three avian lineages: Paleognaths, parrots and passerines. Journal of Comparative Physiology A 198, 495–510. doi:10.1007/s00359-012-0724-3
  • Barker, F. K., Burns, K. J., Klicka, J., Lanyon, S. M., and Lovette, I. J. (2015). New insights into New World biogeography: An integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies. The Auk: Ornithological Advances 132, 333–348. doi:10.1642/AUK-14-110.1
  • Barreira, A. S., and García, N. C. (2019). Visual and acoustic communication in Neotropical birds: Diversity and evolution of signals. In ‘Behavioral Ecology of Neotropical Birds.’ (Eds J. C. Reboreda, V. Fiorini, and D. Tuero.) pp. 155–183. (Springer: Cham.)
  • Barreira, A. S., García, N. C., Lougheed, S. C., and Tubaro, P. L. (2016). Viewing geometry affects sexual dichromatism and conspicuousness of noniridescent plumage of Swallow Tanagers (Tersina viridis). The Auk: Ornithological Advances 133, 530–543. doi:10.1642/AUK-15-170.1
  • Benites, P., Eaton, M. D., Lijtmaer, D. A., Lougheed, S. C., and Tubaro, P. L. (2010). Analysis from avian visual perspective reveals plumage colour differences among females of capuchino seedeaters (Sporophila). Journal of Avian Biology 41, 597–602. doi:10.1111/j.1600-048X.2010.05205.x
  • Bitton, P. P., Janisse, K., and Doucet, S. M. (2017). Assessing sexual dichromatism: The importance of proper parameterization in tetrachromatic visual models. PLoS One 12, e0169810. doi:10.1371/journal.pone.0169810
  • Bloch, N. I. (2015). Evolution of opsin expression in birds driven by sexual selection and habitat. Proceedings of the Royal Society B: Biological Sciences 282, 20142321. doi:10.1098/rspb.2014.2321
  • Bloch, N. I., Morrow, J. M., Chang, B. S. W., and Price, T. D. (2015). SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers. Evolution 69, 341–356. doi:10.1111/evo.12572
  • Bowmaker, J. K., Heath, L. A., Wilkie, S. E., and Hunt, D. M. (1997). Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Research 16, 2183–2194. doi:10.1016/S0042-6989(97)00026-6
  • Burns, K. J., and Shultz, A. J. (2012). Widespread cryptic dichromatism and ultraviolet reflectance in the largest radiation of Neotropical songbirds: Implications of accounting for avian vision in the study of plumage evolution. The Auk 129, 211–221. doi:10.1525/auk.2012.11182
  • Burns, K. J., Shultz, A. J., Title, P. O., Mason, N. A., Barker, F. K., Klicka, J., Lanyon, S. M., et al. (2014). Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Molecular Phylogenetics and Evolution 75, 41–77. doi:10.1016/j.ympev.2014.02.006
  • Carvalho, L. S., Cowing, J. A., Wilkie, S. E., Bowmaker, J. K., and Hunt, D. M. (2007). The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Molecular Biology and Evolution 24, 1843–1852. doi:10.1093/molbev/msm109
  • Cuthill, I. C., Partridge, J. C., Bennett, A. T., Church, S. C., Hart, N. S., and Hunt, S. (2000). Ultraviolet vision in birds. In ‘Advances in the Study of Behavior. Vol. 29’. pp. 159–214. (Academic Press: New York.)
  • Garcia, N. C., Barreira, A. S., Lavinia, P. D, and Tubaro, P. L. (2016). Congruence of phenotypic and genetic variation at the subspecific level in a Neotropical passerine. Ibis 158: 844–856. https://doi.org/10.1111/ibi.12386
  • Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research 20, 675–703. doi:10.1016/S1350-9462(01)00009-X
  • Hart, N. S., Mountford, J. K., Davies, W. I. L., Collin, S. P., and Hunt, D. M. (2016). Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: Implications for spectral sensitivity and the origin of ultraviolet vision. Proceedings of the Royal Society Series B 283, 20161063.
