160
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Application of non-deterministic uncertainty models to improve resource constraint optimal scheduling

& ORCID Icon
Pages 1607-1618 | Received 06 Mar 2019, Accepted 10 Feb 2020, Published online: 21 Apr 2020

References

  • Atli, O., & Kahraman, C. (2012). Fuzzy resource-constrained project scheduling using taboo search algorithm. International Journal of Intelligent Systems, 27(10), 873–907. doi:10.1002/int.21552
  • Demeulemeester, E., & Herroelen, W. (2002). Project scheduling: a research handbook. Kluwer Academic Publishers.
  • Demeulemeester, E., Herroelen, W., Leus, R. (2010). Proactive-reactive project scheduling. In C. Artigues, S. Demassey, & E. Néron (Eds.), Resource‐constrained project scheduling: Models, algorithms, extensions and applications (pp. 203–211). ISTE. http://dx.doi.org/10.1002/9780470611227.ch13
  • Dorn, J., Kerr, R., & Thalhammer, G. (1995). Reactive scheduling: Improving the robustness of schedules and restricting the effects of shop floor disturbances by fuzzy reasoning. International Journal of Human–Computer Studies, 42(6), 687–704. doi:10.1006/ijhc.1995.1031
  • Ferson, S., Kreinovich, V., Ginzburg, L. S., Myers, D., & Sentz, K. (2003). Constructing probability boxes and Dempster–Shafer structures. Albuquerque, New Mexico and Livermore, California: Sandia National Laboratories.
  • Flyvbjerg, B., Bruzelius, N., & Rothengatter, W. (2003). MegaProjects and risk: An anatomy of ambition. Cambridge University Press.
  • Herroelen, W. (2005). Project scheduling: Theory and practice. Production and operations management. Production and Operations Management, 14(4), 413–432. doi:10.1111/j.1937-5956.2005.tb00230.x
  • Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289–306. doi:10.1016/j.ejor.2004.04.002
  • Hussein, B., & Moselhi, O. (2019). An evolutionary stochastic discrete time-cost trade-off method. Canadian Journal of Civil Engineering, 46(7), 581–600. doi:10.1139/cjce-2018-0352
  • Knyazeva, M., Bozhenyuk, A., & Rozenberg, I. (2015). Resource-constrained project scheduling approach under fuzzy conditions. Procedia Computer Science, 77, 56–64. doi:10.1016/j.procs.2015.12.359
  • Leus, R., & Herroelen, W. (2005). The complexity of machine scheduling for stability with a single disrupted job. Operations Research Letters, 33(2), 151–156. doi:10.1016/j.orl.2004.04.008
  • Ludwig, A., Möhring, R. H., & Stork, F. (2001). A computational study on bounding the makespan distribution in stochastic project networks. Annals of Operations Research, 102, 49–64. doi:10.1023/A:1010945830113
  • MangoGen. (n.d.). Oritames APS scheduler. http://www.oritames.com/
  • Möhring, R. H., & Radermacher, F. J. (1985). Introduction to stochastic scheduling problems. In K. Neumann & D. Pallaschke (Eds.), Contributions to Operations Research (pp. 72–130). Springer Berlin Heidelberg.
  • Moselhi, O., & Lorterapong, P. (1993). Near optimal solution for resource-constrained scheduling problems. Construction Management and Economics, 11(4), 293–303. doi:10.1080/01446199300000029
  • Reddy, S. S., Bijwe, P. R., & Abhyankar, A. R. (2013). Multi-objective market clearing of electrical energy, spinning reserves and emission for wind-thermal power system. International Journal of Electrical Power & Energy Systems, 53, 782–794. doi:10.1016/j.ijepes.2013.05.050
  • Reddy, S. S., Bijwe, P. R., & Abhyankar, A. R. (2015a). Joint energy and spinning reserve market clearing incorporating wind power and load forecast uncertainties. IEEE Systems Journal, 9(1), 152–164. doi:10.1109/JSYST.2013.2272236
  • Reddy, S. S., Bijwe, P. R., & Abhyankar, A. R. (2015b). Optimum day-ahead clearing of energy and reserve markets with wind power generation using anticipated real-time adjustment costs. International Journal of Electrical Power & Energy Systems, 71, 242–253. doi:10.1016/j.ijepes.2015.03.002
  • Reddy, S. S., Bijwe, P. R., & Abhyankar, A. R. (2015c). Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period. IEEE Systems Journal, 9, 1440–1451. doi:10.1109/JSYST.2014.2325967
  • Reddy, S. S., Park, J. Y., & Jung, C. M. (2016). Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm. Frontiers in Energy, 10(3), 355–362. doi:10.1007/s11708-016-0414-x
  • Sanmarti, E., Huercio, A., Espuña, A., & Puigjaner, L. (1996). A combined scheduling/reactive scheduling strategy to minimize the effect of process operations uncertainty in batch plants. Computers & Chemical Engineering, 20, S1263–S1268. doi:10.1016/0098-1354(96)00218-9
  • Shaha, R., Kothari, D. P., & Chandrakar, V. S. (2016). Optimization of renewable energy sources for hybrid power generation [Paper presentation]. 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE) (pp. 1–5). doi:10.1109/PESTSE.2016.7516527
  • Shariatmadar, K., Misra, A., Debrouwere, F., & Versteyhe, M. (2019). Optimal modelling of process variations in industry 4.0 facility under advanced p-box uncertainty. IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, 2019, pp. 180–185
  • Siemens. (n.d.). SIMATIC IT Preactor advanced scheduling software. http://www.preactor.com/Products/Scheduling-Software
  • Smith, S. F. (1995). Reactive scheduling systems. In D. E. Brown & W. T. Scherer (Eds.), Intelligent scheduling systems (pp. 155–192). Springer US. doi:10.1007/978-1-4615-2263-8_7
  • Snoo, C., Wezel, W., Wortmann, H., & Gaalman, G. (2011). Coordination activities of human planners during rescheduling: Case analysis and event handling procedure. International Journal of Production Research, 49, 2101–2122. doi:10.1080/00207541003639626
  • Walley, P. (1991). Statistical reasoning with imprecise probabilities. Taylor & Francis.
  • Williamson, R. C., & Downs, T. (1990). Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds. International Journal of Approximate Reasoning, 4(2), 89–158. doi:10.1016/0888-613X(90)90022-T
  • Zhang, Q., Zeng, Z., Zio, E., & Kang, R. (2017). Probability box as a tool to model and control the effect of epistemic uncertainty in multiple dependent competing failure processes. Applied Soft Computing, 56, 570–579. doi:10.1016/j.asoc.2016.06.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.