104
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Laplacian large margin distribution machine for semi-supervised classification

, , &
Pages 1889-1904 | Received 28 Jul 2020, Accepted 11 May 2021, Published online: 29 Jun 2021

References

  • Belkin, M. (2003). Problems of learning on manifolds [Unpublished doctoral dissertation]. The University of Chicago.
  • Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399–2434.
  • Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010 (p. 177–186). Springer. https://doi.org/10.1007/978-3-7908-2604-3_16
  • Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation, 11(7), 1493–1517. https://doi.org/10.1162/089976699300016106
  • Chapelle, O. (2007). Training a support vector machine in the primal. Neural Computation, 19, 1155–1178. https://doi.org/10.1162/neco.2007.19.5.1155
  • Chapelle, O., & Weston, J. (2003). Cluster kernels for semi-supervised learning. In Advances in Neural Information Processing System (pp. 585–592). MIT Press.
  • Chapelle, O., Sindhwani, V., & Keerthi, S. (2008). Optimization techniques for semi-supervised support vector machines. Journal of Machine Learning Research, 9, 203–233. https://doi.org/10.1145/1390681.1390688
  • Cho, H.-W., Baek, S. H., Youn, E., Jeong, M. K., & Taylor, A. (2009). A two-stage classification procedure for near-infrared spectra based on multi-scale vertical energy wavelet thresholding and svm-based gradient-recursive feature elimination. Journal of the Operational Research Society, 60(8), 1107–1115. https://doi.org/10.1057/jors.2008.179
  • Coenen, L., Verbeke, W., & Guns, T. (2021). Machine learning methods for short-term probability of default: A comparison of classification, regression and ranking methods. Journal of the Operational Research Society, 1–16. https://doi.org/10.1080/01605682.2020.1865847
  • Demiriz, A., & Bennett, K. (2000). Optimization approaches to semi-supervised learning. Complementarity: Applications, Algorithms and Extensions, 121–141. https://doi.org/10.1007/978-1-4757-3279-5_6
  • Dong, A., Chung, F., Deng, Z., & Wang, S. (2016). Semi-supervised SVM with extended hidden features. IEEE Transactions on Cybernetics, 46(12), 2924–2937. https://doi.org/10.1109/TCYB.2015.2493161
  • Engelen, J., & Hoos, H. (2019). A survey on semi-supervised learning. Machine Learning, 109, 373–440. https://doi.org/10.1007/s10994-019-05855-6
  • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Science, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504
  • Gao, W., & Zhou, Z.-H. (2013). On the doubt about margin explanation of boosting. Artificial Intelligence, 203, 1–18. https://doi.org/10.1016/j.artint.2013.07.002
  • Gnecco, G., & Sanguineti, M. (2009). Regularization techniques and suboptimal solutions to optimization problems in learning from data. Neural Computation, 22, 793–829. https://doi.org/10.1162/neco.2009.05-08-786
  • Hong, B., Zhang, W., Liu, W., Ye, J., Cai, D., He, X., & Wang, J. (2019). Scaling up sparse support vector machines by simultaneous feature and sample reduction. Journal of Machine Learning Research, 20(121), 1–39. http://jmlr.org/papers/v20/17-723.html
  • Jabeur, S. B., Sadaaoui, A., Sghaier, A., & Aloui, R. (2020). Machine learning models and cost-sensitive decision trees for bond rating prediction. Journal of the Operational Research Society, 71(8), 1161–1179. https://doi.org/10.1080/01605682.2019.1581405
  • Joachims, T. (1999). 08). Transductive inference for text classification using support vector machines. In Proceedings of the International Conference on Machine Learning (pp. 200–209).
  • Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems (pp. 315–323).
  • Keerthi, S., & Decoste, D. (2005). A modified finite newton method for fast solution of large scale linear svms. Journal of Machine Learning Research, 6, 341–361.