  • Hart, N. S., Partridge, J. C., and Cuthill, I. C. (1999). Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo). Vision Research 39, 3321–3328. doi:10.1016/S0042-6989(99)00071-1
  • Hart, N. S., Partridge, J. C., Cuthill, I. C., and Bennett, A. T. D. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: The blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of Comparative Physiology 186, 375–387. doi:10.1007/s003590050437
  • Hauser, F. E., van Hazel, I., and Chang, B. S. (2014). Spectral tuning in vertebrate short wavelength‐sensitive 1 (SWS1) visual pigments: Can wavelength sensitivity be inferred from sequence data? Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 322, 529–539. doi:10.1002/jez.b.22576
  • Ivanova, N. V., Dewaard, J. R., and Hebert, P. D. N. (2006). An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6, 998–1002. doi:10.1111/j.1471-8286.2006.01428.x
  • Lavinia, P. D., Barreira, A. S., Campagna, L., Tubaro, P. L., and Lijtmaer, D. A. (2019). Contrasting evolutionary histories in Neotropical birds: Divergence across an environmental barrier in South America. Molecular Ecology 28, 1730–1747. doi:10.1111/mec.15018
  • Lavinia, P. D., Escalante, P., García, N. C., Barreira, A. S., Trujillo-Arias, N., Tubaro, P. L., Naoki, K., et al. (2015). Continental-scale analysis reveals deep diversification within the polytypic Red-crowned Ant Tanager (Habia rubica, Cardinalidae). Molecular Phylogenetics and Evolution 89, 182–193. doi:10.1016/j.ympev.2015.04.018
  • Lind, O., Mitkus, M., Olsson, P., and Kelber, A. (2014). Ultraviolet vision in birds: The importance of transparent eye media. Proceedings of the Royal Society B: Biological Sciences 281, 20132209. doi:10.1098/rspb.2013.2209
  • Ödeen, A., and Håstad, O. (2003). Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Molecular Biology and Evolution 20, 855–861. doi:10.1093/molbev/msg108
  • Ödeen, A., Hart, N. S., and Håstad, O. (2009). Assessing the use of genomic DNA as a predictor of the maximum absorbance wavelength of avian SWS1 opsin visual pigments. Journal of Comparative Physiology 195, 167–173. doi:10.1007/s00359-008-0395-2
  • Ödeen, A., and Håstad, O. (2009). New primers for the avian SWS1 pigment opsin gene reveal new amino acid configurations in spectral sensitivity tuning sites. Journal of Heredity 100, 784–789.
  • Ödeen, A., and Håstad, O. (2010). Pollinating birds differ in spectral sensitivity. Journal of Comparative Physiology 196, 91–96. doi:10.1007/s00359-009-0474-z
  • Ödeen, A., Håstad, O., and Alstrom, P. (2011). Evolution of ultraviolet vision in the largest avian radiation - the passerines. BMC Evolutionary Biology 11, 313. doi:10.1186/1471-2148-11-313
  • Ödeen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K., and Håstad, O. (2012). Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proceedings of the Royal Society Series B 279, 1269–1276.
  • Ödeen, A., and Håstad, O. (2013). The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evolutionary Biology 13, 36. doi:10.1186/1471-2148-13-36
  • Price, T. D., Stoddard, M. C., Shevell, S. K., and Bloch, N. I. (2019). Understanding how neural responses contribute to the diversity of avian colour vision. Animal Behaviour 155, 297–305. doi:10.1016/j.anbehav.2019.05.009
  • Shultz, A. J., and Burns, K. J. (2017). The role of sexual and natural selection in shaping patterns of sexual dichromatism in the largest family of songbirds (Aves: Thraupidae). Evolution 71, 1061–1074.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739. doi:10.1093/molbev/msr121
  • Wilkie, S. E., Robinson, P. R., Cronin, T. W., Poopalasundaram, S., Bowmaker, J. K., and Hunt, D. M. (2000). Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry 39, 7895–7901. doi:10.1021/bi992776m
  • Winkler, D. W., Billerman, S. M., and Lovette, I. J. (2020a). Tanagers and Allies (Thraupidae), version 1.0. In ‘Birds of the World’. (Eds S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg.) (Cornell Lab of Ornithology: Ithaca, NY, USA.) doi:10.2173/bow.thraup2.01
  • Winkler, D. W., Billerman, S. M., and Lovette, I. J. (2020b). Cardinals and Allies (Cardinalidae), version 1.0. In ‘Birds of the World’. (Eds S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg.) (Cornell Lab of Ornithology: Ithaca, NY, USA.) doi:10.2173/bow.cardin1.01
  • Yokoyama, S. (2008). Evolution of dim-light and color vision pigments. Annual Review of Genomics and Human Genetics 9, 259–282. doi:10.1146/annurev.genom.9.081307.164228
  • Yokoyama, S., and Tada, T. (2003). The spectral tuning in the short wavelength sensitive type 2 pigments. Gene 306, 91–98. doi:10.1016/S0378-1119(03)00424-4
  • Zwiers, P. (2009). Use of molecular techniques to address the evolution of display traits in the Ptilonorhynchidae and other passeriform species. Ph.D. Thesis, University of Maryland, College Park, Maryland.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.