202
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of extreme and typical rainfall on nestling body condition of the endangered Norfolk Island Morepork: conservation implications of climate change

&
Pages 176-185 | Received 18 Dec 2020, Accepted 18 Jul 2022, Published online: 26 Jul 2022

References

  • Benson, M. L. (1970). ‘Vegetation Map – Mt Pitt Forest Reserve.’ (Forest Research Institute: Norfolk Island, Canberra.)
  • Benson, M. L. (1980). Dieback of Norfolk Island pine in its natural environment. Australian Forestry 43, 245–252. doi:10.1080/00049158.1980.10674278
  • BirdLife International. (2017). Many threatened birds are restricted to small islands. Available at http://datazone.birdlife.org/sowb/casestudy/many-threatened-birds-are-restricted-to-small-islands;http://www.birdlife.org [Verified 15 July 2021].
  • Blondel, J. (2000). Evolution and ecology of birds on islands: Trends and prospects. Vie Et Milieu 50, 205–220.
  • Briggs, S. V. (2009). Priorities and paradigms: Directions in threatened species recovery. Conservation Letters 2, 101–108. doi:10.1111/j.1755-263X.2009.00055.x
  • Bureau of Meteorology. (2019). Temperature and rainfall changes at remote Australian Islands and Antarctic sites. (Bureau of Meteorology, Australia Government.) Available at http://www.bom.gov.au/climate/updates/articles/a033.shtml
  • Burton, R. (1985). ‘Bird Behaviour.’ (London: Granada.) pp. 44–48.
  • Carey, C. (2009). The impacts of climate change on the annual cycles of birds. Philosophical Transactions of the Royal Society B 364, 3321–3330. doi:10.1098/rstb.2009.0182
  • Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215–244. doi:10.2307/5542
  • Chen, C., Harvey, J. A., Biere, A., and Gols, R. (2019). Rain downpours affect survival and development of insect herbivores: The specter of climate change. Ecology 100(11), e02819. doi:10.1002/ecy.2819
  • Clegg, S. M., Owens, I. P. F., and Owens, P. F. (2002). The ‘island rule’ in birds: Medium body size and its ecological explanation. Proceedings of the Royal Society London B 269, 1359–1365. doi:10.1098/rspb.2002.2024
  • Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S., and Woiwod, I. P. (2006). Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation 132, 279–291. doi:10.1016/j.biocon.2006.04.020
  • Constantini, D., Casagrande, S., Carello, L., and Dell’Omo, G. (2009). Body condition variation in kestrel (Falco tinnunculus) nestlings in relation to breeding conditions. Ecological Research 24(6), 1213–1221. doi:10.1007/s11284-009-0604-7
  • Covas, R. (2012). Evolution of reproductive life histories in island birds worldwide. Proceedings of the Royal Society B 279, 1531–1537. doi:10.1098/rspb.2011.1785
  • Cox, A. R., Robertson, R. J., Lendvai, A. Z., Everitt, K., and Bonier, F. (2019). Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Proceedings of the Royal Society B 286. doi:10.1098/rspb.2019.0018
  • Cruz-McDonnell, K. K., and Wolf, B. O. (2016). Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Global Change Biology 22, 237–252. doi:10.1111/gcb.13092
  • Dawson, R. D., and Bortolotti, G. R. (2000). Reproductive success of American Kestrels: The role of prey abundance and weather. The Condor 102, 814–822. doi:10.1093/condor/102.4.814
  • de Zwaan, D. R., Camfield, A. F., MacDonald, E. C., Martin, K., and Sandercock, B. (2019). Variation in offspring development is driven more by weather and maternal condition than predation risk. Functional Ecology 33, 447–456. doi:10.1111/1365-2435.13273
  • Director of National Parks. (2011). Norfolk Island National Park and Botanic Garden climate change strategy 2011–2016. Department of Sustainability, Environment, Water, Population and Communities, Canberra.
