325
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective biased randomised iterated greedy for robust permutation flow shop scheduling problem under disturbances

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1847-1859 | Received 08 Aug 2018, Accepted 02 Jun 2019, Published online: 12 Jul 2019

References

  • Al-Behadili M., Ouelhadj D., & Jones D. (2017). Multi-objective particle swarm optimisation for robust dynamic scheduling in a permutation flow shop. In A. Madureira, A. Abraham, D. Gamboa, & P. Novais (Eds.), Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing (vol. 557, pp. 498–507). Cham: Springer. doi: 10.1007/978-3-319-53480-0_49
  • Arroyo, J. E. C., Leung, J. Y. T., & Tavares, R. G. (2019). An iterated greedy algorithm for total flow time minimization in unrelated parallel batch machines with unequal job release times. Engineering Applications of Artificial Intelligence, 77, 239–254. doi: 10.1016/j.engappai.2018.10.012
  • Aytug, H., Lawley, A., McKay, K., Mohan, S., & Uzsoy, R. (2005). Executing production schedules in the face of uncertainties: A review and some future directions. European Journal of Operational Research, 161(1), 86–110. doi: 10.1016/j.ejor.2003.08.027
  • Bertsimas, D., Brown, B., D., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464–501. doi: 10.1137/080734510
  • Collet, P., & Rennard, J. (2007). Stochastic optimization algorithms. CoRR abs/0704.3780, arXiv.org/abs/0704.3780.
  • Cowling, P., & Johansson, M. (2002). Using real time information for effective dynamic scheduling. European Journal of Operational Research, 139(2), 230–244. doi: 10.1016/S0377-2217(01)00355-1
  • Cowling, P. I., Ouelhadj, D., & Petrovic, S. (2003). A multi-agent architecture for dynamic scheduling of steel hot rolling. Journal of Intelligent Manufacturing, 14(5), 457–470. doi: 10.1023/A:1025701325275.
  • Graham, R., Lawler, E., Lenstra, J., & Kan, A. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. In P. Hammer, E. Johnson, & B. Korte (Eds.), Annals of Discrete Mathematics (vol. 5, pp. 287–326). Elsevier. doi: 10.1016/S0167-5060(08)70356-X
  • Jacobs, L. W., & Brusco, M. J. (1995). Note: A local-search heuristic for large set-covering problems. Naval Research Logistics (NRL), 42(7), 1129–1140. doi: 10.1002/1520-6750(199510)42:7⟨1129::AID-NAV3220420711⟩3.0.CO;2-M
  • Jain, H., & Deb, K. (2014). An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: Handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation, 18(4), 602–622. doi: 10.1109/TEVC.2013.2281534
  • Jones, D. (2011). A practical weight sensitivity algorithm for goal and multiple objective programming. European Journal of Operational Research, 213(1), 238–245. doi: 10.1016/j.ejor.2011.03.012
  • Juan, A. A., Faulin, J., Ferrer, A., Lourenço, H. R., & Barrios, B. (2013). Mirha: Multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems. TOP, 21(1), 109–132. doi: 10.1007/s11750-011-0245-1
  • Juan, A. A., Lourenço, H. R., Mateo, M., Luo, R., & Castella, Q. (2014). Using iterated local search for solving the flow-shop problem: Parallelization, parametrization, and randomization issues. International Transactions in Operational Research, 21(1), 103–126. doi: 10.1111/itor.12028
  • Katragjini, K., Vallada, E., & Ruiz, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research, 51(3), 780–797. doi: 10.1080/00207543.2012.666856
  • Kotz, S., & Van Dorp, J. (2004). Beyond beta: Other continuous families of distributions with bounded support and applications. World Scientific. doi: 10.1007/978-3-319-26580-3
  • Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408–416. doi: 10.1287/trsc.1090.0301
  • Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284–302. doi: 10.1109/TEVC.2008.925798
  • Liu, F., Wang, S., Hong, Y., & Yue, X. (2017). On the robust and stable flowshop scheduling under stochastic and dynamic disruptions. IEEE Transactions on Engineering Management, 64(4), 539–553. doi: 10.1109/TEM.2017.2712611
  • Luo, W., Luo, T., Goebel, R., & Lin, G. (2018). Rescheduling due to machine disruption to minimize the total weighted completion time. Journal of Scheduling, 21(5), 565–578. doi: 10.1007/s10951-018-0575-z
  • Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91–95. doi: 10.1016/0305-0483(83)90088-9
  • Osman, I., & Potts, C. (1989). Simulated annealing for permutation flow-shop scheduling. Omega, 17(6), 551–557. doi: 10.1016/0305-0483(89)90059-5
  • Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing systems. Journal of Scheduling, 12(4), 417. doi: 10.1007/s10951-008-0090-8
  • Pan, Q. K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research, 80(Supplement C), 50–60. doi: 10.1016/j.cor.2016.11.022
  • Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems (5th edn). Springer International Publishing. doi: 10.1142/5720
  • Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times. Journal of Manufacturing Systems, 33(1), 84–92. doi: 10.1016/j.jmsy.2013.03.004
  • Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033–2049. doi: 10.1016/j.ejor.2005.12.009
  • Ruiz, R., & Stützle, T. (2008). An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. European Journal of Operational Research, 187(3), 1143–1159. doi: 10.1016/j.ejor.2006.07.029
  • Ruiz, R., Maroto, C., & Alcaraz, J. (2006). Two new robust genetic algorithms for the flowshop scheduling problem. Omega, 34(5), 461–476. doi: 10.1016/j.omega.2004.12.006
  • Ruiz, R., Pan, Q. K., & Naderi, B. (2019). Iterated greedy methods for the distributed permutation flowshop scheduling problem. Omega, 83, 213–222. doi: 10.1016/j.omega.2018.03.004
  • Sabuncuoglu, I., & Goren, S. (2009). Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing, 22(2), 138–157. doi: 10.1080/09511920802209033
  • Salomon, S., Purshouse, R. C., Giaghiozis, I., & Fleming, P. J. (2016). A toolkit for generating scalable stochastic multiobjective test problems. Paper presented at the Proceedings of the Genetic and Evolutionary Computation Conference 2016, ACM, New York, NY, USA, GECCO ’16, pp 597–604.
  • Suwa, H., & Sandoh, H. (2012). Online scheduling in manufacturing: A cumulative delay approach. London: Springer.
  • Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278–285. doi: 10.1016/0377-2217(93)90182-M
  • Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manufacturing systems: A framework of strategies, policies, and methods. Journal of Scheduling, 6(1), 39–62. doi: 10.1023/A:1022235519958
  • Wojakowski, P., & Warołek, D. (2014). The classification of scheduling problems under production uncertainty. Research in Logistics & Production, 4(3), 245–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.