85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On fuzzy entropy functions based on human attitude

Pages 1510-1523 | Received 27 Jul 2022, Accepted 21 Aug 2023, Published online: 20 Sep 2023

References

  • Aggarwal, M. (2015). Compensative weighted averaging aggregation operators. Applied Soft Computing, 28, 368–378. https://doi.org/10.1016/j.asoc.2014.09.049
  • Aggarwal, M. (2020). Bridging the gap between probabilistic and fuzzy entropy. IEEE Transactions on Fuzzy Systems, 28(9), 2175–2184. https://doi.org/10.1109/TFUZZ.2019.2931232
  • Aggarwal, M. (2021). Redefining fuzzy entropy with a general framework. Expert Systems with Applications, 164, 113671. https://doi.org/10.1016/j.eswa.2020.113671
  • Agrawal, S., Panda, R., & Abraham, A. (2018). A novel diagonal class entropy-based multilevel image thresholding using coral reef optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4688–4696. https://doi.org/10.1109/TSMC.2018.2859429
  • Alexandridis, A. K., Gzyl, H., ter Horst, E., & Molina, G. (2021). Extracting pricing densities for weather derivatives using the maximum entropy method. Journal of the Operational Research Society, 72(11), 2412–2428. https://doi.org/10.1080/01605682.2020.1796532
  • Allahverdyan, A. E., Galstyan, A., Abbas, A. E., & Struzik, Z. R. (2018). Adaptive decision making via entropy minimization. International Journal of Approximate Reasoning, 103, 270–287. https://doi.org/10.1016/j.ijar.2018.10.001
  • Cadre, H. L. (2014). Infrastructure topology optimization under competition through cross-entropy. Journal of the Operational Research Society, 65, 824–841.
  • Calvo, T., Mayor, G., & Mesiar, R. (2002). Aggregation operators: New trends and applications. Springer Science & Business Media.
  • Cao, Z., Ding, W., Wang, Y.-K., Hussain, F. K., Al-Jumaily, A., & Lin, C.-T. (2020). Effects of repetitive SSVEPs on EEG complexity using multiscale inherent fuzzy entropy. Neurocomputing, 389, 198–206. https://doi.org/10.1016/j.neucom.2018.08.091
  • Caserta, M., & Rico, E. Q. (2009). A cross entropy-based metaheuristic algorithm for large-scale capacitated facility location problems. Journal of the Operational Research Society, 60(10), 1439–1448. https://doi.org/10.1057/jors.2008.77
  • Chen, B., Li, Y., Dong, J., Lu, N., & Qin, J. (2018). Common spatial patterns based on the quantized minimum error entropy criterion. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4557–4568. https://doi.org/10.1109/TSMC.2018.2855106
  • De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control, 20(4), 301–312. https://doi.org/10.1016/S0019-9958(72)90199-4
  • Dujet, C. (1983). Separation functions and measures of fuzziness. IFAC Proceedings Volumes, 16(13), 91–96. https://doi.org/10.1016/S1474-6670(17)62012-3
  • Ebanks, B. R. (1983). On measures of fuzziness and their representations. Journal of Mathematical Analysis and Applications, 94(1), 24–37. https://doi.org/10.1016/0022-247X(83)90003-3
  • Emptoz, H. (1981). Nonprobabilistic entropies and indetermination measures in the setting of fuzzy sets theory. Fuzzy Sets and Systems, 5(3), 307–317. https://doi.org/10.1016/0165-0114(81)90058-0
  • Fan, J., & Xie, W. (1999). Distance measure and induced fuzzy entropy. Fuzzy Sets and Systems, 104(2), 305–314. https://doi.org/10.1016/S0165-0114(99)80011-6
  • Gao, C., Lai, Z., Zhou, J., Wen, J., & Wong, W. K. (2019). Granular maximum decision entropy-based monotonic uncertainty measure for attribute reduction. International Journal of Approximate Reasoning, 104, 9–24. https://doi.org/10.1016/j.ijar.2018.10.014
  • Gou, X., Xu, Z., & Liao, H. (2017). Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making. Information Sciences, 388-389, 225–246. https://doi.org/10.1016/j.ins.2017.01.033
  • Grabisch, M., Marichal, J.-L., Mesiar, R., & Pap, E. (2009). Aggregation functions. Encyclopedia of mathematics and its applications. Cambridge University Press.
  • Jumarie, G. (1979). New results in relativistic information and general systems. observed probability, renyi entropy, relativistic fuzzy sets, generative semantics. Cybernetica, 22, 131–158.