  • Director of National Parks. (2018). Norfolk Island National Park and Norfolk Island Botanic Garden management plan 2018–2028. (Director of National Parks: Canberra.) Available at https://www.environment.gov.au/system/files/pages/9dacf81a–5e1c–4d44–b1fb–988f2e3cbae0/files/norfolk–island–management–plan–2018–2028.pdf
  • Djikstra, C., Daan, S., Meijer, T., Cavé, A. J., and Foppen, R. P. B. (1988). Daily and seasonal variation in body mass of the kestrel in relation to food and reproduction. Ardea 76, 127–140.
  • Double, M., and Olsen, P. (1997). Simplified PCR-based sexing assists conservation of an endangered owl, the Norfolk Island Boobook Ninox novaeseelandiae undulata. Bird Conservation International 7, 283–286. doi:10.1017/S0959270900001581
  • Dunn, P. (2019). Changes in Timing of Breeding and Reproductive Success in Birds. In ‘Effects of Climate Change on Birds.’ (Eds P. Dunn and A. P. Moller.) pp. 108–119. (Oxford University Press: Oxford).
  • Durant, J.-M., Gender, J.-P., and Handrich, Y. (2010). Behavioural and body mass changes before egg laying in the Barn Owl: Cues for clutch size determination? Journal of Ornithology 151, 11–17. doi:10.1007/s10336-009-0415-1
  • Fisher, R. J., Wellicome, T. I., Bayne, E. M., Poulin, R. G., Todd, L. D., Ford, A. T., and Fuller, R. (2015). Extreme precipitation reduces reproductive output of an endangered raptor. Journal of Applied Ecology 52, 1500–1508. doi:10.1111/1365-2664.12510
  • Galván, I., and Sanz, J. J. (2011). Mate-feeding has evolved as a compensatory energetic strategy that affects breeding success in birds. Behavioral Ecology 22, 1088–1095. doi:10.1093/beheco/arr094
  • Gardner, J. L., Rowley, E., de Rebeira, P., de Rebeira, A., and Brouwer, L. (2018). Associations between changing climate and body condition over decades in two southern hemisphere passerine birds. Climate Change Responses 5(2). doi:10.1186/s40665-018-0038-y
  • Garnett, S. T., Olsen, P., Buchart, S. H. M., and Hoffmann, A. A. (2011). Did hybridisation save the Norfolk Island Boobook Owl Ninox novaeseelandiae undulata? Oryx 45, 500–504. doi:10.1017/S0030605311000871
  • Hastie, T. J., and Tibshirani, R. J. (1990). Generalised additive models. In ‘Monographs on Statistics and Applied Probability. Vol. 43.’ (Chapman and Hall: Boca Raton.)
  • Hedrick, P. W., and Kalinowski, S. T. (2000). Inbreeding depression in conservation biology. Annual Review of Ecology and Systematics 31, 139–162. doi:10.1146/annurev.ecolsys.31.1.139
  • Henrioux, F. (2000). Home range and habitat use by the Long-eared Owl in northwestern Switzerland. Journal of Raptor Research 34, 93–101.
  • Hirons, G. J. M. (1985). The importance of body reserves for successful reproduction in the Tawny Owl (Strix aluco). Journal of Zoology London B 1, 1–20. doi:10.1111/j.1469-7998.1985.tb00066.x
  • Holloway, J. D. (1977). The Lepidoptera of Norfolk Island, their biogeography and ecology. In ‘Series Entomologica. Vol. 13’. (Ed. W. Junk.) (The Hague.)
  • Holloway, J. D. (1990). Guest editorial: Norfolk Island and biogeography for the nineties: Ideas from a dot on the map. Journal of Biogeography 17, 113–115. http://www.jstor.org/stable/2845320
  • Holloway, J. D. (1996). The Lepidoptera of Norfolk Island, actual and potential, their origins and dynamics. In ‘The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia.’ (Eds A. Keast and S. Miller.) pp. 123–151. (Academic Publishing: Amsterdam.)
