1,337
Views
33
CrossRef citations to date
0
Altmetric
Articles

Machine learning models and cost-sensitive decision trees for bond rating prediction

, , &
Pages 1161-1179 | Received 24 Jul 2017, Accepted 21 Jan 2019, Published online: 20 Apr 2019

References

  • Abdel-Zaher, A. M., & Eldeib, A. M. (2016). Breast cancer classification using deep belief networks. Expert Systems with Applications, 46, 139–144. doi:10.1016/j.eswa.2015.10.015
  • Abellán, J., & Castellano, J. G. (2017). A comparative study on base classifiers in ensemble methods for credit scoring. Expert Systems with Applications, 73, 1–10. doi:10.1016/j.eswa.2016.12.020
  • Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825–3830. doi:10.1016/j.eswa.2013.12.003
  • Abiyev, R. (2014). Credit rating using Type-2 fuzzy neural networks. Mathematical Problems in Engineering, 2014, 1. doi:10.1155/2014/460916
  • Ackley, D. H., Hinton, G. E., & Sejnowski, J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9(1), 147–169. doi:10.1016/S0364-0213(85)80012-4
  • Adamu Teshome, D., & Rao, V. S. (2014). A cost sensitive machine learning approach for intrusion detection. Global Journal of Computer Science and Technology, 14(6), 1–8.
  • Affonso, C., Rossi, A. L. D., Vieira, F. H. A., de Carvalho, A. C. P., & de, L. F. (2017). Deep learning for biological image classification. Expert Systems with Applications, 85, 114–122. doi:10.1016/j.eswa.2017.05.039
  • Afonso, A., Furceri, D., & Gomes, P. (2012). Sovereign credit ratings and financial markets linkages: Application to European data. Journal of International Money and Finance, 31(3), 606–638. doi:10.1016/j.jimonfin.2012.01.016
  • Afonso, A., Gomes, P., & Taamouti, A. (2014). Sovereign credit ratings, market volatility, and financial gains. Computational Statistics & Data Analysis, 76, 20–33. doi:10.1016/j.csda.2013.09.028
  • Ala’raj, M., & Abbod, M. F. (2016). Classifiers consensus system approach for credit scoring. Knowledge-Based Systems, 104, 1–17.
  • Alfaro, E., García, N., Gámez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45(1), 110–122. doi:10.1016/j.dss.2007.12.002
  • Alsakka, R., & Gwilym, O. (2012). Foreign exchange market reactions to sovereign credit news. Journal of International Money and Finance, 31(4), 845–864. doi:10.1016/j.jimonfin.2012.01.007
  • Ando, T. (2014). Bayesian corporate bond pricing and credit default swap premium models for deriving default probabilities and recovery rates. Journal of the Operational Research Society, 65(3), 454–465. doi:10.1057/jors.2013.16
  • Atiya, A. (2001). Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Transactions on Neural Networks, 12(4), 929–935. doi:10.1109/72.935101
  • Bahnsen, A. C., Aouada, D., & Ottersten, B. (2015). Expert systems with applications example-dependent cost-sensitive decision trees. Expert Systems with Applications, 42(19), 6609–6619. doi:10.1016/j.eswa.2015.04.042
  • Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Application, 83, 405–417. doi:10.1016/j.eswa.2017.04.006
  • Bequé, A., Coussement, K., Gayler, R., & Lessmann, S. (2017). Approaches for credit scorecard calibration: An empirical analysis. Knowledge-Based Systems, 134, 213–227. doi:10.1016/j.knosys.2017.07.034
  • Borensztein, E., Cowan, K., & Valenzuela, P. (2013). Sovereign ceiling ‘lite’? The impact of sovereign ratings on corporate. Journal of Banking & Finance, 37, 4014–4024. doi:10.1016/j.jbankfin.2013.07.006
  • Bradford, J. P., Kunz, C., Kohavi, R., Brunk, C., & Brodley, C. E. (1998). Pruning decision trees with misclassication costs. In Claire Nédellec and Céline Rouveirol (Eds.), ECML-98. Proceedings of the 10th European Conference on Machine Learning (pp. 131–136). Berlin: Springer.
