Publication Cover
Catalysis Reviews
Science and Engineering
Volume 62, 2020 - Issue 1
2,930
Views
168
CrossRef citations to date
0
Altmetric
Articles

Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies

, , &
Pages 1-65 | Received 01 Feb 2019, Accepted 19 Apr 2019, Published online: 07 May 2019

References

  • Breffle, W.; Muralidharan, D.; Donovan, R.; Liu, F.; Mukherjee, A.; Jin, Y. Socioeconomic Evaluation of the Impact of Natural Resource Stressors on Human-Use Services in the Great Lakes Environment: A Lake Michigan Case Study. Resour. Policy. 2013, 38, 152–161. DOI: 10.1016/j.resourpol.2012.10.004.
  • Pink, R. M.;. Water Rights in China and India: A Human Security Perspective. Asian Aff. 2016, 43, 19–35.
  • Hassan, M.; Zhao, Y.; Xie, B. Employing TiO2 Photocatalysis to Deal With Landfill Leachate: Current Status and Development. Chem. Eng. J. 2016, 285, 264–275. DOI: 10.1016/j.cej.2015.09.093.
  • Liu, Y.; Liu, F.; Pan, X.; Li, J. Protecting the Environment and Public Health from Pesticides. Environ. Sci. Technol. 2012, 46, 5658–5659. DOI: 10.1021/es301652v.
  • Broséus, R.; Vincent, S.; Aboulfadl, K.; Daneshvar, A.; Sauvé, S.; Barbeau, B.; Prévost, M. Ozone Oxidation of Pharmaceuticals, Endocrine Disruptors and Pesticides during Drinking Water Treatment. Water Res. Earch. 2009, 43, 4707–4717. DOI: 10.1016/j.watres.2009.07.031.
  • Fujishima, K.; Honda, A.; Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 238, 37.
  • Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Heterostructures Construction on TiO2 Nanobelts: A Powerful Tool For Building High-Performance Photocatalysts. Appl. Catal. B Environ. 2017, 202, 620–641. DOI: 10.1016/j.apcatb.2016.09.068.
  • Fujishima, A.; Zhang, X.; Tryk, D. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. DOI: 10.1016/j.surfrep.2008.10.001.
  • Yu, C.; Zhou, W.; Liu, H.; Liu, Y.; Dionysiou, D. Design and Fabrication of Microsphere Photocatalysts for Environmental Purification and Energy Conversion. Chem. Eng. J. 2016, 287, 117–129. DOI: 10.1016/j.cej.2015.10.112.
  • Garcia-Segura, S.; Brillas, E. Applied Photoelectrocatalysis on the Degradation of Organic Pollutants in Wastewaters. J. Photochem. Photobiol. C Photochem. Rev. 2017, 31, 1–35. DOI: 10.1016/j.jphotochemrev.2017.01.005.
  • Bouadila, S.; Skouri, S.; Kooli, S.; Lazaar, M.; Farhat, A. Experimental Investigation of a New Solar Air Heater with Packed-Bed Latent Storage Energy. Journées Int. Therm. 2013, 16, 1–5.
  • Shavisi, Y.; Sharifnia, S.; Zendehzaban, M.; Mirghavami, M.; Kakehazar, S. Application of Solar Light for Degradation of Ammonia In Petrochemical Wastewater by A Floating TiO2/LECA Photocatalyst. J. Ind. Eng. Chem. 2014, 20, 2806–2813.
  • Nottrott, A.;. Kleissl, J.; Washom, B. Energy Dispatch Schedule Optimization and Cost Benefit Analysis for Grid-Connected, Photovoltaic-Battery Storage Systems. Renew. Energy. 2013, 55, 230–240.
  • Lewis, N.;. Toward Cost-Effective Solar Energy Use. Science (80-.). 2007, 315, 798–801. DOI: 10.1126/science.1137014.
  • Ani, I.; Akpan, U.; Olutoye, M.; Hameed, B. Photocatalytic Degradation of Pollutants in Petroleum Refinery Wastewater by TiO2- and ZnO-based Photocatalysts: Recent Development. J. Clean. Prod. 2018, 205, 930–954. DOI: 10.1016/j.jclepro.2018.08.189.
  • Mohammadpour, R.;. Influence of Energy Band Alignment in Mixed Crystalline TiO2 Nanotube Arrays: Good For Photocatalysis, Bad for Electron Transfer. J. Phys. D. Appl. Phys. 2017, 50, 505106. DOI: 10.1088/1361-6463/aa96f0.
  • Kumar, S.; Rao, K. Comparison of Modification Strategies Towards Enhanced Charge Carrier Separation and Photocatalytic Degradation Activity of Metal Oxide Semiconductors (Tio2, Wo3 and ZnO). Appl. Surf. Sci. 2017, 391, 124–148. DOI: 10.1016/j.apsusc.2016.07.081.
  • Wu, B.; Ma, H.; Pan, Z.; Wang, J.; Qu, W.; Wang, B. Drying and Quality Characteristics and Models of Carrot Slices under Catalytic Infrared Heating. Int. Agric. Eng. J. 2014, 23, 70–79.
  • Carey, J.; Lawrence, J.; Tosine, H. Photodechlorination of PCB’s in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701.
  • Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H. Photocatalytic Degradation of Metoprolol by TiO2 Nanotube Arrays and Uv-Led: Effects of Catalyst Properties, Operational Parameters, Commonly Present Water Constituents, and Photo-Induced Reactive Species. Appl. Catal. B Environ. 2017, 220, 171–181. DOI: 10.1016/j.apcatb.2017.08.040.
  • Haoran Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146. DOI: 10.1016/j.watres.2015.04.038.