  • Jumarie, G. (1980). Relativistic fuzzy sets. toward a new approach to subjectivity in human systems. Mathématiques et Sciences Humaines, 71, 39–75.
  • Jumarie, G. (1987). A minkowskian theory of observation: Application to uncertainty and fuzziness. Fuzzy Sets and Systems, 24(2), 231–254. https://doi.org/10.1016/0165-0114(87)90092-3
  • Kaufmann, A. (1980). Introduction to the theory of fuzzy subsets: Fundamental theoretical elements. Academic Press.
  • Knopfmacher, J. (1975). On measures of fuzziness. Journal of Mathematical Analysis and Applications, 49(3), 529–534. https://doi.org/10.1016/0022-247X(75)90196-1
  • Kosko, B. (1986). Fuzzy entropy and conditioning. Information Sciences, 40(2), 165–174. https://doi.org/10.1016/0020-0255(86)90006-X
  • Li, Y., & Chen, W. (2021). Entropy method of constructing a combined model for improving loan default prediction: A case study in china. Journal of the Operational Research Society, 72(5), 1099–1109. https://doi.org/10.1080/01605682.2019.1702905
  • Li, G., Kou, G., Li, Y., & Peng, Y. (2022). A group decision making approach for supplier selection with multi-period fuzzy information and opinion interaction among decision makers. Journal of the Operational Research Society, 73(4), 855–868. https://doi.org/10.1080/01605682.2020.1869917
  • Li, Y., Wang, S., Yang, Y., & Deng, Z. (2022). Multiscale symbolic fuzzy entropy: An entropy denoising method for weak feature extraction of rotating machinery. Mechanical Systems and Signal Processing, 162, 108052. https://doi.org/10.1016/j.ymssp.2021.108052
  • Liu, X. C. (1992). Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets and Systems, 52, 305–318.
  • Liu, Y.-J., & Zhang, W.-G. (2021). Fuzzy multi-period portfolio selection model with time-varying loss aversion. Journal of the Operational Research Society, 72(4), 935–949. https://doi.org/10.1080/01605682.2019.1705191
  • Loo, S. G. (1977). Measures of fuzziness. Cybernetics, 20, 201–210.
  • Mahata, N., & Sing, J. K. (2020). A novel fuzzy clustering algorithm by minimizing global and spatially constrained likelihood-based local entropies for noisy 3d brain mr image segmentation. Applied Soft Computing, 90, 106171. https://doi.org/10.1016/j.asoc.2020.106171
  • McClean, S. (1986). Extending the entropy stability measure for manpower planning. Journal of the Operational Research Society, 37(12), 1133–1138. https://doi.org/10.2307/2582304
  • Pal, N. R., & Bezdek, J. C. (1994). Measuring fuzzy uncertainty. IEEE Transactions on Fuzzy Systems, 2(2), 107–118. https://doi.org/10.1109/91.277960
  • Pal, N. R., & Pal, S. K. (1989). Object-background segmentation using new definitions of entropy. IEE Proceedings E Computers and Digital Techniques, 136(4), 284–295. https://doi.org/10.1049/ip-e.1989.0039
  • Pal, N. R., & Pal, S. K. (1991). Entropy: A new definition and its applications. IEEE Transactions on Systems, Man, and Cybernetics, 21(5), 1260–1270. https://doi.org/10.1109/21.120079
  • Pal, N. R., & Pal, S. K. (1992). Higher order fuzzy entropy and hybrid entropy of a set. Information Sciences, 61(3), 211–231. https://doi.org/10.1016/0020-0255(92)90051-9
  • Peng, J.-G., & Xia, G. (2019). A systematic fuzzy multi-criteria group decision-making approach for alternatives evaluation. Journal of the Operational Research Society, 70(9), 1490–1501. https://doi.org/10.1080/01605682.2018.1495995
  • Rani, P., Mishra, A. R., & Mardani, A. (2020). An extended pythagorean fuzzy complex proportional assessment approach with new entropy and score function: Application in pharmacological therapy selection for type 2 diabetes. Applied Soft Computing, 94, 106441. https://doi.org/10.1016/j.asoc.2020.106441
  • Rostaghi, M., Khatibi, M. M., Ashory, M. R., & Azami, H. (2022). Fuzzy dispersion entropy: A nonlinear measure for signal analysis. IEEE Transactions on Fuzzy Systems, 30(9), 3785–3796. https://doi.org/10.1109/TFUZZ.2021.3128957
  • Salehi, F., Keyvanpour, M. R., & Sharifi, A. (2021). Smkfc-er: Semi-supervised multiple kernel fuzzy clustering based on entropy and relative entropy. Information Sciences, 547, 667–688. https://doi.org/10.1016/j.ins.2020.08.094
  • Sander, W. (1989). On measures of fuzziness. Fuzzy Sets and Systems, 29(1), 49–55. https://doi.org/10.1016/0165-0114(89)90135-8
  • Sreeparvathy, V., & Srinivas, V. (2020). A fuzzy entropy approach for design of hydrometric monitoring networks. Journal of Hydrology, 586, 124797. https://doi.org/10.1016/j.jhydrol.2020.124797
  • Sun, L., Wang, L., Ding, W., Qian, Y., & Xu, J. (2021). Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets. IEEE Transactions on Fuzzy Systems, 29(1), 19–33. https://doi.org/10.1109/TFUZZ.2020.2989098
  • Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118(3), 467–477. https://doi.org/10.1016/S0165-0114(98)00402-3
  • Torra, V., & Narukawa, Y. (2007). Modeling decisions: Information fusion and aggregation operators (Vol. 13). Springer Science & Business Media.