  • Imboden, C. H. (1985). Morepork Ninox novaeseelandiae novaeseelandiae. In ‘Reader’s Digest Complete Book of New Zealand Birds.’ (Ed. C. J. R. Robertson.) pp. 25. (Sydney: Reader’s Digest.)
  • Keller, L. F., Grant, P. R., Grant, B. R., and Petren, K. (2002). Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin’s finches. Evolution 56, 1229–1239. doi:10.1111/j.0014-3820.2002.tb01434.x
  • Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., Mutke, J., et al. (2009). A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Science U.S.A 106, 9322–9327. doi:10.1073/pnas.0810306106
  • Korpimaki, E., May, C. A., Parkin, D. T., Wetton, J. H., and Wiehn, J. (2000). Environmental- and parental condition-related variation in sex ratio of kestrel broods. Journal of Avian Biology 31(2), 128–134. doi:10.1034/j.1600–048X.2000.310204.x
  • Korpimâki, E. (1990). Body mass of breeding Tengmalm’s Owls Aegolius funereus: Seasonal, between-year, site and age-related variation. Ornis Scandinavica 21, 169–178. doi:10.2307/3676776
  • Kouba, M., Bartos, L., Tomášek, V., Popelková, A., Sťastný, K., Zárybnická, M., and Margalida, A. (2017). Home range size of Tengmalm’s Owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12(5), e0177314. doi:10.1371/journal.pone.0177314
  • Kreiderits, A., Gamauf, A., Krenn, H., and Sumasgutner, P. (2016). Investigating the influence of local weather conditions and alternative prey composition on the breeding performance of urban Eurasian Kestrels Falco tinnunculus. Bird Study 63, 369–379. doi:10.1080/00063657.2016.1213791
  • Labocha, M. K., and Hayes, J. P. (2012). Morphometric indices of body condition in birds: A review. Journal of Ornithology 153, 1–22. doi:10.1007/s10336-011-0706-1
  • Lamarre, V., Franke, A., Love, O. P., Legagneux, P., and Baty, J. (2017). Linking pre-laying energy allocation and timing of breeding in a migratory Arctic raptor. Oecologia 183, 653–666. doi:10.1007/s00442-016-3797-9
  • Lennon, J. (2005). ‘Splendid spars’: A Norfolk Island forest history. Australian Forest History Society Inc. Occasional Publication 2, 51–59.
  • Loonstra, A. H. J., Verhoeven, M. A., and Piersma, T. (2018). Sex‐specific growth in chicks of the sexually dimorphic Black‐tailed Godwit. Ibis 160, 89–100. doi:10.1111/ibi.12541
  • Macinnis-Ng, C., Mcintosh, A. R., Monks, J. M., Waipara, N., White, R. S. A., Boudjelas, S., Clark, C. D., et al. (2021). Climate-change impacts exacerbate conservation threats in island systems: New Zealand as a case study. Frontiers in Ecology and the Environment 19, 216–224. doi:10.1002/fee.2285
  • Madsen, T., and Shine, R. (2009). Rainfall and rats: Climatically-driven dynamics of a tropical rodent population. Austral Ecology 24, 80–89. doi:10.1046/j.1442-9993.1999.00948.x
  • Marcelino, J., Silva, J. P., Gameiro, J., Silva, A., Rego, F. C., Moreira, F., and Catry, I. (2020). Extreme events are more likely to affect the breeding success of Lesser Kestrels than average climate change. Scientific Reports 10, 7207. doi:10.1038/s41598-020-64087-0
  • Marr, A. B., Arcese, P., Hochachka, W. M., Reid, J. M., and Keller, L. F. (2006). Interactive effects of environmental stress and inbreeding on reproductive traits in a wild bird population. Journal of Animal Ecology 75, 1406–1415. doi:10.1111/j.1365-2656.2006.01165.x
  • Newton, I. (1998). ‘Population Limitation in Birds.’ (Academic Press: London.)