  • Zada, A.; Qu, Y.; Ali, S.; Sun, N.; Lu, H.; Yan, R.; Zhang, X.; Jing, L. Improved Visible-Light Activities for Degrading Pollutants on TiO2/g-C3N4 Nanocomposites by Decorating Spr Au Nanoparticles and 2,4-Dichlorophenol Decomposition Path. J. Hazard. Mater. 2018, 342, 715–723. DOI: 10.1016/j.jhazmat.2017.08.033.
  • Pan, Z.; Stemmler, E.; JeCho, H.; Fan, W.; LeBlanc, L.; Patterson, H.; Amirbahman, A. Photocatalytic Degradation of 17α-ethinylestradiol (Ee2) in the Presence of TiO2-doped Zeolite. J. Hazard. Mater. 2014, 279, 17–25. DOI: 10.1016/j.jhazmat.2014.06.040.
  • Lee, S.; Park, S. TiO2 Photocatalyst for Water Treatment Applications. J. Ind. Engieneering Chem. 2013, 19, 1761–1769. DOI: 10.1016/j.jiec.2013.07.012.
  • Guo, Q.; Zhou, C.; Ma, Z.; Ren, Z.; Fan, H.; Yang, X. Elementary Photocatalytic Chemistry on TiO2 Surfaces. Chem. Soc. Rev. 2016, 45, 3701–3730.
  • Chen, X.; Mao, S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications. Chem. Rev. 2007, 107, 2891–2959. DOI: 10.1021/cr0500535.
  • Hu, X.; Tang, C.; Wen, S.; Wu, X.; Long, J.; Yang, X.; Wang, H.; Zhou, L. Mechanisms Underlying Degradation Pathways of microcystin-LR With Doped TiO2 Photocatalysis. Chem. Eng. J. 2017, 330, 355–371.
  • Zhou, X.; Shao, C.; Li, X.; Wang, X.; Guo, X.; Liu, Y. Three Dimensional Hierarchical Heterostructures of g-C3N4nanosheets/TiO2 Nanofibers: Controllable Growth Via Gas-Solid Reaction and Enhanced Photocatalytic Activity Under Visible Light. J. Hazard. Mater. 2018, 344, 113–122.
  • Lila Djouadi, L.; Khalaf, H.; Boukhatem, H.; Boutoumi, H.; Kezzime, A.; Santaballa, A.; Canle, M. Degradation of Aqueous Ketoprofen by Heterogeneous Photocatalysis using Bi2S3/TiO2–Montmorillonite Nanocomposites Under Simulated Solar Irradiation. Appl. Clay Sci. 2018, 166, 27–37.
  • Ong, W.; Tan, L.; Chai, S.; Yong, S.; Mohamed, A. Facet-Dependent Photocatalytic Properties of TiO2-based Composites For Energy Conversion and Environmental Remediation. Chem. Sus. Chem. 2014, 7, 690–719. DOI: 10.1002/cssc.201300924.
  • Zhuang, J.; Dai, W.; Tian, Q.; Li, Z.; Xie, L.; Wang, X.; Liu, P.; Shi, X.; Wang, D. Photocatalytic Degradation of RhB over TiO2 Bilayer Films: Effect of Defects and their Location. Langmuir. 2010, 26, 9686–9694.
  • Jiang, H.; Li, M.; Liu, J.; Li, X.; Tian, L.; Chen, P. Alkali-Free Synthesis of A Novel Heterostructured CeO2-TiO2 Nanocomposite With High Performance To Reduce Cr(VI) Under Visible Light. Ceram. Int. 2018, 44, 2709–2717. DOI: 10.1016/j.ceramint.2017.10.225.
  • Friedmann, D.; Mendive, C.; Bahnemann, D. TiO2 for Water Treatment: Parameters Affecting the Kinetics and Mechanisms of Photocatalysis. Appl. Catal. B Environ. 2010, 99, 398–406. DOI: 10.1016/j.apcatb.2010.05.014.
  • Carbajo, J.; Bahamonde, A.; Faraldos, M. Photocatalyst Performance in Wastewater Treatment Applications: Towards the Role of TiO2 Properties. Mol. Catal. 2017, 434, 167–174. DOI: 10.1016/j.mcat.2017.03.018.
  • Horikoshi, K.; Serpone, N. Can the Photocatalyst TiO2 be Incorporated Into A Wastewater Treatment Method? Background and Prospects. Catal. Today, In Press, 2018. DOI: 10.1016/j.cattod.2018.10.020.
  • McCullagh, C.; Skillen, N.; Adams, M.; Robertson, P. Photocatalytic Reactors for Environmental Remediation: A Review. J. Chem. Technol. Biotechnol. 2011, 86, 1002–1017. DOI: 10.1002/jctb.2650.
  • Dijkstra, M.; Michorius, A.; Buwalda, H.; Panneman, H.; Winkelman, J.; Beenackers, A. Comparison of the Efficiency of Immobilized and Suspended Systems in Photocatalytic Degradation. Catal. Today. 2001, 66, 487–494. DOI: 10.1016/S0920-5861(01)00257-7.
  • Manassero, A.; Satuf, M.; Alfano, O. Photocatalytic Reactors With Suspended and Immobilized TiO2: Comparative Efficiency Evaluation. Chem. Eng. J. 2017, 326, 29–36. DOI: 10.1016/j.cej.2017.05.087.
  • Pruden, A.; Ollis, D. Degradation of Chloroform by Photoassisted Heterogeneous Catalysis in Dilute Aqueous Suspensions of Titanium Dioxide. Environ. Sci. Technol. 1983, 17, 628–631. DOI: 10.1021/es00116a013.