  • Kennedy, K., Namee, B. M., & Delany, S. J. (2013). Using semi-supervised classifiers for credit scoring. Journal of the Operational Research Society, 64(4), 513–529. https://doi.org/10.1057/jors.2011.30
  • Kim, D., Lee, C., Hwang, S., & Jeong, M. K. (2016). A robust support vector regression with a linear-log concave loss function. Journal of the Operational Research Society, 67(5), 735–742. https://doi.org/10.1057/jors.2015.32
  • Kushner, H., & Yin, G. G. (2003). Stochastic approximation and recursive algorithms and applications (Vol. 35). Springer Science & Business Media.
  • Lafon, S. (2004). Diffusion maps and geometric harmonics [Unpublishded doctoral dissertation]. Yale University.
  • Lan, L., Wang, Z., Zhe, S., Cheng, W., Wang, J., & Zhang, K. (2019). Scaling up kernel SVM on limited resources: A low-rank linearization approach. IEEE Transactions on Neural Networks and Learning Systems, 30(2), 369–378. https://doi.org/10.1109/TNNLS.2018.2838140
  • Lin, C.-F., & Wang, S.-D. (2002). Fuzzy support vector machines. IEEE Transactions on Neural Networks, 13(2), 464–471. https://doi.org/10.1109/72.991432
  • López, J., Maldonado, S., & Montoya, R. (2017). Simultaneous preference estimation and heterogeneity control for choice-based conjoint via support vector machines. Journal of the Operational Research Society, 68(11), 1323–1334. https://doi.org/10.1057/s41274-016-0013-6
  • Marqués, A. I., García, V., & Sánchez, J. S. (2013). On the suitability of resampling techniques for the class imbalance problem in credit scoring. Journal of the Operational Research Society, 64(7), 1060–1070. https://doi.org/10.1057/jors.2012.120
  • Melacci, S., & Belkin, M. (2011, March). Laplacian Support Vector Machines Trained in the Primal. Journal of Machine Learning Research, 12, 1149–1184.
  • Mikhail, B., & Partha, N. (2008). Towards a theoretical foundation for Laplacian-based manifold methods. Journal of Computer and System Sciences, 74(8), 1289–1308. https://doi.org/10.1016/j.jcss.2007.08.006
  • Park, J. I., Kim, N., Jeong, M. K., & Shin, K. S. (2013). Multiphase support vector regression for function approximation with break-points. Journal of the Operational Research Society, 64(5), 775–785. https://doi.org/10.1057/jors.2012.41
  • Qi, Z., Tian, Y., & Shi, Y. (2012). Laplacian twin support vector machine for semi-supervised classification. Neural Networks, 35, 46–53. https://doi.org/10.1016/j.neunet.2012.07.011
  • Rastogi, R., Pal, A., & Chandra, S. (2018). Generalized pinball loss SVMs. Neurocomputing, 322, 151–165. https://doi.org/10.1016/j.neucom.2018.08.079
  • Reddi, S. J., Hefny, A., Sra, S., Poczos, B., & Smola, A. J. (2015). On variance reduction in stochastic gradient descent and its asynchronous variants. In Advances in neural information processing systems (pp. 2647–2655).
  • Reyzin, L., Schapire, R. E. (2006). How boosting the margin can also boost classifier complexity. In Proceedings of the 23rd International Conference on Machine Learning (pp. 753–760). https://doi.org/10.1145/1143844.1143939
  • Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectives of voting methods. The Annuals of Statistics, 26(5), 1651–1686. https://doi.org/10.1214/aos/1024691352
  • Schölkopf, B., & Smola, A. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT press. https://doi.org/10.7551/mitpress/4175.001.0001
  • Shalev-Shwartz, S., Singer, Y., Srebro, N., & Cotter, A. (2011). Pegasos: Primal estimated sub-gradient solver for svm. Mathematical Programming, 127(1), 3–30. https://doi.org/10.1007/s10107-010-0420-4)
  • Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain. Technical report. School of Computer Science, Carnegie Mellon University.