  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Boca Raton, Florida: Chapman and Hall-CRC.
  • Brezigar-Masten, A., & Masten, I. (2012). CART-based selection of bankruptcy predictors for the logit model. Expert Systems with Applications, 39(11), 10153–10159. doi:10.1016/j.eswa.2012.02.125
  • Brooks, R., Faff, R. W., Hillier, D., & Hillier, J. (2004). The national market impact of sovereign rating changes. Journal of Banking and Finance, 28(1), 233–250. doi:10.1016/S0378-4266(02)00406-5
  • Camba-Méndez, G., & Serwa, D. (2016). Market perception of sovereign credit risk in the euro area during the financial crisis. North American Journal of Economics and Finance, 37, 168–189. doi:10.1016/j.najef.2016.04.002
  • Cano, J., Aljohani, N. R., Abbasi, R. A., Alowidbi, J. S., & García, S. (2017). Prototype selection to improve monotonic nearest neighbor. Engineering Applications of Artificial Intelligence, 60, 128–135. doi:10.1016/j.engappai.2017.02.006
  • Cao, L., Guan, L., & Jingqing, Z. (2006). Bond rating using support vector machine. Intelligent Data Analysis, 10(3): 285–296.
  • Chauchat, J., Rakotomalala, R., Carloz, M., & Pelletier, C. (2001). Targeting customer groups using gain and cost matrix: A marketing application. PKDD 2001. Proceedings of Data Mining for Marketing Applications Workshop, 5th European Conference on Principles and Practice of Knowledge Discovery in Databases (pp. 1–13).
  • Chauhan, N., Ravi, V., & Karthik Chandra, D. (2009). Differential evolution trained wavelet neural networks: Application to bankruptcy prediction in banks. Expert Systems with Applications, 36(4), 7659–7665. doi:10.1016/j.eswa.2008.09.019
  • Chen, C.-C., & Li, S.-T. (2014). Credit rating with a monotonicity-constrained support vector machine model. Expert Systems with Applications, 41(16), 7235–7247. doi:10.1016/j.eswa.2014.05.035
  • Chen, F., & Li, F. (2010). Combination of feature selection approaches with SVM in credit scoring. Expert Systems with Applications, 37(7), 4902–4909. doi:10.1016/j.eswa.2009.12.025
  • Chen, M. Y. (2011). Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches. Computers and Mathematics with Applications, 62(12), 4514–4524. doi:10.1016/j.camwa.2011.10.030
  • Chen, N., Ribeiro, B., Vieira, A. S., Duarte, J., & Neves, J. C. (2011). A genetic algorithm-based approach to cost-sensitive bankruptcy prediction. Expert Systems with Applications, 38(10), 12939–12945. doi:10.1016/j.eswa.2011.04.090
  • Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction : Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205. doi:10.1016/j.eswa.2017.04.030
  • Cortes, C., & Vapnik, V. Sep. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. doi:10.1007/BF00994018
  • Crabtree, A. D., & Maher, J. J. (2005). Earnings predictability, bond ratings, and bond yields. Review of Quantitative Finance and Accounting, 25(3), 233–253. doi:10.1007/s11156-005-4766-2
  • Danenas, P., & Garsva, G. (2015). Selection of support vector machines based classifiers for credit risk domain. Expert Systems with Applications, 42(6), 3194–3204. doi:10.1016/j.eswa.2014.12.001
  • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.
  • Demyanyk, Y., & Hasan, I. (2010). Financial crises and bank failures: A review of prediction methods. Omega, 38(5), 315–324. doi:10.1016/j.omega.2009.09.007
  • Dixon, M., Klabjan, D., & Bang, J. H. (2015). Implementing deep neural networks for financial market prediction on the Intel Xeon Phi. Proceedings of the 8th Workshop on High Performance Computational Finance (WHPCF’15), 1–6. New York, NY, USA.