  • Kormann, C.; Bahnemann, D.; Hoffmann, M. Photolysis of Chloroform and Other Organic Molecules in Aqueous Titanium Dioxide Suspensions. Environ. Sci. Technol. 1991, 25, 494–500. DOI: 10.1021/es00015a018.
  • Pathirana, H. M.; Maithreepala, R. Photodegradation of 3,4-Dichloropropionamide in Aqueous TiO2 Suspensions. J. Photochem. Photobiol. A Chem. 1997, 102, 273–277. DOI: 10.1016/S1010-6030(96)04455-3.
  • McCullagh, C.; Robertson, P.; Adams, M.; Pollard, P.; Mohammed, A. Development of a Slurry Continuous Flow Reactor for Photocatalytic Treatment of Industrial Waste Water. J. Photochem. Photobiol. A Chem. 2010, 211, 42–46. DOI: 10.1016/j.jphotochem.2010.01.020.
  • Adams, M.; Campbell, I.; Robertson, P. Novel Photocatalytic Reactor Development for Removal of Hydrocarbons from Water. Int. J. Photoenergy. 2008, 2008, 1–7. DOI:10.1155/2008/674537.
  • Salu, O.; Adams, M.; Robertson, P.; Wong, L.; McCullagh, C. Remediation of Oily Wastewater from an Interceptor Tank Using a Novel Photocatalytic Drum Reactor. Desalin. Water Treat. 2011, 26, 87–91. DOI: 10.5004/dwt.2011.2114.
  • MiarAlipour, S.; Friedmann, D.; Scott, J.; Amal, R. TiO2/porous Adsorbents: Recent Advances and Novel Applications. J. Hazard. Mater. 2018, 341, 404–423. DOI: 10.1016/j.jhazmat.2017.07.070.
  • Feitz, A.; Boyden, B.; Waite, T. Evaluation of Two Solar Pilot Scale Fixed-Bed Photocatalytic Reactors. Water Res. 2000, 34, 3927–3932. DOI: 10.1016/S0043-1354(00)00153-6.
  • Dionysiou, D.;. Rotating Disk Photocatalytic Reactor: Development, Characterization, and Evaluation for the Destruction of Organic Pollutants in Water. Water Res. 2000, 34, 2927–2940. DOI: 10.1016/S0043-1354(00)00022-1.
  • Hamill, N.; Weatherley, L.; Hardacre, C. Use of a Batch Rotating Photocatalytic Contactor for the Degradation of Organic Pollutants in Wastewater. Appl. Catal. B Environ. 2001, 30, 49–60. DOI: 10.1016/S0926-3373(00)00219-8.
  • Peris‐Cardells, E.; Terol, J.; Mauri, A.; de la Guardia, M.; Pramauro, E. Continuous Flow Photocatalytic Degradation of Carbaryl in Aqueous Media. J. Environ. Sci. Health Part B. 1993, 28, 431–445. DOI: 10.1080/03601239309372834.
  • Reddy, K.; Hisanaga, T.; Tanaka, K. Photodegradation of Fungicide Triadimefon and Pesticide Pirimicarb in Aqueous TiO2 Suspension. Toxicol. Environ. Chem. 1999, 68, 403–412. DOI: 10.1080/02772249909358673.
  • Rajeswari, R.; Kanmani, S. A Study on Synergistic Effect of Photocatalytic Ozonation for Carbaryl Degradation. Desalination. 2009, 242, 277–285. DOI: 10.1016/j.desal.2008.05.007.
  • Kuo, W.; Chiang, Y.; Lai, L. Solar Photocatalysis of Carbaryl Rinsate Promoted by Dye Photosensitization. Dyes Pigm. 2008, 76, 82–87. DOI: 10.1016/j.dyepig.2006.08.015.
  • Amir, M.; Julkapli, N.; Abd Hamid, S. Effective Adsorption and Photodegradation of Methyl Orange by TiO2-chitosan Supported Glass Plate Photocatalysis. Mater. Technol. 2017, 32, 256–264. DOI: 10.1080/10667857.2016.1201635.
  • Rabbani, M.; Bathaee, H.; Rahimi, R.; Maleki, A. Photocatalytic Degradation of P-Nitrophenol and Methylene Blue Using Zn-TCPP/Ag Doped Mesoporous TiO2 Under Uv and Visible Light Irradiation. Desalin. Water Treat. 2016, 57, 25848–25856. DOI: 10.1080/19443994.2016.1157762.
  • Salgado–Tra´nsito, I.; Jime´nez–Gonza´lez, A.; Ramo´n–Garcı´a, M.; Pineda–Arellano, C.; Estrada–Gasca, C. Design of a Novel CPC Collector for the Photodegradation of Carbaryl Pesticides as a Function of the Solar Concentration Ratio. Solar Energy. 2015, 115, 537–551. DOI: 10.1016/j.solener.2015.02.034.
  • Vishnuganth, M.; Remya, N.; Kumar, M.; Selvaraju, N. Photocatalytic Degradation of Carbofuran by TiO2-Coated Activated Carbon: Model for Kinetic, Electrical Energy Per Order and Economic Analysis. J. Environ. Manage. 2016, 181, 201–207. DOI: 10.1016/j.jenvman.2016.06.016.
  • Mahalakshmi, M.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Photocatalytic Degradation of Carbofuran Using Semiconductor Oxides. J. Hazard. Mater. 2007, 143, 240–245. DOI: 10.1016/j.jhazmat.2006.09.008.
  • Haque, M.; Muneer, M.; Bahnemann, D. Semiconductor–Mediated Photocatalyzed Degradation of a Herbicide Derivative, Chlorotoluron, in Aqueous Suspensions. Environ. Sci. Technol. 2006, 40, 4765–4770.