  • Sun, J., Shang, Z., & Li, H. (2014). Imbalance-oriented SVM methods for financial distress prediction: A comparative study among the new SB-SVM-ensemble method and traditional methods. Journal of the Operational Research Society, 65(12), 1905–1919. https://doi.org/10.1057/jors.2013.117
  • Tan, C., Ma, S., Dai, Y.-H., & Qian, Y. (2016). Barzilai-Borwein step size for stochastic gradient descent. In Advances in neural information processing systems (pp. 685–693).
  • Tian, X., Gasso, G., & Canu, S. (2012). A multiple kernel framework for inductive semi-supervised SVM learning. Neurocomputing, 90, 46–58. https://doi.org/10.1016/j.neucom.2011.12.036
  • Tian, Y., Sun, M., Deng, Z., Luo, J., & Li, Y. (2017). A new fuzzy set and nonkernel SVM approach for mislabeled binary classification with applications. IEEE Transactions on Fuzzy Systems, 25(6), 1536–1545. https://doi.org/10.1109/TFUZZ.2017.2752138
  • Tikhonov, A. (1963). Regularization of incorrectly posed problems. Soviet Mathematics Doklady, 4(6), 1624–1627.
  • Vapnik, V. (1995). The nature of statistical learning theory (Vol. 6). Springer-Verlag.
  • Wang, L., Sugiyama, M., Jing, Z., Yang, C., Zhou, Z.-H., & Feng, J. (2011). A refined margin analysis for boosting algorithms via equilibrium margin. Journal of Machine Learning Research, 12, 1835–1863.
  • Xing, X., Yu, Y., Jiang, H., & Du, S. (2013). A multi-manifold semi-supervised gaussian mixture model for pattern classification. Pattern Recognition Letters, 34, 2118–2125. 0.1016/j.patrec.2013.08.005) https://doi.org/10.1016/j.patrec.2013.08.005
  • Xu, Z., Jin, R., Zhu, J., King, I., Lyu, M. (2007). Efficient convex relaxation for transductive support vector machine. In Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems (Vol. 20, pp. 904–910).
  • Yan, X., Bai, Y., Fang, S.-C., & Luo, J. (2016). A kernel-free quadratic surface support vector machine for semi-supervised learning. Journal of the Operational Research Society, 67(7), 1001–1011. https://doi.org/10.1057/jors.2015.89
  • Yan, X., Zhu, H., & Luo, J. (2019). A novel kernel-free nonlinear svm for semi-supervised classification in disease diagnosis. Journal of Combinatorial Optimization, 1–18. https://doi.org/10.1007/s10878-019-00484-0
  • Yang, T., & Fu, D. (2014). Semi-supervised classification with laplacian multiple kernel learning. Neurocomputing, 140, 19–26. https://doi.org/10.1016/j.neucom.2014.03.039
  • Zhang, T., & Zhou, Z.-H. (2019). Optimal margin distribution machine. IEEE Transactions on Knowledge and Data Engineering, 32, 1143–1156. https://doi.org/10.1109/TKDE.2019.2897662
  • Zhang, T., Zhou, Z.-H. (2017). Multi-class optimal distribution machine. In Proceedings of the 34th International Conference on Machine Learning Sydney, Nsw, Australia (pp. 4063–4071).
  • Zhang, T., Zhou, Z.-H. (2018). optimal margin distribution clustering. In Proceedings of the 20th National Conference on Artificial Intelligence. AAAI Press.
  • Zhao, B., Wang, F., Zhang, C. (2008). 08). Cuts3vm: A fast semi-supervised svm algorithm. In Proceedings of the Acm Sigkdd International Conference on Knowledge Discovery and Data Mining (pp. 830–838). https://doi.org/10.1145/1401890.1401989
  • Zhou, Z.-H. (2014). Large margin distribution learning. In Iapr workshop of artificial neural networks in pattern recognition (p. 1–11). Montreal and Canada. https://doi.org/10.1007/978-3-319-11656-3_1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.