  • Du Jardin, P. (2010). Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy. Neurocomputing, 73(10–12), 2047–2060. doi:10.1016/j.neucom.2009.11.034
  • Du Jardin, P. (2016). A two-stage classification technique for bankruptcy prediction. European Journal of Operational Research, 254(1), 236–252. doi:10.1016/j.ejor.2016.03.008
  • Du Jardin, P. (2017). Dynamics of firm financial evolution and bankruptcy prediction. Expert Systems with Applications, 75, 25–43. doi:10.1016/j.eswa.2017.01.016
  • Elfwing, S., Uchibe, E., & Doya, K. (2015). Expected energy-based restricted Boltzmann machine forclassification. Neural Networks, 64, 29–38. doi:10.1016/j.neunet.2014.09.006
  • Fedorova, E., Gilenko, E., & Dovzhenko, S. (2013). Bankruptcy prediction for Russian companies: Application of combined classifiers. Expert Systems with Applications, 40(18), 7285–7293. doi:10.1016/j.eswa.2013.07.032
  • Ferreira, M. A., & Gama, P. M. (2007). Does sovereign debt ratings news spill over to international stock markets? Journal of Banking and Finance, 31(10), 3162–3182. doi:10.1016/j.jbankfin.2006.12.006
  • Florez-Lopez, R. (2007). Modelling of insurers' rating determinants. An application of machine learning techniques and statistical models. European Journal of Operational Research, 183(3), 1488–1512. doi:10.1016/j.ejor.2006.09.103
  • Freund, Y. (1990). Boosting a weak learning algorithm by majority. In Colt'90: The third annual workshop on computational learning theory (pp. 202–216). Rochester, New York, USA: Morgan Kaufmann.
  • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256–285. doi:10.1006/inco.1995.1136
  • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Proceedings of the 13th international conference on machine learning (pp. 148–156). Bari, Italy: Morgan Kaufmann.
  • Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236–247. doi:10.1016/j.ejor.2014.08.016
  • Gültekin-Karakaş, D., Hisarcıklılar, M., & Öztürk, H. (2011). Sovereign risk ratings: Biased toward developed countries? Emerging Markets Finance and Trade, 47(suppl. 2), 69–87. doi:10.2753/REE1540-496X4703S204
  • Harris, T. (2015). Credit scoring using the clustered support vector machine. Expert Systems with Applications, 42(2), 741–750. doi:10.1016/j.eswa.2014.08.029
  • Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543–558. doi:10.1016/S0167-9236(03)00086-1
  • Jackson, J. D., & Boyd, J. W. (1988). A statistical approach to modeling the behavior of bond raters. Journal of Behavioral Economics, 17(3), 173–193. doi:10.1016/0090-5720(88)90008-3
  • Japkowicz, N., & Shah, M. (2011). Evaluating Learning Algorithms – A Classification Perspective. Cambridge: Cambridge University Press.
  • Jones, S., Johnstone, D., & Wilson, R. (2015). An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. Journal of Banking and Finance, 56, 72–85. doi:10.1016/j.jbankfin.2015.02.006
  • Kaminsky, G., & Schmukler, S. (2002). Emerging market instability: Do sovereign ratings affect country risk and stock returns? The World Bank Economic Review, 16(2), 171–195. doi:10.1093/wber/16.2.171
  • Karels, G. V., & Prakash, A. J. (1987). Multivariate normality and forecasting of business bankruptcy. Journal of Business Finance & Accounting, 14(4), 573–593. doi:10.1111/j.1468-5957.1987.tb00113.x
  • Koutanaei, F. N., Sajedi, H., & Khanbabaei, M. (2015). A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring. Journal of Retailing and Consumer Services, 27, 11–23. doi:10.1016/j.jretconser.2015.07.003
  • Krauss, C., Anh, X., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S & P 500 R. European Journal of Operational Research, 259(2), 689–702.