  • Yixin, Y.; Hongbin, C.; Pai, P.; Hongmiao, B. Degradation and Transformation of Atrazine Under Catalyzedozonation Process With TiO2 as Catalyst. J. Hazard. Mater. 2014, 279, 444–451. DOI: 10.1016/j.jhazmat.2014.07.035.
  • Yola, M.; Eren, T.; Atar, N. A Novel Efficient Photocatalyst Based on TiO2 Nanoparticles Involved Boron Enrichment Waste for Photocatalytic Degradation of Atrazine. Chem. Eng. J. 2014, 250, 288–294. DOI: 10.1016/j.cej.2014.03.116.
  • Chatterjee, D.; Mahata, A. Evidence of Superoxide Radical Formation in the Photodegradation of Pesticide on the Dye Modified TiO2 Surface Using Visible Light. J. Photochem. Photobiol. 2004, 165, 19–23. DOI: 10.1016/j.jphotochem.2004.02.015.
  • Sacco, O.; Vaiano, V.; Han, C.; Sannino, D.; Dionysiou, D. Photocatalytic Removal of Atrazine Using N-Doped TiO2 Supported on Phosphors. Appl. Catal. B. Environ. 2015, 164, 462–474. DOI: 10.1016/j.apcatb.2014.09.062.
  • Granados–Oliveros, G.; Paez–Mozo, E.; Ortega, F.; Ferronato, C.; Chovelon, J. Degradation of Atrazine Using Metalloporphyrins Supported on TiO2 Under Visible Light Irradiation. Appl. Catal. B. Environ. 2009, 89, 448–454. DOI: 10.1016/j.apcatb.2009.01.001.
  • Santacruz–Chávez, J.; Oros–Ruiz, S.; Prado, B.; Zanella, R. Photocatalytic Degradation of Atrazine Using TiO2 Superficially Modified With Metallic Nanoparticles. J. Environ. Chem. Eng.: Part B. 2015, 3, 3055–3061.
  • Chu, W.; Rao, Y.; Hui, W. Removal of Simazine in A UV/TiO2 Heterogeneous System. J. Agric. Food Chem. 2009, 57, 6944–6949.
  • Cunff, J.; Tomaši, V.; Wittine, O. Photocatalytic Degradation of the Herbicide Terbuthylazine: Preparation, Characterization and Photoactivity of the Immobilized Thin Layer of TiO2/chitosan. J. Photochem. Photobiol. A Chem. 2015, 309, 22–29.
  • Cunff, J.; Tomaši, V.; Gomzi, Z. Photocatalytic Degradation of Terbuthylazine: Modelling of a Batch Recirculating Device. J. Photochem. Photobiol. A Chem. 2018, 353, 159–170. DOI: 10.1016/j.jphotochem.2017.11.020.
  • Maurino, V.; Minella, M.; Sordello, F.; Minero, C. A Proof of the Direct Hole Transfer in Photocatalysis: The Case of Melamine. Appl. Catal. A. Gen. 2016, 521, 57–67. DOI: 10.1016/j.apcata.2015.11.012.
  • Meia, M.; Dua, Z.; Xub, R.; Chena, Y.; Zhanga, H.; Qua, S. Photocatalytic Degradation of Hexazinone and Its Determination in Water via UPLC–MS/MS. J. Hazard. Mater. 2012, 221–222, 100–108. DOI: 10.1016/j.jhazmat.2012.04.018.
  • Evgenidou, E.; Bizani, E.; Christophoridis, C.; Fytianos, K. Heterogeneous Photocatalytic Degradation of Prometryn in Aqueous Solutions Under UV–Vis Irradiation. Chemosphere. 2007, 68, 1877–1882. DOI: 10.1016/j.chemosphere.2007.03.023.
  • Goutailler, G.; Guillard, C.; Faure, R.; Paissea, O. Degradation Pathway of Dicyclanil in Water in the Presence of Titanium Dioxide. Comparison with Photolysis. J. Agri. Food Chem. 2002, 50, 5115–5120.
  • Macounová, K.; Urban, J.; Krýsová, H.; Krýsa, J.; Jirkovský, J.; Ludvık, J. Photodegradation of Metamitron (4-Amino-6-Phenyl-3-Methyl-1,2,4-Triazin-5 (4h)-One)on TiO2. J. Photochem. Photobiol. A. 2001, 140, 93–98.
  • Kaniou, S.; Pitarakis, K.; Barlagianni, I.; Poulios, I. Photocatalytic Oxidation of Sulfamethazine. Chemosphere. 2005, 60, 372–380.
  • Zhu, X.; Yuan, C.; Bao, Y.; Yang, J.; Wu, Y. Photocatalytic Degradation of Pesticide Pyridaben on TiO2 Particles. J. Mol. Catal. A: Chem. 2005, 229, 95–105.
  • Oujji, N.; Plantara, G.; Goetz, V.; Ait Ichou, I. 3D Photocatalytic Media for Decontamination of Water from Pesticides. Mater. Res. Bull. 2018, 101, 6–11. DOI: 10.1016/j.materresbull.2017.12.042.
  • Berberidou, C.; Kitsiou, V.; Kazala, E.; Lambropoulou, D.; Kouras, A.; Kosma, C.; Albanis, T.; Poulios, I. Study of the Decomposition and Detoxification of the Herbicide Bentazon by Heterogeneous Photocatalysis: Kinetics, Intermediates and Transformation Pathways. Appl. Catal. B. Environ. 2017, 200, 150–163. DOI: 10.1016/j.apcatb.2016.06.068.
  • Zhu, X.; Feng, X.; Yuan, C.; Cao, X.; Li, J. Photocatalytic Degradation of Pesticide Pyridaben in Suspension of TiO2: Identification of Intermediates and Degradation Pathways. J. Mol. Catal. A: Chem. 2004, 214, 293–300. DOI: 10.1016/j.molcata.2004.01.001.
