829
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic passenger demand-oriented train scheduling optimization considering flexible short-turning strategy

, , &
Pages 1707-1725 | Received 19 Aug 2019, Accepted 31 Jul 2020, Published online: 09 Sep 2020

References

  • Ceder, A. (1988). Designing transit short-turn trips with the elimination of imbalanced loads. In Daduna, Joachim R., & Wren, Anthony (Eds.), Computer-aided transit scheduling (pp. 288–303). Springer.
  • Banks, J. H. (1990). Optimal headways for multiroute transit systems. Journal of Advanced Transportation, 24(2), 127–155. https://doi.org/10.1002/atr.5670240205
  • Barrena, E., Canca, D., Coelho, L. C., & Laporte, G. (2014a). Exact formulations and algorithm for the train timetabling problem with dynamic demand. Computers & Operations Research, 44, 66–74. https://doi.org/10.1016/j.cor.2013.11.003
  • Barrena, E., Canca, D., Coelho, L. C., & Laporte, G. (2014b). Single-line rail rapid transit timetabling under dynamic passenger demand. Transportation Research Part B: Methodological, 70, 134–150. https://doi.org/10.1016/j.trb.2014.08.013
  • Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., & Wagenaar, J. (2014). An overview of recovery models and algorithms for real-time railway rescheduling. Transportation Research Part B: Methodological, 63, 15–37. https://doi.org/10.1016/j.trb.2014.01.009
  • Canca, D., Barrena, E., Algaba, E., & Zarzo, A. (2014). Design and analysis of demand-adapted railway timetables. Journal of Advanced Transportation, 48(2), 119–137. https://doi.org/10.1002/atr.1261
  • Canca, D., Barrena, E., Laporte, G., & Ortega, F. A. (2016). A short-turning policy for the management of demand disruptions in rapid transit systems. Annals of Operations Research, 246(1–2), 145–166. https://doi.org/10.1007/s10479-014-1663-x
  • Canca, D., Zarzo, A., González, ‐R., P. L., Barrena, E., & Algaba, E. (2013). A methodology for schedule‐based paths recommendation in multimodal public transportation networks. Journal of Advanced Transportation, 47(3), 319–335. https://doi.org/10.1002/atr.1207
  • Caprara, A., Fischetti, M., & Toth, P. (2002). Modeling and solving the train timetabling problem. Operations Research, 50(5), 851–861. https://doi.org/10.1287/opre.50.5.851.362
  • Ceder, A. (1989). Optimal design of transit short-turn trips. Transportation Research Record, 1221(557), 8–22.
  • Cordeau, J.-F., Toth, P., & Vigo, D. (1998). A survey of optimization models for train routing and scheduling. Transportation Science, 32(4), 380–404. https://doi.org/10.1287/trsc.32.4.380
  • Delle Site, P., & Filippi, F. (1998). Service optimization for bus corridors with short-turn strategies and variable vehicle size. Transportation Research Part A: Policy and Practice, 32(1), 19–38. https://doi.org/10.1016/S0965-8564(97)00016-5
  • Furth, P. G. (1987). Short turning on transit routes. Transportation Research Record, 1108, 42–52.
  • Ghaemi, N., Cats, O., & Goverde, R. M. (2017). A microscopic model for optimal train short-turnings during complete blockages. Transportation Research Part B: Methodological, 105, 423–437. https://doi.org/10.1016/j.trb.2017.10.002
  • Ghoneim, N., & Wirasinghe, S. (1986). Optimum zone structure during peak periods for existing urban rail lines. Transportation Research Part B: Methodological, 20(1), 7–18. https://doi.org/10.1016/0191-2615(86)90032-9
  • Hadas, Y., & Ceder, A. (2010). Optimal coordination of public-transit vehicles using operational tactics examined by simulation. Transportation Research Part C: Emerging Technologies, 18(6), 879–895. https://doi.org/10.1016/j.trc.2010.04.002
  • Hamdouch, Y., & Lawphongpanich, S. (2008). Schedule-based transit assignment model with travel strategies and capacity constraints. Transportation Research Part B: Methodological, 42(7–8), 663–684. https://doi.org/10.1016/j.trb.2007.11.005
  • Hamdouch, Y., & Lawphongpanich, S. (2010). Congestion pricing for schedule-based transit networks. Transportation Science, 44(3), 350–366. https://doi.org/10.1287/trsc.1090.0312
  • Han, B., Zhou, W., Li, D., & Yin, H. (2015). Dynamic schedule-based assignment model for urban rail transit network with capacity constraints. The Scientific World Journal, 2015, 1–12. https://doi.org/10.1155/2015/940815
  • Harrod, S. (2011). Modeling network transition constraints with hypergraphs. Transportation Science, 45(1), 81–97. https://doi.org/10.1287/trsc.1100.0337
  • He, B., Song, R., He, S., & Xu, Y. (2014). High-speed rail train timetabling problem: A time-space network based method with an improved branch-and-price algorithm. Mathematical Problems in Engineering, 2014, 1–15. https://doi.org/10.1155/2014/641562
  • Huang, R., & Peng, Z.-R. (2002). Schedule-based path-finding algorithms for transit trip-planning systems. Transportation Research Record: Journal of the Transportation Research Board, 1783(1), 142–148. https://doi.org/10.3141/1783-18
  • Ibarra-Rojas, O., Delgado, F., Giesen, R., & Muñoz, J. (2015). Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological, 77, 38–75. https://doi.org/10.1016/j.trb.2015.03.002
  • Kang, L., Wu, J., Sun, H., Zhu, X., & Gao, Z. (2015). A case study on the coordination of last trains for the Beijing subway network. Transportation Research Part B: Methodological, 72, 112–127. https://doi.org/10.1016/j.trb.2014.09.003
  • Kang, L., Zhu, X., Sun, H., Puchinger, J., Ruthmair, M., & Hu, B. (2016). Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks. Transportation Research Part B: Methodological, 93, 17–36. https://doi.org/10.1016/j.trb.2016.07.006
  • Kroon, L., Huisman, D., Abbink, E., Fioole, P.-J., Fischetti, M., Maróti, G., Schrijver, A., Steenbeek, A., & Ybema, R. (2009). The new Dutch timetable: The OR revolution. Interfaces, 39(1), 6–17. https://doi.org/10.1287/inte.1080.0409
  • Leffler, D., Cats, O., Jenelius, E., Burghout, W. (2017). Real-time short-turning in high frequency bus services based on passenger cost. In Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017 5th IEEE International Conference on (pp. 861–866). IEEE.