  • Krawczyk, B., Woźniak, M., & Schaefer, G. (2014). Cost-sensitive decision tree ensembles for effective imbalanced classification. Applied Soft Computing Journal, 14(C), 554–562. doi:10.1016/j.asoc.2013.08.014
  • Li, F., Zhang, X., Zhang, X., Du, C., Xu, Y., & Tian, Y. C. (2018). Cost-sensitive and hybrid-attribute measure multi-decision tree over imbalanced data sets. Information Sciences, 422, 242–256. doi:10.1016/j.ins.2017.09.013
  • Li, H., Sun, J., & Wu, J. (2010). Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods. Expert Systems with Applications, 37(8), 5895–5904. doi:10.1016/j.eswa.2010.02.016
  • Li, X., Zhao, H., & Zhu, W. (2015). A cost sensitive decision tree algorithm with two adaptive mechanisms. Knowledge-Based Systems, 88, 24–33. doi:10.1016/j.knosys.2015.08.012
  • Li, Z., Tian, Y., Li, K., Zhou, F., & Yang, W. (2017). Reject inference in credit scoring using Semi-supervised Support Vector Machines. Expert Systems with Applications, 74, 105–114. doi:10.1016/j.eswa.2017.01.011
  • Liang, J., Zhao, Y., & Zhang, X. (2016). Utility indifference valuation of corporate bond with credit rating migration by structure approach. Economic Modelling, 54, 339–346. doi:10.1016/j.econmod.2015.12.002
  • Liu, Y., & Schumann, M. (2005). Data mining feature selection for credit scoring models. Journal of the Operational Research Society, 56(9), 1099–1108. doi:10.1057/palgrave.jors.2601976
  • López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data : Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113–141. doi:10.1016/j.ins.2013.07.007
  • Luo, C., Wu, D., & Wu, D. (2017). A deep learning approach for credit scoring using credit default swaps. Engineering Applications of Artificial Intelligence, 65, 465–470. doi:10.1016/j.engappai.2016.12.002
  • Mahmoudi, N., Docherty, P., & Moscato, P. (2018). Deep neural networks understand investors better. Decision Support Systems, 112, 23–34. doi:10.1016/j.dss.2018.06.002
  • Mai, F., Tian, S., Lee, C., & Ma, L. (2018). Deep learning models for bankruptcy prediction using textual disclosures. European Journal of Operational Research, (xxxx). doi:10.1016/j.ejor.2018.10.024
  • Maldonado, S., Pérez, J., & Bravo, C. (2017). Cost-based feature selection for Support Vector Machines: An application in credit scoring. European Journal of Operational Research, 261(2), 656–665. doi:10.1016/j.ejor.2017.02.037
  • Marais, M. L., Patel, J., & Wolfson, M. (2006). The Experimental Design of Classification Models: An Application of Recursive Partitioning and Bootstrapping to Commercial Bank Loan Classifications. Journal of Accounting Research, 22, 87–114. doi:10.2307/2490861
  • Marqués, A. I., García, V., & Sánchez, J. S. (2012). Two-level classifier ensembles for credit risk assessment. Expert Systems with Applications, 39(12), 10916–10922. doi:10.1016/j.eswa.2012.03.033
  • Martens, D., Van Gestel, T., De Backer, M., Haesen, R., Vanthienen, J., & Baesens, B. (2010). Credit rating prediction using Ant Colony Optimization. Journal of the Operational Research Society, 61(4), 561–573. doi:10.1057/jors.2008.164
  • Mohsen, H., El-Dahshan, E.-S. A., El-Horbaty, E.-S. M., & Salem, A.-B. M. (2018). Classification using Deep Learning Neural Networks for Brain Tumors. Future Computing and Informatics Journal, 3(1), 68–71. doi:10.1016/j.fcij.2017.12.001
  • Nikolic, N., Zarkic-Joksimovic, N., Stojanovski, D., & Joksimovic, I. (2013). The application of brute force logistic regression to corporate credit scoring models : Evidence from Serbian financial statements. Expert Systems with Applications, 40(15), 5932–5944. doi:10.1016/j.eswa.2013.05.022
  • Öcsüt, H., Docsanay, M. M., Ceylan, N. B., & Aktaş, R. (2012). Prediction of bank financial strength ratings: The case of Turkey. Economic Modelling, 29(3), 632–640. doi:10.1016/j.econmod.2012.01.010
  • Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464–473. doi:10.1016/j.dss.2011.10.007
  • Ozturk, H., Namli, E., & Erdal, H. I. (2016). Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample. Economic Modelling, 54, 469–478. doi:10.1016/j.econmod.2016.01.012
  • Pinches, G. E., & Mingo, K. A. (1973). A Multivariate Analysis of Industrial Bond Ratings. The Journal of Finance, 28(1), 1–18. doi:10.2307/2978164
  • Qawaqneh, Z., Abu, A., & Barkana, B. D. (2017). Age and gender classification from speech and face images by jointly fine-tuned deep neural networks. Expert Systems with Applications, 85, 76–86. doi:10.1016/j.eswa.2017.05.037
  • Qayyum, A., Anwar, S. M., Awais, M., & Majid, M. (2017). Medical image retrieval using deep convolutional neural network. Neurocomputing, 266, 8–20. doi:10.1016/j.neucom.2017.05.025
  • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. doi:10.1023/A:1022643204877
  • Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann Series in Machine Learning.
  • Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review. European Journal of Operational Research, 180(1), 1–28. doi:10.1016/j.ejor.2006.08.043
  • Reusens, P., & Croux, C. (2017). Sovereign credit rating determinants: A comparison b efore and after the European debt crisis. Journal of Banking and Finance, 77, 108–121. doi:10.1016/j.jbankfin.2017.01.006
  • Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications, 40(15), 5916–5923. doi:10.1016/j.eswa.2013.05.021
  • Salakhutdinov, R., & Hinton, G. (2009). Deep Boltzmann Machines. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. CVPR Workshops, 2009(2), 2735–2742.
  • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227. doi:10.1007/BF00116037
  • Serrano-Cinca, C., & Gutiérrez-Nieto, B. (2013). Partial least square discriminant analysis for bankruptcy prediction. Decision Support Systems, 54(3), 1245–1255. doi:10.1016/j.dss.2012.11.015
  • Sharan, R. V., & Moir, T. J. (2017). Robust acoustic event classification using deep neural networks. Information Sciences, 396, 24–32. doi:10.1016/j.ins.2017.02.013
  • Sheng, S., & Ling, C. X. (2005). Hybrid cost-sensitive decision tree. In Jorge A.M., Torgo L., Brazdil P., Camacho R., Gama J. (Eds). European Conference on Principles of Data Mining and Knowledge Discovery (pp. 274–284), Berlin: Springer.
  • Siers, M. J., & Islam, Z. (2015). Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem. Information Systems, 51, 62–71. doi:10.1016/j.is.2015.02.006
  • Siers, M. J., & Islam, Z. (2018). Novel algorithms for cost-sensitive classification and knowledge discovery in class imbalanced datasets with an application to NASA software defects. Information Sciences, 459, 53–70. doi:10.1016/j.ins.2018.05.035
  • Skurichina, M., & Duin, R. P. W. (2002). Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis and Applications, 5(2), 121–135. doi:10.1007/s100440200011
  • Sohn, S. Y., Kim, D. H., & Yoon, J. H. (2016). Technology credit scoring model with fuzzy logistic regression. Applied Soft Computing, 43, 150–158. doi:10.1016/j.asoc.2016.02.025
  • Sun, J., Jia, M., & Li, H. (2011). AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies. Expert Systems with Applications, 38(8), 9305–9312. doi:10.1016/j.eswa.2011.01.042
  • Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. 40, 3358–3378. doi:10.1016/j.patcog.2007.04.009
  • Tamilselvan, P., & Wang, P. (2013). Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & System Safety, 115, 124–135. doi:10.1016/j.ress.2013.02.022
  • Ting, K. M. (2002). An instance-weighting method to induce cost-sensitive decision trees. IEEE Transactions on Knowledge and Data Engineering, 14(3), 659–665.