  • Zhu, X.; Yuan, C.; Chen, H. Photocatalytic Degradation of Pesticide Pyridaben. 3. In surfactant/TiO2 Aqueous Dispersions. Environ. Sci. Technol. 2007, 47, 263–269.
  • Lagunas–Allue, L.; Martinez–Soria, M.; Sanz–Asensio, J.; Salvador, A.; Ferronato, C.; Chovelon, J. Photocatalytic Degradation of Boscalid in Aqueous Titanium Dioxide Suspension: Identification of Intermediates and Degradation Pathways. Appl. Catal. B. Environ. 2010, 98, 122–131.
  • Lagunas–Allue, L.; Martinez–Soria, M.; Sanz–Asensio, J.; Salvador, A.; Ferronato, C.; Chovelon, J. Degradation Intermediates and Reaction Pathway of Pyraclostrobin With TiO2Photocatalysis. Appl. Catal. B. Environ. 2014, 115–116, 285–293.
  • Kushniarou, A.; Garrido, I.; Fenoll, J.; Vela, C.; Flores, P.; Navarro, G.; Hellín, P.; Navarro, S. ;. Solar Photocatalytic Reclamation of Agro-Waste Water Polluted with Twelve Pesticides for Agricultural Reuse. Chemosphere. 2019, 214, 839–845.
  • Herrmann, J.; Guillard, C. Photocatalytic Degradation of Pesticides in Agricultural Used Waters. C. R. Acad. Sci. Paris. Se´Rie IIc, Chimie: Chem. 2000, 3, 417–422.
  • Zabar, R.; Dolenc, D.; Jerman, T.; Franko, M.; Trebse, P. Photolytic and Photocatalytic Degradation of 6-Chloronicotinic Acid. Chemosphere. 2011, 85, 861–868. DOI: 10.1016/j.chemosphere.2011.06.107.
  • Konstantinou, I.; Sakellarides, T.; Sakkas, V.; Albanis, T. Photocatalytic Degradation of Selected S-Triazine Herbicides and Organophosphorus Insecticides Over Aqueous TiO2 Suspensions. Environ. Sci. Technol. 2001, 35, 398–405. DOI: 10.1021/es001271c.
  • Sud, D.; Kaur, P. Heterogeneous Photocatalytic Degradation of Selected Organophosphate Pesticides: A Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2365–2407. DOI: 10.1080/10643389.2011.574184.
  • Mak, M.; Hung, S. Degradation of Neat and Commercial Samples of Organophosphate Pesticides in Illuminated TiO2 Suspensions. Toxicol. Environ. Chem. 1992, 36, 155–168. DOI: 10.1080/02772249209357838.
  • Atiqur Rahman, M.; Muneer, M. Photocatalysed Degradation of Two Selected Pesticide Derivatives, Dichlorvos and Phosphamidon in Aqueous Suspensions of Titanium Dioxide. Desalination. 2005, 181, 161–172. DOI: 10.1016/j.desal.2005.02.019.
  • Sivagami, K.; Krishna, R.; Swaminathan, T. Photo Catalytic Degradation of Pesticides in Immobilized Bead Photo Reactor under Solar Irradiation. Solar Energy. 2014, 103, 488–493. DOI: 10.1016/j.solener.2014.02.001.
  • Kanan, S.; Kanan, M.; Patterson, H. Photophysical Properties of Ag(I)-exchanged Zeolite A and the Photoassisted Degradation of Malathion. J. Phys. Chem. B. 2001, 105, 7508–7516. DOI: 10.1021/jp010184j.
  • Kanan, S.; Samara, F.; Abu-Yousef, I. A.; Abdo, N.; Tobias, D. Silver Nanoclusters Doped in Zeolite to Decontaminate Water Resources from the Quinalphos Pesticide. Res. Chem. Int. 2010, 36, 473–482. DOI: 10.1007/s11164-010-0157-y.
  • Kanan, S.; Abu-Yousef, I. A.; Abdo, N. The Photodecomposition of Phosmet over UV Irradiated Silver Nanoclusters Doped in Mordenite Zeolite”. Appl. Catalyst B: Environ. 2007, 74, 130–136. DOI: 10.1016/j.apcatb.2007.02.004.
  • Kanan, S. Study of Argentate, Dicyanoargentate, and Dicyanoaurate Clusters Doped in Zeolites and the Photoassisted Degradation of NOx, Malathion, Carbofuran, and Carbaryl. Ph.D. Thesis, The Graduate School, University of Maine, 2000.
  • Sleiman, M.; Ferronato, C.; Chovelon, J. Photocatalytic Removal of Pesticide Dichlorvos from Indoor Aair: A Study of Reaction Parameters, Intermediates and Mineralization. Environ. Sci. Technol. 2008, 42, 3018–3024. DOI: 10.1021/es702425q.
  • Danoeshvar, N.; Hejazi, M.; Rangarangy, B.; Khataee, A. Photocatalytic Degradation of an Rganophosphorus Pesticide Phosalone in Aqueous Suspensions of Titanium Dioxide. J. Environ. Sci. Health Part B. 2004, 39, 285–296.
  • Vela, N.; Calín, M.; Yáñez-Gascón, M.; Garrido, I.; Pérez-Lucas, G.; FenolL, J.; Navarro, S. Photocatalytic Oxidation of Six Pesticides Listed As Endocrine Disruptor Chemicals From Wastewater Using Two Different TiO2 Samples At Pilot Plant Scale Under Sunlight Irradiation. J. Photochem. Photobiol. A Chem. 2018, 353, 271–278. DOI: 10.1016/j.jphotochem.2017.11.040.