  • Liebchen, C., & Möhring, R. H. (2007). The modeling power of the periodic event scheduling problem: Railway timetables-and beyond. In F. Geraets, et al. (Eds.), Algorithmic methods for railway optimization, Lecture Notes in Computer Science (Vol. 4359, pp. 3–40). Springer.
  • Liu, X., Huang, M., Qu, H., & Chien, S. (2018). Minimizing metro transfer waiting time with AFCS data using simulated annealing with parallel computing. Journal of Advanced Transportation, 2018, 1–17. https://doi.org/10.1155/2018/4218625
  • Liu, J., & Zhou, X. (2016). Capacitated transit service network design with boundedly rational agents. Transportation Research Part B: Methodological , 93, 225–250. https://doi.org/10.1016/j.trb.2016.07.015
  • Lu, K., Han, B., & Zhou, X. (2018). Smart urban transit systems: from integrated framework to interdisciplinary perspective. Urban Rail Transit, 4(2), 49–67. https://doi.org/10.1007/s40864-018-0080-x
  • Mesa, J. A., Ortega, F. A., & Pozo, M. A. (2009). Effective allocation of fleet frequencies by reducing intermediate stops and short turning in transit systems. In Ahuja, R. K., Möhring, R. H., & Zaroliagis, C.D. (Eds.), Robust and online large-scale optimization: Models and Techniques for Transportation Systems (pp. 293–309). Berlin, Heidelberg: Springer.
  • Nguyen, S., Pallottino, S., & Malucelli, F. (2001). A modeling framework for passenger assignment on a transport network with timetables. Transportation Science, 35(3), 238–249. https://doi.org/10.1287/trsc.35.3.238.10152
  • Niu, H. M., Tian, X. P., & Zhou, X. S. (2015b). Demand-driven train schedule synchronization for high-speed rail lines. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2642–2652. https://doi.org/10.1109/TITS.2015.2415513
  • Niu, H., & Zhou, X. (2013). Optimizing urban rail timetable under time-dependent demand and oversaturated conditions. Transportation Research Part C: Emerging Technologies, 36, 212–230. https://doi.org/10.1016/j.trc.2013.08.016
  • Niu, H., Zhou, X., & Gao, R. (2015a). Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints. Transportation Research Part B: Methodological, 76, 117–135. https://doi.org/10.1016/j.trb.2015.03.004
  • Nuzzolo, A., Crisalli, U., & Rosati, L. (2012). A schedule-based assignment model with explicit capacity constraints for congested transit networks. Transportation Research Part C: Emerging Technologies, 20(1), 16–33. https://doi.org/10.1016/j.trc.2011.02.007
  • Nuzzolo, A., Russo, F., & Crisalli, U. (2001). A doubly dynamic schedule-based assignment model for transit networks. Transportation Science, 35(3), 268–285. https://doi.org/10.1287/trsc.35.3.268.10149
  • Pelletier, M.-P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557–568. https://doi.org/10.1016/j.trc.2010.12.003
  • Poon, M., Wong, S., & Tong, C. (2004). A dynamic schedule-based model for congested transit networks. Transportation Research Part B: Methodological, 38(4), 343–368. https://doi.org/10.1016/S0191-2615(03)00026-2
  • Shang, P., Li, R., Guo, J., Xian, K., & Zhou, X. (2019). Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach. Transportation Research Part B: Methodological, 121, 135–167. https://doi.org/10.1016/j.trb.2018.12.015
  • Shang, P., Li, R., Liu, Z., Xian, K., & Guo, J. (2018a). Timetable synchronization and optimization considering time-dependent passenger demand in an urban subway network. Transportation Research Record: Journal of the Transportation Research Board, 2672(8), 243–254. https://doi.org/10.1177/0361198118772958
  • Shang, P., Li, R., Liu, Z., Yang, L., & Wang, Y. (2018b). Equity-oriented skip-stopping schedule optimization in an oversaturated urban rail transit network. Transportation Research Part C: Emerging Technologies, 89, 321–343. https://doi.org/10.1016/j.trc.2018.02.016
  • Steinzen, I., Gintner, V., Suhl, L., & Kliewer, N. (2010). A time-space network approach for the integrated vehicle-and crew-scheduling problem with multiple depots. Transportation Science, 44(3), 367–382. https://doi.org/10.1287/trsc.1090.0304
  • Sun, L., Jin, J. G., Lee, D.-H., Axhausen, K. W., & Erath, A. (2014). Demand-driven timetable design for metro services. Transportation Research Part C: Emerging Technologies, 46, 284–299. https://doi.org/10.1016/j.trc.2014.06.003
  • Tirachini, A., Cortés, C. E., & Jara-Díaz, S. R. (2011). Optimal design and benefits of a short turning strategy for a bus corridor. Transportation, 38(1), 169–189. https://doi.org/10.1007/s11116-010-9287-8
  • Tirachini, A., & Cortés, C. E. (2007). Disaggregate modeling of preplanned short-turning strategies in transit corridors. In Transportation Research Board 86th Annual Meeting, Washington DC., 21–25 Jan 2007.
