1,272
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Vehicle routing: Review of benchmark datasets

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1794-1807 | Received 02 Jun 2020, Accepted 28 Jan 2021, Published online: 19 Feb 2021

References

  • Abdulkader, M., Gajpal, Y., & ElMekkawy, T. Y. (2018). Vehicle routing problem in omni-channel retailing distribution systems. International Journal of Production Economics, 196, 43–55. https://doi.org/10.1016/j.ijpe.2017.11.011
  • Absi, N., Cattaruzza, D., Feillet, D., & Housseman, S. (2017). A relax-and-repair heuristic for the swap-body vehicle routing problem. Annals of Operations Research, 253(2), 957–978. https://doi.org/10.1007/s10479-015-2098-8
  • Adewumi, A. O., & Adeleke, O. J. (2018). A survey of recent advances in vehicle routing problems. International Journal of System Assurance Engineering and Management, 9(1), 155–172. https://doi.org/10.1007/s13198-016-0493-4
  • Andelmin, J., & Bartolini, E. (2017). An exact algorithm for the green vehicle routing problem. Transportation Science, 51(4), 1288–1303. https://doi.org/10.1287/trsc.2016.0734
  • Angelelli, E., Archetti, C., Filippi, C., & Vindigni, M. (2017). The probabilistic orienteering problem. Computers & Operations Research, 81, 269–281. https://doi.org/10.1016/j.cor.2016.12.025
  • Angelelli, E., Archetti, C., & Vindigni, M. (2014). The clustered orienteering problem. European Journal of Operational Research, 238(2), 404–414. https://doi.org/10.1016/j.ejor.2014.04.006
  • Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team orienteering problem. Journal of Heuristics, 13(1), 49–76. https://doi.org/10.1007/s10732-006-9004-0
  • Archetti, C., & Speranza, M. (2008). The split delivery vehicle routing problem: A survey. In B. Golden, S. Raghavan, & E. Wasil (Eds.), Vehicle routing problem: Latest advances and new challanges, volume 43 of operations research computer science interfaces (pp. 103–122). Springer.
  • Archetti, C., & Speranza, M. G. (2012). Vehicle routing problems with split deliveries. International Transactions in Operational Research, 19(1–2), 3–22. https://doi.org/10.1111/j.1475-3995.2011.00811.x
  • Augerat, P. (1995). Approche polyédrale du problème de tournées de véhicules [PhD thesis]. Institut National Polytechnique de Grenoble.
  • Baker, E. K., & Schaffer, J. R. (1986). Solution improvement heuristics for the vehicle routing and scheduling problem with time window constraints. American Journal of Mathematical and Management Sciences, 6(3–4), 261–300. https://doi.org/10.1080/01966324.1986.10737197
  • Baldacci, R., Toth, P., & Vigo, D. (2007). Recent advances in vehicle routing exact algorithms. 4OR, 5(4), 269–298. https://doi.org/10.1007/s10288-007-0063-3
  • Bartolini, E., & Schneider, M. (2020). A two-commodity flow formulation for the capacitated truck-and-trailer routing problem. Discrete Applied Mathematics, 275, 3–18. https://doi.org/10.1016/j.dam.2018.07.033
  • Bellmore, M., & Nemhauser, G. (1968). Travelling salesman problem: A survey. Operations Research, 16(3), 538–558. https://doi.org/10.1287/opre.16.3.538
  • Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering, 99, 300–313. https://doi.org/10.1016/j.cie.2015.12.007
  • Braysy, I., & Gendreau, M. (2005a). Vehicle routing problem with time windows, part 1: Route construction and local search algorithms. Transportation Science, 39(1), 104–118. https://doi.org/10.1287/trsc.1030.0056
  • Braysy, I., & Gendreau, M. (2005b). Vehicle routing problem with time windows. Transportation Science, 39(1), 119–139. https://doi.org/10.1287/trsc.1030.0057