  • Thind, P.; Kumari, D.; John, S. TiO2/H2O2 Mediated Uv Photocatalysis of Chlorpyrifos: Optimization of Process Parameters Using Response Surface Methodology. J. Environ. Chem. Eng. 2018, 6, 3602–3609. DOI: 10.1016/j.jece.2017.05.031.
  • Sivagami, K.; Vikraman, B.; Krishna, R.; Swaminathan, R. Chlorpyrifos and Endosulfan Degradation Studies in an Annular Slurry Photo Reactor. Ecotoxicol. Environ. Saf. 2016, 134, 327–331. DOI: 10.1016/j.ecoenv.2015.08.015.
  • Kralj, M.; Cernigoj, U.; Franko, M.; Trebs, P. Comparison of Photocatalysis and Photolysis of Malathion, Isomalathion, Malaoxon, and Commercial Malathion—Products and Toxicity Studies. Water Res. 2007, 41, 4504–4514.
  • Kadam, A.; Dhabbe, R.; Kokate, M.; Gaikwad, Y.; Garadkar, K. Preparation of N Doped TiO2 Via Microwave-Assisted Method and Its Photocatalytic Activity For Degradation of Malathion. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2014, 133, 669–676. DOI: 10.1016/j.saa.2014.06.020.
  • Xing, Z.; Zhou, W.; Du, F.; Zhang, L.; Li, Z.; Zhang, H.; Li, W. Facile Synthesis of Hierarchical Porous TiO2 Ceramics With Enhanced Photocatalytic Performance For Micropolluted Pesticide Degradation. Acs Appl. Mater. Interfaces. 2014, 6, 16653−16660. DOI: 10.1021/am5034236.
  • Vela, N.; Calín, M.; Yáñez–Gascóna, M.; Garrido, I.; Pérez–Lucas, G.; Fenoll, J.; Navarro, S. Photocatalytic Oxidation of Six Pesticides Listed As Endocrine Disruptor Chemicals From Wastewater Using Two Different TiO2 Samples At Pilot Plant Scale Under Sunlight Irradiation. J. Photochem. Photobiol. A Chem. 2018, 353, 271–278. DOI: 10.1016/j.jphotochem.2017.11.040.
  • Ramos–Delgado, N.; Hinojosa–Reyes, L.; Guzman–Mara, I.; Gracia–Pinilla, M.; Hernandez–Ramireza, A. Synthesis by Sol–Gel of WO3/TiO2 For Solar Photocatalytic Degradation of Malathion Pesticide. Catal. Today. 2013, 209, 35–40.
  • Ramos–Delgado, N.; Gracia–Pinilla, M.; Maya–Trevi˜no, L.; Hinojosa–Reyes, L.; Guzman–Mar, J.; Hernández–Ramírez, A. Solar Photocatalytic Activity of TiO2 Modified With Wo3 on the Degradation of An Organophosphorus Pesticide. J. Hazard. Mater. 2013, 263, 36–44. DOI: 10.1016/j.jhazmat.2013.07.058.
  • Yu, H.; Wang, X.; Sun, H.; Huo, M. Hotocatalytic Degradation of Malathion in Aqueous Solution Using An Au–Pd–TiO2 Nanotube Film. J. Hazard. Mater. 2010, 184, 753–758.
  • Amalraj, A.; Pius, A. Photocatalytic Degradation of Monocrotophos and Chlorpyrifos in Aqueous Solution Using TiO2 Under Uv Radiation. J. Water Process Eng. 2015, 7, 94–101. DOI: 10.1016/j.jwpe.2015.06.002.
  • Affam, A.; Chaudhuri, M. Degradation of Pesticides Chlorpyrifos, Cypermethrin and Chlorothalonil in Aqueous Solution by TiO2 Photocatalysis. J. Environ. Manag. 2013, 130, 160–165.
  • Sivagami, K.; Vikraman, B.; Krishna, R.; Swaminathan, T. Chlorpyrifos and Endosulfan Degradation Studies in an Annular Slurry Photo Reactor. Ecotoxicol. Environ. Safety. 2016, 134, 327–331. DOI: 10.1016/j.ecoenv.2015.08.015.
  • Juang, R.; Chen, C. Comparative Study on Photocatalytic Degradation of Methomyl and Parathion Over UV-Irradiated TiO2 Particles in Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2014, 45, 989–995.
  • Evgenidou, F.; Konstantinou, I.; Fytianos, K.; Poulios, I.; Albanis, T. Photocatalytic Oxidation of Methyl Parathion Over TiO2 and ZnO Suspensions. Catal. Today. 2007, 124, 156–162.
  • Allard, M.; Merlos, S.; Springer, B.; Cooper, J.; Zhang, G.; Boskovic, D.; Kwon, S.; Nick, K.; Perry, C. Role of TiO2 Anatase Surface Mmorphology on Organophosphorus Interfacial Chemistry. J. Phys. Chem. C. In Press. DOI: 10.1021/acs.jpcc.8b08641.
  • Konstantinuou, K.; Sakellarides, T.; Sakkas, E. V.; Albabis, T. Photocatalytic Degradation of Selected s-Triazine Herbicides and Organophosphorus Insecticides Over Aqueous TiO2 Suspensions. Environ. Sci. Technol. 2001, 35, 398–405.
  • Oancea, P.; Oncescu, T. The Photocatalytic Degradation of Dichlorvos under Solar Irradiation. J. Photochem. Photobiol. A Chem. 2008, 199, 8–13. DOI: 10.1016/j.jphotochem.2008.04.010.
  • Evgenidou, E.; Fytianos, K.; Poulios, I. Semiconductor–Sensitized Photodegradation of Dichlorvos in Water Using TiO2 and ZnO As Catalysts. Appl. Catal. B. Environ. 2005, 59, 81–89. DOI: 10.1016/j.apcatb.2005.01.005.