  • Newton, I. (2017). Invited commentary: Fifty years of raptor research. Journal of Raptor Research 51, 95–106. doi:10.3356/0892-1016-51.2.95
  • Norman, J., Olsen, P., and Christidis, L. (1998). Molecular genetics confirms taxonomic affinities of the endangered Norfolk Island Boobook Ninox novaeseelandiae undulata. Biological Conservation 86, 33–36.
  • Norris, K. (2004). Managing threatened species: The ecological toolbox, evolutionary theory and declining-population paradigm. Applied Ecology 41, 413–426. doi:10.1111/j.0021-8901.2004.00910.x
  • Olsen, P., Mooney, N. J., and Olsen, J. (1989). Status and conservation of the Norfolk Island Boobook Ninox novaeseelandiae undulata. In ‘Raptors in the Modern World.’ (Eds B. –. U. Meyburg and R. D. Chancellor.) pp. 415–422. (World Working Group on Birds of Prey: Berlin.)
  • Olsen, P., Hicks, J., Mooney, N., and Greenwood, D. (1994). Progress of the Norfolk Island Boobook Owl Ninox novaeseelandiae undulata reestablishment programme. In ‘Raptor Conservation Today.’ (Eds B. – U. Meyburg and R. D. Chancellor.) pp. 575–578. (Pica Press: Berlin.)
  • Olsen, P. (1996). Re-establishment of an endangered subspecies: The Norfolk Island Boobook Owl Ninox novaeseelandiae undulata. Bird Conservation International 6, 63–80.
  • Olsen, J., Judge, D., and Trost, S. (2015). Ageing Southern Boobook nestlings and fledglings. Corella 39(3), 77.
  • Olsen, P. (2020). Take two. Australian Birdlife 9(2), 48–51.
  • Peig, J., and Green, A. J. (2010). The paradigm of body condition: A critical reappraisal of current methods based on mass and length. Functional Ecology 24, 1323–1332. doi:10.1111/j.1365-2435.2010.01751.x
  • Pietiainen, H., and Kolunen, H. (1993). Female body condition and breeding of the Ural Owl Strix uralensis. Functional Ecology 7, 726–735. doi:10.2307/2390195
  • Pipoly, I., Bókony, V., Seress, G., Szabó, K., Liker, A., and Rubenstein, D. (2013). Effects of extreme weather 783 on reproductive success in a temperate-breeding songbird. PLoS ONE 8(11), e80033. doi:10.1371/journal.pone.0080033
  • Ricklefs, R. E. (1968). Patterns of growth in birds. Ibis 110, 419–451. doi:10.1111/j.1474-919X.1968.tb00058.x
  • Robinson, B. G., Franke, A., and Derocher, A. E. (2017). Weather‐mediated decline in prey delivery rates causes food‐limitation in a top avian predator. Avian Biology 48, 748–758. doi:10.1111/jav.01130
  • Rodríguez, C., and Bustamante, J. (2003). The effect of weather on Lesser Kestrel breeding success: Can climate change explain historical population declines? Journal of Animal Ecology 72, 793–810. doi:10.1046/j.1365-2656.2003.00757.x
  • Sánchez-Bayo, K., and Wyckhuys, A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232, 8–27. doi:10.1016/j.biocon.2019.01.020
  • Saunders, D. A., Dawson, R., Mawson, P. R., and Nichols, A. O. (2019). Factors affecting nestling condition and timing of egg-laying in the endangered Carnaby’s Cockatoo, Calyptorhynchus latirostris. Pacific Conservation Biology 26, 22–34. doi:10.1071/PC19010
  • Sauve, D., Friesen, V., and Charmantier, A. (2021). The effects of weather on avian growth and implications for adaptation to climate change. Frontiers in Ecology and Evolution 9. doi:10.3389/fevo.2021.569741
  • Skagen, S. K., and Yakel Adams, A. A. (2012). Weather effects on avian breeding performance and implications of climate change. Ecological Applications 22, 1131–1145. doi:10.1890/11-0291.1
  • Spatz, D. R., Zilliacus, K. M., Holmes, N. D., Butchart, S. H. M., Genovesi, P., Ceballos, G., Tershy, B. R., et al. (2017). Globally threatened vertebrates on islands with invasive species. Science Advances 3(10), e1603080. doi:10.1126/sciadv.1603080
  • Spelt, A., and Pichegru, L. (2017). Sex allocation and sex‐specific parental investment in an endangered seabird. Ibis 159, 272–284. doi:10.1111/ibi.12457
  • Sperring, F., Webster, W., Isaac, B., Clarke, R. H., Gautschi, D., Heinsohn, R., et al. (2021). Ecology, genetics and conservation management of the Norfolk Island Morepork and green parrot. Final report to Department of Agriculture, Water and Environment, Canberra.