  • Bräysy, O., Dullaert, W., & Gendreau, M. (2004). Evolutionary algorithms for the vehicle routing problem with time windows. Journal of Heuristics, 10(6), 587–611. https://doi.org/10.1007/s10732-005-5431-6
  • Bräysy, O., Porkka, P. P., Dullaert, W., Repoussis, P. P., & Tarantilis, C. D. (2009). A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows. Expert Systems with Applications, 36(4), 8460–8475. https://doi.org/10.1016/j.eswa.2008.10.040
  • Bulhões, T., Hà, M. H., Martinelli, R., & Vidal, T. (2018). The vehicle routing problem with service level constraints. European Journal of Operational Research, 265(2), 544–558. https://doi.org/10.1016/j.ejor.2017.08.027
  • Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., & Juan, A. A. (2015). Rich vehicle routing problem. ACM Computing Surveys, 47(2), 1–28. https://doi.org/10.1145/2666003
  • Cattaruzza, D., Absi, N., & Feillet, D. (2018). Vehicle routing problems with multiple trips. Annals of Operations Research, 271(1), 127–159. https://doi.org/10.1007/s10479-018-2988-7
  • Cattaruzza, D., Absi, N., Feillet, D., & Gonzalez-Feliu, J. (2017). Vehicle routing problems for city logistics. EURO Journal on Transportation and Logistics, 6(1), 51–79. https://doi.org/10.1007/s13676-014-0074-0
  • Christiaens, J., Çalik, H., Wauters, T., Chirayil Chandrasekharan, R., & Vanden Berghe, G. (2020). The prisoner transportation problem. European Journal of Operational Research, 284(3), 1058–1073. https://doi.org/10.1016/j.ejor.2020.01.027
  • Christiansen, C. H., & Lysgaard, J. (2007). A branch-and-price algorithm for the capacitated arc routing problem with stochastic demands. Operations Research Letters, 35(6), 773–781. https://doi.org/10.1016/j.orl.2006.12.009
  • Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle dispatching problems. Journal of the Operational Research Society, 20(3), 309–318. https://doi.org/10.1057/jors.1969.75
  • Christofides, N., Mingozzi, A., & Toth, P. (1981a). Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Mathematical Programming, 20(1), 255–282. https://doi.org/10.1007/BF01589353
  • Christofides, N., Mingozzi, A., & Toth, P. (1981b). Space state relaxation procedures for the computation of bounds to routing problems. Networks, 11(2), 145–164. https://doi.org/10.1002/net.3230110207
  • Christofides, N., Mingozzi, A., & Toth, P. (1979a). The vehicle routing problem. In N. Christofides, A. Mingozzi, P. Toth, & C. Sandi (Eds.), Combinatorial optimization (pp. 315–338).Wiley. Chapter 11.
  • Christofides, N., Mingozzi, A., Toth, P., & Sandi, C. (Eds.). (1979b). Combinatorial optimization. John Wiley & Sons.
  • Clarke, G., & Wright, J. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568–581. https://doi.org/10.1287/opre.12.4.568
  • Cordeau, J.-F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30(2), 105–119. https://doi.org/10.1002/(SICI)1097-0037(199709)30:2<105::AID-NET5>3.0.CO;2-G
  • Cordeau, J.-F., Laporte, G., & Mercier, A. (2001). A unified tabu search heuristic for vehicle routing problems with time windows. Journal of the Operational Research Society, 52(8), 928–936. https://doi.org/10.1057/palgrave.jors.2601163
  • Costa, L., Contardo, C., & Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for vehicle routing. Transportation Science, 53(4), 946–985. https://doi.org/10.1287/trsc.2018.0878
  • Dalmeijer, K., & Spliet, R. (2018). A branch-and-cut algorithm for the time window assignment vehicle routing problem. Computers & Operations Research, 89, 140–152. https://doi.org/10.1016/j.cor.2017.08.015
  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91. https://doi.org/10.1287/mnsc.6.1.80
  • De Smet, G. (2014). Vehicle routing with real road distances - optaplanner blog. https://www.optaplanner.org/blog/2014/09/02/VehicleRoutingWithRealRoadDistances.html.
