458
Views
12
CrossRef citations to date
0
Altmetric
Articles

Scheduling airline reserve crew using a probabilistic crew absence and recovery model

, , &
Pages 543-565 | Received 25 Oct 2016, Accepted 21 Dec 2018, Published online: 20 Apr 2019

References

  • Abdelghany, A., Ekollu, G., Narasimhan, R., & Abdelghany, K. (2004). A proactive crew recovery decision support tool for commercial airlines during irregular operations. Annals of Operations Research, 127(1-4), 309–331. doi: 10.1023/B:ANOR.0000019094.19940.41
  • Akartunal, K., Boland, N., Evans, I., Wallace, M., & Waterer, H. (2013). Airline planning benchmark problems–part i: Characterising networks and demand using limited data. Computers & Operations Research, 40, 775–792. doi: 10.1016/j.cor.2012.02.012
  • Amita, J., Singh, J. S., & Kumar, G. P. (2015). Prediction of bus travel time using artificial neural network. International Journal for Traffic and Transport Engineering, 5(4), 410–424. doi: 10.7708/ijtte.2015.5(4).06
  • Barnhart, C., Cohn, A. M., Johnson, E. L., Klabjan, D., Nemhauser, G. L., & Vance, P. H. (2003). Airline crew scheduling. In Handbook of Transportation Science (pp. 517–560). New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers.
  • Bayliss, C. (2015). Airline reserve crew scheduling under uncertainty (PhD thesis). University of Nottingham.
  • Bayliss, C., De Maere, G., Atkin, J. A. D., & Paelinck, M. (2012). Probabilistic Airline Reserve Crew Scheduling Model. In Delling, D. & Liberti, L. (Eds.). 12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 25 of Open Access Series in Informatics (OASIcs) (pp. 132–143). Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
  • Bayliss, C., De Maere, G., Atkin, J. A. D., & Paelinck, M. (2015). Test instance data for section 5. Retrieved from www.asap.cs.nott.ac.uk/external/atr/benchmarks/index.shtml
  • Bayliss, C., De Maere, G., Atkin, J. A. D., & Paelinck, M. (2017). A simulation scenario based mixed integer programming approach to airline reserve crew scheduling under uncertainty. Annals of Operations Research, 252(2), 335–363. doi: 10.1007/s10479-016-2174-8
  • Bayliss, C., De Maereand, G., Atkin, J. A. D., & Paelinck, M. (2013). Scheduling airline reserve crew to minimise crew related delay using simulated airline recovery and a probabilistic optimisation model. Paper presented at the Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Manchester, UK, pp. 1944–1950.
  • Burke, E. K., Causmaecker, P. D., De Maere, G., Mulder, J., Paelinck, M., & Berghe, G. V. (2010). A multi-objective approach for robust airline scheduling. Computers and Operations Research, 37(5), 822–832. doi: 10.1016/j.cor.2009.03.026
  • Chang, S.-C. (2012). A duty based approach in solving the aircrew recovery problem. Journal of Air Transport Management, 19, 16–20. doi: 10.1016/j.jairtraman.2011.12.001
  • Deng, W., Chen, R., He, B., Liu, Y., Yin, L., & Guo, J. (2012). A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Computing, 16(10), 1707–1722. doi: 10.1007/s00500-012-0855-z
  • Deng, W., Zhao, H., Liu, J., Yan, X., Li, Y., Yin, L., & Ding, C. (2015). An improved caco algorithm based on adaptive method and multi-variant strategies. Soft Computing, 19(3), 701–713. doi: 10.1007/s00500-014-1294-9
  • Deng, W., Zhao, H., Yang, X., Xiong, J., Sun, M., & Li, B. (2017a). Study on an improved adaptive pso algorithm for solving multi-objective gate assignment. Applied Soft Computing, 59, 288–302. doi: 10.1016/j.asoc.2017.06.004
  • Deng, W., Zhao, H., Zou, L., Li, G., Yang, X., & Wu, D. (2017b). A novel collaborative optimization algorithm in solving complex optimization problems. Soft Computing, 21(15), 4387–4398. doi: 10.1007/s00500-016-2071-8