  • Trillas, E., & Riera, T. (1978). Entropies in finite fuzzy sets. Information Sciences, 15(2), 159–168. https://doi.org/10.1016/0020-0255(78)90005-1
  • Wang, Z. X. (1984). Fuzzy measures and measures of fuzziness. Journal of Mathematical Analysis and Applications, 104, 589–601.
  • Weber, S. (1984). Measures of fuzzy sets and measures of fuzziness. Fuzzy Sets and Systems, 13(3), 247–271. https://doi.org/10.1016/0165-0114(84)90060-5
  • Wu, J.-S. (1992). Maximum entropy analysis of open queueing networks with group arrivals. Journal of the Operational Research Society, 43(11), 1063–1078. https://doi.org/10.2307/2584103
  • Xie, W. X., & Bedrosian, S. D. (1984). An information measure for fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics, SMC-14(1), 151–156. https://doi.org/10.1109/TSMC.1984.6313278
  • Yager, R. R. (2017). Owa aggregation of multi-criteria with mixed uncertain satisfactions. Information Sciences, 417, 88–95. https://doi.org/10.1016/j.ins.2017.06.037
  • Yager, R. R. (2020). Using fuzzy measures for modeling human perception of uncertainty in artificial intelligence. Engineering Applications of Artificial Intelligence, 87, 103228. https://doi.org/10.1016/j.engappai.2019.08.022
  • Yuan, Z., Chen, H., & Li, T. (2022). Exploring interactive attribute reduction via fuzzy complementary entropy for unlabeled mixed data. Pattern Recognition, 127, 108651. https://doi.org/10.1016/j.patcog.2022.108651
  • Yue, C. (2017). Entropy-based weights on decision makers in group decision-making setting with hybrid preference representations. Applied Soft Computing, 60, 737–749. https://doi.org/10.1016/j.asoc.2017.07.033
  • Zadeh, L. A. (1968). Fuzzy sets and applications, selected papers by l. A. Zadeh. Chapter Probability measures of fuzzy events (pp. 45–51). John Wiley.
  • Zhang, Q., Chen, Y., Yang, J., & Wang, G. (2020). Fuzzy entropy: A more comprehensible perspective for interval shadowed sets of fuzzy sets. IEEE Transactions on Fuzzy Systems, 28(11), 3008–3022. https://doi.org/10.1109/TFUZZ.2019.2947224
  • Zhang, T., Han, Z., Chen, X., & Chen, W. (2021). Quantifying randomness and complexity of a signal via maximum fuzzy membership difference entropy. Measurement, 174, 109053. https://doi.org/10.1016/j.measurement.2021.109053
  • Zhang, D., Wu, C., & Liu, J. (2020). Ranking products with online reviews: A novel method based on hesitant fuzzy set and sentiment word framework. Journal of the Operational Research Society, 71(3), 528–542. https://doi.org/10.1080/01605682.2018.1557021
  • Zhou, W., Liu, M., & Xu, Z. (2023). Occurrence probability derivation considering different behavior strategies and decision making under the probabilistic hesitant fuzzy environment. Journal of the Operational Research Society, 74(6), 1554–1569. https://doi.org/10.1080/01605682.2022.2096508
  • Zhu, G.-Y., Ding, C., & Zhang, W.-B. (2020). Optimal foraging algorithm that incorporates fuzzy relative entropy for solving many-objective permutation flow shop scheduling problems. IEEE Transactions on Fuzzy Systems, 28(11), 2738–2746. https://doi.org/10.1109/TFUZZ.2020.2986673

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.