  • Defryn, C., Sörensen, K., & Cornelissens, T. (2016). The selective vehicle routing problem in a collaborative environment. European Journal of Operational Research, 250(2), 400–411. https://doi.org/10.1016/j.ejor.2015.09.059
  • Demir, E., Bektaş, T., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the pollution-routing problem. European Journal of Operational Research, 223(2), 346–359. https://doi.org/10.1016/j.ejor.2012.06.044
  • Drexl, M. (2012). Synchronization in vehicle routing-A survey of VRPs with multiple synchronization constraints. Transportation Science, 46(3), 297–316. https://doi.org/10.1287/trsc.1110.0400
  • Eilon, S., Watson-Gandy, C., & Christofides, N. (Eds.). (1971a). Distribution management, mathematical modeling and practical analysis (pp. 181–203). Vehicle Scheduling. Chapter 9.
  • Eilon, S., Watson-Gandy, C., & Christofides, N. (Eds.). (1971b). Distribution management, mathematical modeling and practical analysis, Chapter 4: Multu-depot location for deterministic demand (pp. 58–91).London.
  • Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472–1483. https://doi.org/10.1016/j.cie.2009.05.009
  • Elshaer, R., & Awad, H. (2020). A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Computers & Industrial Engineering, 140, 106242. https://doi.org/10.1016/j.cie.2019.106242
  • Erdelic, T., & Caric, T. (2019). A survey on the electric vehicle routing problem: Variants and solution approaches. Journal of Advanced Transportation, 2019, 5075671. https://doi.org/10.1155/2019/5075671
  • Erdoğan, S., & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100–114. https://doi.org/10.1016/j.tre.2011.08.001
  • Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and Transportation Review, 71, 111–128. https://doi.org/10.1016/j.tre.2014.09.003
  • Fischetti, M., Toth, P., & Vigo, D. (1994). A branch-and-bound algorithm for the capacitated vehicle routing problem on directed graphs. Operations Research, 42(5), 846–859. https://doi.org/10.1287/opre.42.5.846
  • Fisher, M. L. (1994). Optimal solution of vehicle routing problems using minimum k-trees. Operations Research, 42(4), 626–642. https://doi.org/10.1287/opre.42.4.626
  • Gajpal, Y., Abdulkader, M. M. S., Zhang, S., & Appadoo, S. S. (2017). Optimizing garbage collection vehicle routing problem with alternative fuel-powered vehicles. Optimization, 66(11), 1851–1862. https://doi.org/10.1080/02331934.2017.1349126
  • Gambella, C., Lodi, A., & Vigo, D. (2018a). Exact solutions for the carrier-vehicle traveling salesman problem. Transportation Science, 52(2), 320–330. https://doi.org/10.1287/trsc.2017.0771
  • Gambella, C., Naoum-Sawaya, J., & Ghaddar, B. (2018b). The vehicle routing problem with floating targets: Formulation and solution approaches. INFORMS Journal on Computing, 30(3), 554–569. https://doi.org/10.1287/ijoc.2017.0800
  • Gansterer, M., & Hartl, R. F. (2018). Collaborative vehicle routing: A survey. European Journal of Operational Research, 268(1), 1–12. https://doi.org/10.1016/j.ejor.2017.10.023
  • Gansterer, M., & Hartl, R. F. (2020). Shared resources in collaborative vehicle routing. TOP, 28(1), 1–20. https://doi.org/10.1007/s11750-020-00541-6
  • Gaskell, T. J. (1967). Bases for vehicle fleet scheduling. Journal of the Operational Research Society, 18(3), 281–295. https://doi.org/10.1057/jors.1967.44
  • Gehring, H., & Homberger, J. (1999). A parallel hybrid evolutionary metaheuristic for the vehicle routing problem with time windows. In K. Miettinen, M. Makela, & J. Toivanen (Eds.), Proceeding of EUROGEN99 - Short Course on Evolutionary Algorithms in Engineering and Computer Science (pp. 57–64). University of Jyväskylä.
  • Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management Science, 40(10), 1276–1290. https://doi.org/10.1287/mnsc.40.10.1276
  • Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2006). A tabu search algorithm for a routing and container loading problem. Transportation Science, 40(3), 342–350. https://doi.org/10.1287/trsc.1050.0145
  • Golden, B., Assad, A., Levy, L., & Gheysens, F. (1984). The fleet size and mix vehicle routing problem. Computers & Operations Research, 11(1), 49–66. https://doi.org/10.1016/0305-0548(84)90007-8
  • Golden, B. L., Wasil, E. A., Kelly, J. P., & Chao, I.-M. (1998). The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results. In Teodor G.Crainic, & Gilbert Laporte (Eds.), Fleet management and logistics (pp. 33–56). Springer.
  • Grangier, P., Gendreau, M., Lehuédé, F., & Rousseau, L. M. (2017). A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking. Computers & Operations Research, 84, 116–126. https://doi.org/10.1016/j.cor.2017.03.004
  • Groër, C., Golden, B., & Wasil, E. (2009). The consistent vehicle routing problem. Manufacturing & Service Operations Management, 11(4), 630–643. https://doi.org/10.1287/msom.1080.0243
  • Gromicho, J. A. S., Haneyah, S., & Kok, L. (2015). Solving a real-life VRP with inter-route and intra-route challenges. Available at SSRN.
  • Gunawan, A., Widjaja, A. T., Vansteenwegen, P., & Yu, V. F. (2020). Adaptive large neighborhood search for vehicle routing problem with cross-docking. In 2020 The IEEE World Congress on Computational Intelligence (IEEE WCCI). IEEE.
  • Hadjiconstantinou, E., Christofides, N., & Mingozzi, A. (1995). A new exact algorithm for the vehicle routing problem based on q-paths and k-shortest paths relaxations. Annals of Operations Research, 61(1), 21–43. https://doi.org/10.1007/BF02098280
  • Hashimoto, H., Yagiura, M., Imahori, S., & Ibaraki, T. (2013). Recent progress of local search in handling the time window constraints of the vehicle routing problem. Annals of Operations Research, 204(1), 171–187. https://doi.org/10.1007/s10479-012-1264-5
  • Hayes, R. (1967). The delivery problem [PhD thesis]. Carnegie Institute of Technology.
  • Hiermann, G., Hartl, R. F., Puchinger, J., & Vidal, T. (2019). Routing a mix of conventional, plug-in hybrid, and electric vehicles. European Journal of Operational Research, 272(1), 235– 248. https://doi.org/10.1016/j.ejor.2018.06.025
  • Ilin, V., Simic, D., Tepic, J., Stojic, G., & Saulic, N. (2015). A survey of hybrid artificial intelligence algorithms for dynamic vehicle routing problem. In Lecture notes in artificial intelligence (Vol. 9121, pp. 644–655).
  • Jaillet, P., & Wagner, M. (2008). Online vehicle routing problems: A survey. In B. Golden, S. Raghavan, & E. Wasil (Eds.), Vehicle routing problem: Latest advances and new challenges, volume 43 of operations research computer science interfaces (pp. 221–237). Springer.