  • Tong, C., & Wong, S. (1999). A stochastic transit assignment model using a dynamic schedule-based network. Transportation Research Part B: Methodological, 33(2), 107–121. https://doi.org/10.1016/S0191-2615(98)00030-7
  • Tong, C., Wong, S., Poon, M., & Tan, M. (2001). A schedule-based dynamic transit network model — Recent advances and prospective future research. Journal of Advanced Transportation, 35(2), 175–195. https://doi.org/10.1002/atr.5670350207
  • Wang, Y., Tang, T., Ning, B., & Meng, L. (2017). Integrated optimization of regular train schedule and train circulation plan for urban rail transit lines. Transportation Research Part E: Logistics and Transportation Review, 105, 83–104. https://doi.org/10.1016/j.tre.2017.06.001
  • Wang, Y., Tang, T., Ning, B., van den Boom, T. J., & De Schutter, B. (2015). Passenger-demands-oriented train scheduling for an urban rail transit network. Transportation Research Part C: Emerging Technologies, 60, 1–23. https://doi.org/10.1016/j.trc.2015.07.012
  • Wu, J., Liu, M., Sun, H., Li, T., Gao, Z., & Wang, D. Z. (2015). Equity-based timetable synchronization optimization in urban subway network. Transportation Research Part C: Emerging Technologies, 51, 1–18. https://doi.org/10.1016/j.trc.2014.11.001
  • Yin, J., Tang, T., Yang, L., Gao, Z., & Ran, B. (2016). Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach. Transportation Research Part B: Methodological, 91, 178–210. https://doi.org/10.1016/j.trb.2016.05.009
  • Yin, J., Yang, L., Tang, T., Gao, Z., & Ran, B. (2017). Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches. Transportation Research Part B: Methodological, 97, 182–213. https://doi.org/10.1016/j.trb.2017.01.001
  • Yue, Y., Han, J., Wang, S., & Liu, X. (2017). Integrated train timetabling and rolling stock scheduling model based on time—Dependent demand for urban rail transit. Computer-Aided Civil and Infrastructure Engineering, 32(10), 856–873. https://doi.org/10.1111/mice.12300
  • Zhang, X., & Nie, L. (2016). Integrating capacity analysis with high-speed railway timetabling: A minimum cycle time calculation model with flexible overtaking constraints and intelligent enumeration. Transportation Research Part C: Emerging Technologies, 68, 509–531. https://doi.org/10.1016/j.trc.2016.05.005
  • Zhang, M., Wang, Y., Su, S., Tang, T., & Ning, B. (2018). A short turning strategy for train scheduling optimization in an urban rail transit line: The case of Beijing subway line 4. Journal of Advanced Transportation, 2018, 1–19. https://doi.org/10.1155/2018/5367295
  • Zhan, S., Kroon, L. G., Veelenturf, L. P., & Wagenaar, J. C. (2015). Real-time high-speed train rescheduling in case of a complete blockage. Transportation Research Part B: Methodological, 78, 182–201. https://doi.org/10.1016/j.trb.2015.04.001
  • Zhan, S., Kroon, L. G., Zhao, J., & Peng, Q. (2016). A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage. Transportation Research Part E: Logistics and Transportation Review, 95, 32–61. https://doi.org/10.1016/j.tre.2016.07.015
  • Zhou, L., Tong, L. C., Chen, J., Tang, J., & Zhou, X. (2017). Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks. Transportation Research Part B: Methodological, 97, 157–181. https://doi.org/10.1016/j.trb.2017.01.002
  • Zhu, Y., & Goverde, R. M. (2019). Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions. Transportation Research Part B: Methodological, 123, 149–181. https://doi.org/10.1016/j.trb.2019.02.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.