  • Evgenidou, E.; Fytianos, K.; Poulios, I. Photocatalytic Oxidation of Dimethoate in Aqueous Solutions. J. Photochem. Photobiol. A Chem. 2005, 175, 29–38. DOI: 10.1016/j.jphotochem.2005.04.021.
  • Chen, J.; Wang, D.; Zhu, M.; Gao, Z. Photocatalytic Degradation of Dimethoate Using Nanosized TiO2 Powder. Desalination. 2007, 207, 87–94. DOI: 10.1016/j.desal.2006.06.012.
  • Aungpradit, T.; Sutthivaiyakit, P.; Martens, D.; Sutthivaiyakit, S.; Kettrup, A. Photocatalytic Degradation of Triazophos in Aqueous Titanium Dioxide Suspension: Identification of Intermediates and Degradation Pathways. J. Hazard. Mater. 2007, 146, 204–213. DOI: 10.1016/j.jhazmat.2006.12.007.
  • Li, H.; Li, J.; Yang, Z.; Xu, Q.; Hu, X. A Novel Photoelectrochemical Sensor for the Organophosphorus Pesticide Dichlofenthion Based on Nanometer-Sized Titania Coupled with A Screen-Printed Electrode. Anal. Chem. 2011, 83, 5290–5295.
  • Fang, T.; Yang, C.; Liao, L. Photoelectrocatalytic Degradation of High Cod Dipterex Pesticide by Using TiO2/Ni Photo Electrode. J. Environ. Sci. 2012, 24, 1149–1156. DOI: 10.1016/S1001-0742(11)60882-6.
  • Wu, R.; Chen, C.; Lu, C.; Hsu, P.; Chen, M. Phorate Degradation by TiO2 Photocatalysis: Parameter and Reaction Pathway Investigations. Desalination. 2010, 250, 869–875. DOI: 10.1016/j.desal.2009.03.026.
  • Mattsson, A.; Lejon, C.; Stengl, V.; Bakardjieva, S.; Oplustil, F.; Andersson, P.; Osterlund, L. Photodegradation of DMMP and CEES on Zirconium Doped Titania Nanoparticles. Appl. Catal. B. Environ. 2009, 92, 401–410. DOI: 10.1016/j.apcatb.2009.08.020.
  • Kiselev, A.; Mattson, A.; Andersson, M.; Palmqvist, A.; Osterlund, L. Adsorption and Photocatalytic Degradation of Diisopropyl Fluorophosphates and Dimethyl Methylphosphonate Over Dry and Wet Rutile TiO2. J. Photochem. Photobiol. A Chem. 2006, 184, 125–134. DOI: 10.1016/j.jphotochem.2006.04.005.
  • Moss, J.; Szczepankiewicz, S.; Park, E.; Hoffmann, M. Adsorption and Photodegradation of Dimethyl Methylphosphonate Vapor At TiO2 Surfaces. J.Phys. Chem. B. 2005, 109, 19779–19785. DOI: 10.1021/jp052057j.
  • Rusu, C.; Yates, J., Jr. Photooxidation of Dimethyl Methylphosphonate on TiO2 Powder. J. Phys. Chem. B. 2000, 104, 12299–12305. DOI: 10.1021/jp002562a.
  • Waghe, A.; Kanan, S. M.; Abu-Yousef, I. A.; Jensen, B.; Tripp, C. P. Infrared Study of UV Irradiated Tungsten Trioxide Powders Containing Adsorbed Dimethyl Methyl Phosphonate and Trimethyl Phosphate. Res. Chem. Int. 2006, 32, 613–623. DOI: 10.1163/156856706778400280.
  • Kanan, S.; Tripp, C. P. Prefiltering Strategies for Metal Oxide Based Sensors: The Use of Chemical Displacers to Selectively Dislodge Adsorbed Organophosphonates from Silica Surfaces. Langmuir. 2002, 18, 722–728. DOI: 10.1021/la011253o.
  • El-Sayed, Y.; Abu-Farha, N.; Kanan, S. Synthesis and Characterization of Porous WO3–SnO2 Nanomaterials: An Infrared Study of Adsorbed Pyridine and Dimethyl Methylphosphonate. Vib. Spectrosc. 2014, 75, 78–85. DOI: 10.1016/j.vibspec.2014.10.002.
  • Kanan, S. M.;. Tripp,C.P.; Synthesis, Ftir Studies and Sensor Properties of Wo3 Powders. Curr. Opin. Solid State Mater. Sci. 2007, 11, 19–27. DOI: 10.1016/j.cossms.2007.11.001.
  • Bougheloum, C.; Messalhi, A. Photocatalytic Degradation of Benzene Derivatives on TiO2 Catalyst. Physics Procedia. 2009, 2, 1055–1058. DOI: 10.1016/j.phpro.2009.11.062.
  • Nitoi, I.; Oancea, P.; Cristea, I.; Constsntin, L.; Nechifor, G. Kinetics and Mechanism of Chlorinated Aniline Degradation by TiO2 Photocatalysis. J. of Photochem. Photobiol A: Chem. 2015, 298, 17–23. DOI: 10.1016/j.jphotochem.2014.10.005.
  • Nsib, M.; Maayoufi, A.; Moussa, N.; Tarhouni, N.; Massouri, A.; Houas, A.; Chevalier, Y. TiO2 Modified by Salicylic Acid As A Photocatalyst for the Degradation of Monochlorobenzene Via Pickering Emulsion Way. J. Photochem. Photobiol. A Chem. 2013, 251, 10–17. DOI: 10.1016/j.jphotochem.2012.10.007.