  • Jozefowiez, N., Semet, F., & Talbi, E. (2008). Multi-objective vehicle routing problems. European Journal of Operational Research, 189(2), 293–309. https://doi.org/10.1016/j.ejor.2007.05.055
  • Karakatic, S., & Podgorelec, V. (2015). A survey of genetic algorithms for solving multi depot vehicle routing problem. Applied Soft Computing, 27, 519–532. https://doi.org/10.1016/j.asoc.2014.11.005
  • Kendall, G., Bai, R., Błazewicz, J., De Causmaecker, P., Gendreau, M., John, R., Li, J., McCollum, B., Pesch, E., Qu, R., Sabar, N., Berghe, G. V., & Yee, A. (2016). Good laboratory practice for optimization research. Journal of the Operational Research Society, 67(4), 676–689. https://doi.org/10.1057/jors.2015.77
  • Kim, G., Ong, Y. S., Heng, C. K., Tan, P. S., & Zhang, N. A. (2015). City vehicle routing problem (City VRP): A review. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1654–1666. https://doi.org/10.1109/TITS.2015.2395536
  • Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2016). Thirty years of heterogeneous vehicle routing. European Journal of Operational Research, 249(1), 1–21. https://doi.org/10.1016/j.ejor.2015.07.020
  • Koç, Ç., & Karaoglan, I. (2016). The green vehicle routing problem: A heuristic based exact solution approach. Applied Soft Computing, 39, 154–164. https://doi.org/10.1016/j.asoc.2015.10.064
  • Koç, Ç., & Laporte, G. (2018). Vehicle routing with backhauls: Review and research perspectives. Computers & Operations Research, 91, 79–91. https://doi.org/10.1016/j.cor.2017.11.003
  • Koç, Ç., Laporte, G., & Tükenmez, İ. (2020). A review on vehicle routing with simultaneous pickup and delivery. Computers & Operations Research, 122, 104987. https://doi.org/10.1016/j.cor.2020.104987
  • Kovacs, A. A., Golden, B. L., Hartl, R., & Parragh, S. (2015). The generalized consistent vehicle routing problem. Transportation Science, 49(4), 796–816. https://doi.org/10.1287/trsc.2014.0529
  • Kovacs, A. A., Parragh, S., & Hartl, R. (2014). A template-based adaptive large neighborhood search for the consistent vehicle routing problem. Networks, 63(1), 60–81. https://doi.org/10.1002/net.21522
  • Kramer, R., Subramanian, A., Vidal, T., d A. F., & Cabral, L. (2015). A matheuristic approach for the pollution-routing problem. European Journal of Operational Research, 243(2), 523–539. https://doi.org/10.1016/j.ejor.2014.12.009
  • Labadie, N., & Prodhon, C. (2014). A survey on multi-criteria analysis in logistics: focus on vehicle routing problems. In L. Benyoucef, J. C. Hennet, & M. K. Tiwari (Eds.), Applications of multi-criteria and game theory approaches: Manufacturing and logistics (pp. 3–29). Springer Series in Advanced Manufacturing.
  • Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408–416. https://doi.org/10.1287/trsc.1090.0301
  • Laporte, G., Mercure, H., & Nobert, Y. (1986). An exact algorithm for the asymmetrical capacitated vehicle routing problem. Networks, 16(1), 33–46. https://doi.org/10.1002/net.3230160104
  • Lee, Y. H., Jung, J. W., & Lee, K. M. (2006). Vehicle routing scheduling for cross-docking in the supply chain. Computers & Industrial Engineering, 51(2), 247–256. https://doi.org/10.1016/j.cie.2006.02.006
  • Letchford, A. N., & Salazar-González, J.-J. (2019). The capacitated vehicle routing problem: Stronger bounds in pseudo-polynomial time. European Journal of Operational Research, 272(1), 24–31. https://doi.org/10.1016/j.ejor.2018.06.002
  • Li, F., Golden, B., & Wasil, E. (2005). Very large-scale vehicle routing: New test problems, algorithms, and results. Computers & Operations Research, 32(5), 1165–1179. https://doi.org/10.1016/j.cor.2003.10.002