  • Steenhof, K., Kochert, M. N., and McDonald, T. L. (1997). Interactive effects of prey and weather on golden eagle reproduction. Journal of Animal Ecology 66, 350–362. doi:10.2307/5981
  • Stephenson, B. M. (1998). The ecology and breeding biology of Morepork, Ninox novaeseelandiae, and their risk from secondary poisoning. MSc Thesis, Massey University, Auckland.
  • Stephenson, B. M., and Minot, E. O. (2006). Breeding biology of Morepork (Ninox novaeseelandiae) on Mokoia Island, Rotorua, New Zealand. Notornis 53, 308–315.
  • Stojanovic, D., Alves, F., Webb, M. H., Troy, S., Young, C. M., Rayner, L., Crates, R., et al. (2020). Nestling growth and body condition of critically endangered orange-bellied parrots Neophema chrysogaster. Emu - Austral Ornithology 120, 135–141. doi:10.1080/01584197.2020.1743186
  • Szulkin, M., Sheldon, B. C., and Volff, J.-N. (2007). Environmental dependence of inbreeding depression in a wild bird population. PLoS One 2(10), e1027. doi:10.1371/journal.pone.0001027
  • Tapia, L., and Zuberogoitia, I. (2018). Breeding and nesting biology in raptors. In ‘Birds of Prey: Biology and Conservation in the XXI Century’. (Eds J. H. Sarasola, J. M. Grande, and J. J. Negro.) pp. 63–94. (Springer: Cham.) doi:10.1007/978-3-319-73745-4_3
  • Taylor, S., and Kumar, L. (2016). Global climate change impacts on Pacific Islands terrestrial biodiversity: A review. Tropical Conservation Science 9, 203–223. doi:10.1177/194008291600900111
  • Tershy, B. R., Shen, K. W., Newton, K. M., Holmes, N. D., and Croll, D. A. (2015). The importance of islands for the protection of biological and linguistic diversity. Bioscience 65, 592–597. doi:10.1093/biosci/biv031
  • Thorup, K., Sunde, P., Jacobsen, L. B., and Rahbek, C. (2010). Breeding season food limitation drives population decline of the Little Owl Athene noctua in Denmark. Ibis 152, 803–814. doi:10.1111/j.1474-919X.2010.01046.x
  • Trivers, R. L., and Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92. doi:10.1126/science.179.4068.90
  • Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology 65, 457–480. doi:10.1146/annurev-ento-011019-025151
  • Zárybnická, M., Riegert, J., Brejšková, L., Šindelář, J., Kouba, M., Hanel, J., Popelková, A., et al. (2015). Factors affecting growth of Tengmalm’s Owl (Aegolius funereus) nestlings: Prey abundance, sex and hatching order. PLoS ONE 10(10), e0138177. doi:10.1371/journal.pone.0138177

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.