  • Tomczak, J. M., & Zięba, M. (2015). Classification restricted Boltzmann machine for comprehensible credit scoring model. Expert Systems with Applications, 42(4), 1789–1796. doi:10.1016/j.eswa.2014.10.016
  • Tran, V., Alsakka, R., & Gwilym, O. (2014). Sovereign rating actions and the implied volatility of stock index options. International Review of Financial Analysis, 34, 101–113. doi:10.1016/j.irfa.2014.05.010
  • Tsang, I. W., Kwok, J. T., & Cheung, P.-M. (2005). Core vector machines: Fast SVM training on very large data sets. Journal of Machine Learning Research, 6, 363–392.
  • Tseng, F. M., & Hu, Y. C. (2010). Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks. Expert Systems with Applications, 37(3), 1846–1853. doi:10.1016/j.eswa.2009.07.081
  • Veganzones, D., & Séverin, E. (2018). An investigation of bankruptcy prediction in imbalanced datasets. Decision Support Systems, 112, 111–124. (July), doi:10.1016/j.dss.2018.06.011
  • Villuendas-Rey, Y., Rey-Benguría, C. F., Ferreira-Santiago, Á., Camacho-Nieto, O., & Yáñez-Márquez, C. (2017). The Naïve Associative Classifier (NAC): A novel, simple, transparent, and accurate classification model evaluated on financial data. Neurocomputing, 265, 105–115. doi:10.1016/j.neucom.2017.03.085
  • Wang, G., Hao, J., Ma, J., & Jiang, H. (2011). A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications, 38(1), 223–230. doi:10.1016/j.eswa.2010.06.048
  • Wang, L., Yang, Y., Min, R., & Chakradhar, S. (2017). Accelerating deep neural network training with inconsistent stochastic gradient descent. Neural Networks, 93, 219–229. doi:10.1016/j.neunet.2017.06.003
  • Wang, T., Qin, Z., Zhang, S., & Zhang, C. (2012). Cost-sensitive classification with inadequate labeled data. Information Systems, 37(5), 508–516. doi:10.1016/j.is.2011.10.009
  • Wang, Z., Jiang, C., Ding, Y., Lyu, X., & Liu, Y. (2018). A novel behavioral scoring model for estimating probability of default over time in peer-to-peer lending. Electronic Commerce Research and Applications, 27, 74–82. doi:10.1016/j.elerap.2017.12.006
  • Witten, I. H., Frank, I., Hall, M. A., & Pal, C. (2016). Data mining. practical machine learning tools and techniques. San Francisco: Morgan Kaufmann.
  • Xia, Y., Liu, C., Da, B., & Xie, F. (2018). A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Systems with Applications, 93, 182–199. doi:10.1016/j.eswa.2017.10.022
  • Xia, Y., Liu, C., Li, Y., & Liu, N. (2017). A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Systems With Applications, 78, 225–241. doi:10.1016/j.eswa.2017.02.017
  • Xiao, H., Xiao, Z., & Wang, Y. (2016). Ensemble classification based on supervised clustering for credit scoring. Applied Soft Computing Journal, 43, 73–86. doi:10.1016/j.asoc.2016.02.022
  • Yang, H., Ahn, H. J., Kim, M. H., & Ryu, D. (2017). Information asymmetry and investor trading behavior around bond rating change announcements. Emerging Markets Review, 32, 38–51. doi:10.1016/j.ememar.2017.05.004
  • Yang, Z., You, W., & Ji, G. (2011). Using partial least squares and support vector machines for bankruptcy prediction. Expert Systems with Applications, 38(7), 8336–8342. doi:10.1016/j.eswa.2011.01.021
  • Zhang, Q., Wang, J., Lu, A., Wang, S., & Ma, J. (2018). An improved SMO algorithm for financial credit risk assessment – evidence from China’s banking. Neurocomputing, 272, 314–325. doi:10.1016/j.neucom.2017.07.002
  • Zhou, L., Lu, D., & Fujita, H. (2015). The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches. Knowledge-Based Systems, 85, 52–61. doi:10.1016/j.knosys.2015.04.017
  • Zhou, Z. H., & Liu, X. Y. (2006). Training Cost-Sensitive Neural Networks with Methods Addressing the Class Imbalance Problem. IEEE Transactions on Knowledge and Data Engineering, 18(1), 63–77.
  • Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59–82. doi:10.2307/2490859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.