  • Lin, C., Choy, K. L., Ho, G. T. S., Chung, S. H., & Lam, H. Y. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41(4), 1118–1138. https://doi.org/10.1016/j.eswa.2013.07.107
  • Liu, F.-H., & Shen, S.-Y. (1999). The fleet size and mix vehicle routing problem with time windows. Journal of the Operational Research Society, 50(7), 721–732. https://doi.org/10.1057/palgrave.jors.2600763
  • Li, H., & Lim, A. (2001). A metaheuristic for the pickup and delivery problem with time windows [Paper presentation]. 13th IEEE International Conference on Tools with Artificial Intelligence (pp. 160–167). ICTAI. https://doi.org/10.1109/ICTAI.2001.974461
  • Ma, H., Cheang, B., Lim, A., Zhang, L., & Zhu, Y. (2012). An investigation into the vehicle routing problem with time windows and link capacity constraints. Omega, 40(3), 336–347. https://doi.org/10.1016/j.omega.2011.08.003
  • Malaguti, E., Martello, S., & Santini, A. (2018). The traveling salesman problem with pickups, deliveries, and draft limits. Omega, 74, 50–58. https://doi.org/10.1016/j.omega.2017.01.005
  • Martins, S., Ostermeier, M., Amorim, P., Hübner, A., & Almada-Lobo, B. (2019). Product-oriented time window assignment for a multi-compartment vehicle routing problem. European Journal of Operational Research, 276(3), 893–909. https://doi.org/10.1016/j.ejor.2019.01.053
  • Masutti, T. A. S., & de Castro, L. N. (2017). Bee-inspired algorithms applied to vehicle routing problems: A survey and a proposal. Mathematical Problems in Engineering, 2017, 1–20. https://doi.org/10.1155/2017/3046830
  • Matl, P., Hartl, R. F., & Vidal, T. (2018). Workload equity in vehicle routing problems: A survey and analysis. Transportation Science, 52(2), 239–260. https://doi.org/10.1287/trsc.2017.0744
  • Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., & Velasco, N. (2010). A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Computers & Operations Research, 37(11), 1886–1898. https://doi.org/10.1016/j.cor.2009.06.015
  • Mendoza, J. E., Rousseau, L.-M., & Villegas, J. G. (2016). A hybrid metaheuristic for the vehicle routing problem with stochastic demand and duration constraints. Journal of Heuristics, 22(4), 539–566. https://doi.org/10.1007/s10732-015-9281-6
  • Mendoza, J., Guéret, C., Hoskins, M., Lobit, H., Pillac, V., Vidal, T., & Vigo, D. (2014). VRP-REP: The vehicle routing community repository. In 3rd meeting of the EURO Working Group on Vehicle Routing and Logistics Optimization (VeRoLog), Norway.
  • Mole, R. (1979). Survey ogf local delivery vehicle routing methodology. Journal of the Operational Research Society, 30(3), 245–252. https://doi.org/10.1057/jors.1979.46
  • Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2017). The electric vehicle routing problem with nonlinear charging function. Transportation Research Part B: Methodological, 103, 87–110. https://doi.org/10.1016/j.trb.2017.02.004
  • Morais, V., Mateus, G. R., & Noronha, T. F. (2014). Iterated local search heuristics for the vehicle routing problem with cross-docking. Expert Systems with Applications, 41(16), 7495–7506. https://doi.org/10.1016/j.eswa.2014.06.010
  • Nikolopoulou, A. I., Repoussis, P. P., Tarantilis, C. D., & Zachariadi, E. E. (2019). Adaptive memory programming for the many-to-many vehicle routing problem with cross-docking. Operational Research, 19(1), 1–38. https://doi.org/10.1007/s12351-016-0278-1
  • Noon, C. E., Mittenthal, J., & Pillai, R. (1994). A TSSP + 1 decomposition strategy for the vehicle routing problem. European Journal of Operational Research, 79(3), 524–536. https://doi.org/10.1016/0377-2217(94)90063-9
  • Ouaddi, K., Benadada, Y., & Mhada, F.-Z. (2018). Ant colony system for dynamic vehicle routing problem with overtime. International Journal of Advanced Computer Science and Applications, 9(6), 306–315. https://doi.org/10.14569/IJACSA.2018.090644