  • Dillon, J. E., & Kontogiorgis, S. (1999). US airways optimises the scheduling of reserve flight crews. Interfaces, 29(5), 123–131. doi: 10.1287/inte.29.5.123
  • Duck, V., Ionescu, L., Kliewer, N., & Suhl, L. (2012). Increasing stability of airline crew and aircraft schedules. Transportation Research Part C, 20, 47–61. doi: 10.1016/j.trc.2011.02.009
  • Gaballa, A. (1979). Planning callout reserves for aircraft delays. Interfaces, 9(2-part-2), 78–86. doi: 10.1287/inte.9.2pt2.78
  • Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning. Reading, MA: Addison-Wesley.
  • Gu, B., & Sheng, V. S. (2017). A robust regularization path algorithm for v-support vector classification. IEEE Transactions on Neural Networks and Learning Systems, 28(5), 1241–1248. doi: 10.1109/TNNLS.2016.2527796
  • Gu, B., Sheng, V. S., Tay, K. Y., Romano, W., & Li, S. (2015). Increment support vector learning for ordinal regression. IEEE Transactions on Neural Networks and Learning Systems, 26(7), 1403–1416. doi: 10.1109/TNNLS.2014.2342533
  • Hart, W. E., Krasnogor, N., & Smith, J. E. (2005). Recent advances in memetic algorithms. Berlin: Springer-Verlag.
  • Hastie, T., Tibshirani, R., & Friedman, J. (2008). The elements of statistical learning: Date mining, inference and prediction, chapter 7. Springer Series in Statistics (2nd ed.). Berlin: Springer.
  • Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. doi: 10.1126/science.220.4598.671
  • Mathaisel, D. F. X. (1996). Decision support for airline system operations control and irregular operations. Computers & Operations Research, 23(11), 1083–1098. doi: 10.1016/0305-0548(96)00007-X
  • Bijvank M., Byrka, J., van Heijster, P., Gnedin A., Olejniczak, T., Swist T., … de Ridder, H. (2001). Cabin Crew Rostering at KLM: Optimization of Reserves. In Proceedings of the 58th European Study Group Mathematics with Industry. SWI 2007 held at Utrecht University.
  • Peterson, J. D., Solveling, G., Johnson, E., Clarke, J.-P., & Shebalov, S. (2012). An optimisation approach to airline integrated recovery. Transportation Science, 46(4), 482–500. doi: 10.1287/trsc.1120.0414
  • Rosenberger, J. M., Johnson, E. L., & Nemhauser, G. L. (2003). Rerouting aircraft for airline recovery. Transportation Science, 37(4), 408–421. doi: 10.1287/trsc.37.4.408.23271
  • Schaefer, A. J., Johnson, E. L., Kleywegt, A. J., & Nemhauser, G. L. (2005). Airline crew scheduling under uncertainty. Transportation Science, 39(3), 340–348. doi: 10.1287/trsc.1040.0091
  • Sohoni, M., Lee, Y.-C., & Klabjan, D. (2011). Robust airline scheduling under block-time uncerainty. Transportation Science, 45(4), 451–464. doi: 10.1287/trsc.1100.0361
  • Sohoni, M. G., Johnson, E. L., & Bailey, T. G. (2006). Operational airlines reserve crew scheduling. Journal of Scheduling, 9(3), 203–221. doi: 10.1007/s10951-006-6778-8
  • Weide, O., Ryan, D., & Ehrgott, M. (2010). Iterative approach to robust aircraft routing and crew scheduling. Computers and Operations Research, 37, 833–844. doi: 10.1016/j.cor.2009.03.024
  • Wu, C.-L. (2010). Airline operations and delay management. Burlington, NJ: Ashgate.
  • Xue, Y., Jiang, J., Zhao, B., & Ma, T. (2018). A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Computing, 22(9), 2935–2952. doi: 10.1007/s00500-017-2547-1
  • Yen, J. W., & Birge, J. R. (2006). A stochastic programming approach to the airline crew scheduling problem. Transportation Science, 40(1), 3–14. doi: 10.1287/trsc.1050.0138

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.