  • Perrier, N., Langevin, A., & Campbell, J. F. (2007a). A survey of models and algorithms for winter road maintenance. Part III: Vehicle routing and depot location for spreading. Computers & Operations Research, 34(1), 211–257. https://doi.org/10.1016/j.cor.2005.05.007
  • Perrier, N., Langevin, A., & Campbell, J. F. (2007b). A survey of models and algorithms for winter road maintenance. Part IV: Vehicle routing and fleet sizing for plowing and snow disposal. Computers & Operations Research, 34(1), 258–294. https://doi.org/10.1016/j.cor.2005.05.008
  • Pillac, V., Gendreau, M., Gueret, C., & Medaglia, A. L. (2013a). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1–11. https://doi.org/10.1016/j.ejor.2012.08.015
  • Pillac, V., Guéret, C., & Medaglia, A. L. (2013b). A parallel matheuristic for the technician routing and scheduling problem. Optimization Letters, 7(7), 1525–1535. https://doi.org/10.1007/s11590-012-0567-4
  • Pirkwieser, S., & Raidl, G. R. (2009). Multiple variable neighborhood search enriched with ilp techniques for the periodic vehicle routing problem with time windows. In M. J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels, & A. Schaerf (Eds.), Hybrid metaheuristics (pp. 45–59).Springer Berlin Heidelberg.
  • PTV Group. (2014). Verolog solver challenge 2014. http://www.vrp-rep.org/references/item/ptv-2014.html.
  • Queiroga, E., Frota, Y., Sadykov, R., Subramanian, A., Uchoa, E., & Vidal, T. (2020). On the exact solution of vehicle routing problems with backhauls. European Journal of Operational Research, 287(1), 76–89. https://doi.org/10.1016/j.ejor.2020.04.047
  • Rincon-Garcia, N., Waterson, B. J., & Cherrett, T. J. (2018). Requirements from vehicle routing software: Perspectives from literature, developers and the freight industry. Transport Reviews, 38(1), 117–138. https://doi.org/10.1080/01441647.2017.1297869
  • Ritzinger, U., Puchinger, J., & Hartl, R. F. (2016). A survey on dynamic and stochastic vehicle routing problems. International Journal of Production Research, 54(1), 215–231. https://doi.org/10.1080/00207543.2015.1043403
  • Rochat, Y., & Taillard, E. D. (1995). Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics, 1(1), 147–167. https://doi.org/10.1007/BF02430370
  • Russell, R. A. (1995). Hybrid heuristics for the vehicle routing problem with time windows. Transportation Science, 29(2), 156–166. https://doi.org/10.1287/trsc.29.2.156
  • Schiffer, M., Schneider, M., Walther, G., & Laporte, G. (2019). Vehicle routing and location routing with intermediate stops: A review. Transportation Science, 53(2), 319–343. https://doi.org/10.1287/trsc.2018.0836
  • Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling with time windows constraints. Operations Research, 35(2), 254–265. https://doi.org/10.1287/opre.35.2.254
  • Taillard, E. (1993). Parallel iterative search methods for vehicle routing problems. Networks, 23(8), 661–673. https://doi.org/10.1002/net.3230230804
  • Tarantilis, C. D., Zachariadis, E. E., & Kiranoudis, C. T. (2009). A hybrid metaheuristic algorithm for the integrated vehicle routing and three-dimensional container-loading problem. IEEE Transactions on Intelligent Transportation Systems, 10(2), 255–271. https://doi.org/10.1109/TITS.2009.2020187
  • Tellez, O., Vercraene, S., Lehuédé, F., Péton, O., & Monteiro, T. (2018). The fleet size and mix dial-a-ride problem with reconfigurable vehicle capacity. Transportation Research Part C: Emerging Technologies, 91, 99–123. https://doi.org/10.1016/j.trc.2018.03.020
  • Thomopulos, D., & Vigo, D. (2016). Verolog members. http://www.vrp-rep.org/datasets/item/2016-0016.html.
  • Toth, P., & Vigo, D. (1999). A heuristic algorithm for the symmetric and asymmetric vehicle routing problems with backhauls. European Journal of Operational Research, 113(3), 528–543. https://doi.org/10.1016/S0377-2217(98)00086-1
  • Toth, P., & Vigo, D. (Eds.). (2002). The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications.
  • Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., & Subramanian, A. (2017). New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational Research, 257(3), 845–858. https://doi.org/10.1016/j.ejor.2016.08.012
  • Urtasun, J. M., & Montero, E. (2019). An study of operator design under an adaptive approach for solving the cross-docks vehicle routing problem [Paper presentation]. 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 2098–2105). IEEE. https://doi.org/10.1109/CEC.2019.8790019
  • Vidal, T. (2017). Node, edge, arc routing and turn penalties: Multiple problems-one neighborhood extension. Operations Research, 65(4), 992–1010. https://doi.org/10.1287/opre.2017.1595
  • Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Operations Research, 60(3), 611–624. https://doi.org/10.1287/opre.1120.1048
  • Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013b). A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Computers & Operations Research, 40(1), 475–489. https://doi.org/10.1016/j.cor.2012.07.018
  • Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2014). A unified solution framework for multi-attribute vehicle routing problems. European Journal of Operational Research, 234(3), 658–673. https://doi.org/10.1016/j.ejor.2013.09.045
  • Vidal, T., Crainic, T., Gendreau, M., & Prins, C. (2013a). Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. European Journal of Operational Research, 231(1), 1–21. https://doi.org/10.1016/j.ejor.2013.02.053
  • Vidal, T., Laporte, G., & Matl, P. (2020). A concise guide to existing and emerging vehicle routing problem variants. European Journal of Operational Research, 286(2), 401–416. https://doi.org/10.1016/j.ejor.2019.10.010
  • Wang, X., & Wasil, E. (2021). On the road to better routes: Five decades of published research on the vehicle routing problem. Networks, 77(1), 66–87. https://doi.org/10.1002/net.21942
  • Wen, M., Larsen, J., Clausen, J., Cordeau, J. F., & Laporte, G. (2009). Vehicle routing with cross-docking. Journal of the Operational Research Society, 60(12), 1708–1718. https://doi.org/10.1057/jors.2008.108
  • Widjaja, A. T., Gunawan, A., Jodiawan, P., & Yu, V. F. (2020). Incorporating a reverse logistics scheme in a vehicle routing problem with cross-docking. In 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA 2020). IEEE.
  • Yang, Z., van Osta, J.-P., van Veen, B., van Krevelen, R., van Klaveren, R., Stam, A., Kok, J., Bäck, T., & Emmerich, M. (2017). Dynamic vehicle routing with time windows in theory and practice. Natural Computing, 16(1), 119–134. https://doi.org/10.1007/s11047-016-9550-9
  • Yu, V. F., Jewpanya, P., & Redi, A. A. N. P. (2016). Open vehicle routing problem with cross-docking. Computers & Industrial Engineering, 94, 6–17. https://doi.org/10.1016/j.cie.2016.01.018
  • Zachariadis, E. E., Tarantilis, C., & Kiranoudis, C. (2017). Vehicle routing strategies for pick-up and delivery service under two dimensional loading constraints. Operational Research, 17(1), 115–143. https://doi.org/10.1007/s12351-015-0218-5
  • Zhang, D., Cai, S., Ye, F., Si, Y.-W., & Nguyen, T. T. (2017). A hybrid algorithm for a vehicle routing problem with realistic constraints. Information Sciences, 394–395, 167–182. https://doi.org/10.1016/j.ins.2017.02.028
  • Zhou, L., Baldacci, R., Vigo, D., & Wang, X. (2018). A multi-depot two-echelon vehicle routing problem with delivery options arising in the last mile distribution. European Journal of Operational Research, 265(2), 765–778. https://doi.org/10.1016/j.ejor.2017.08.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.