  • Chang, S.; Chung, W.; Yu, S.; Lee, S. Photocatalytic Degradation of 4-Chlorophenol Using A Ag/TiO2/Fe3O4 Composite Under Uv-A Irradiation. Desalin. Water Treat. 2015, 54, 3646–3653. DOI: 10.1080/19443994.2014.923207.
  • Barakat, M.; Al-Hutailah, R.; Qayyum, E.; Rashid, J.; Kuhn, J. Pt nanoparticles/TiO2 For Photocatalytic Degradation of Phenols in Wastewater. Environ. Technol. 2014, 53, 137–144. DOI: 10.1080/09593330.2013.820796.
  • Elghniji, K.; Salem, S.; Mosbah, M.; Elaloui, E.; Moussaoui, Y. Detoxification of 4-Chlorophenol in TiO2 Sunlight System: Effect of Raw and Treated Solution on Seed Germination and Plants Growth of Various Sensitive Vegetables. Toxicol. Environ. Chem. 2014, 96, 869–879. DOI: 10.1080/02772248.2014.983511.
  • Ortega–Liébana, M.; Sánchez–López, E.; Hidalgo–Carrillo, J.; Marinas, A.; Marinas, J.; Urbano, F. A Comparative Study of Photocatalytic Degradation of 3-Chloropyridine under UV and Solar Light by Homogeneous (Photo-Fenton) and Heterogeneous (Tio2) Photocatalysis. Appl. Catal. B. Environ. 2012, 127, 316–322. DOI: 10.1016/j.apcatb.2012.08.036.
  • Ye, M.; Chen, Z.; Wang, W.; Shen, J.; Ma, J. Hydrothermal Synthesis of TiO2 Hollow Microspheres for the Photocatalytic Degradation of 4-Chloronitrobenzene. J. Hazard. Mater. 2010, 184, 612–619. DOI: 10.1016/j.jhazmat.2010.08.080.
  • Cao, Y.; Chen, J.; Huang, L.; Wang, Y.; Hou, Y.; Lu, Y. Photocatalytic Degradation of Chlorfenapyr in Aqueous Suspension of TiO2. J. Mol. Catal. A: Chem. 2005, 233, 61–66. DOI: 10.1016/j.molcata.2005.02.010.
  • Cao, Y.; Yi, L.; Huang, L.; Hou, Y.; Lu, Y. Mechanism and Pathways of Chlorfenapyr Photocatalytic Degradation in Aqueous Suspension of TiO2. Environ. Sci. Technol. 2006, 40, 3373–3377.
  • Solís, R.; Rivas, F.; Tierno, M. Monopersulfate Photocatalysis under 365 Nm Radiation. Direct Oxidation and Monopersulfate Promoted Photocatalysis of the Herbicide Tembotrione. J. Environ. Manage. 2016, 181, 385–394. DOI: 10.1016/j.jenvman.2016.06.061.
  • Khan, S.; Han, C.; Khan, H.; Boccelli, D.; Nadagouda, M.; Dionysiou, D. Efficient Degradation of Lindane by Visible and Simulated Solar Light-Assisted S TiO2/peroxymonosulfate Process: Kinetics and Mechanistic investigations. J. Mol. Catal. A: Chem. 2017, 428, 9–16. DOI: 10.1016/j.molcata.2016.11.035.
  • Selli, E.; Bianchi, C.; Pirola, C.; Cappelletti, G.; Ragaini, V. Efficiency of 1,4 Dichlorobenzene Degradation in Water Under Photolysis, Photocatalysis on TiO2 and Sonolysis. J. Hazard. Mat. 2008, 153, 1136–1141. DOI: 10.1016/j.jhazmat.2007.09.071.
  • Liu, L.; Chen, F.; Yang, F.; Chen, Y.; Crittenden, J. Photocatalytic Degradation of 2,4-Dichlorophenol Using Nanoscale Fe/TiO2. Chem. Eng. J. 2012, 181–182, 189–195. DOI: 10.1016/j.cej.2011.11.060.
  • Liu, L.; Chen, F.; Yang, F. Stable Photocatalytic Activity of Immobilized Fe°/TiO2/ACF on Composite Membrane in Degradation of 2,4-Dichlorophenol. Sep. Pur. Technol. 2009, 70, 173–178. DOI: 10.1016/j.seppur.2009.09.013.
  • Kamble, S.; Deosarkar, S.; Sawant, S.; Moulijn, J.; Pangarkar, V. Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid Using Concentrated Solar Radiation: Batch and Continuous Operation. Indust. Eng. Chem. Res. 2004, 43, 8178–8187. DOI: 10.1021/ie0494263.
  • Melian, E.; Diaz, O.; Rodrigues, J.; Arana, J.; Pena, J. Adsorption and Photocatalytic Degradation of 2,4-Dichlorophenol in TiO2 Suspensions. Effect of Hydrogen Peroxide, Sodium Peroxodisulphate and Ozone. Appl. Catal. A. Gen. 2013, 455, 227–233. DOI: 10.1016/j.apcata.2013.02.007.
  • Jia, J.; Zhang, S.; Wang, P.; Wang, H. Degradation of High Concentration 2,4 Dichlorophenol by Simultaneous Photocatalytic-Enzymatic Process Using TiO2/UV and Laccase. J. Hazard. Mater. 2012, 205–206, 150–155.
  • Maddila, S.; Lavanya, P.; Jonnalagadda, S. B. Degradation, Mineralization of Bromoxynil Pesticide by Heterogeneous Photocatalytic Ozonation. J. Indust. Eng. Chem. 2015, 24, 333–341.
  • Wang, Y.; Zhang, Y.; Zhao, G.; Tian, H.; Shi, H.; Zhou, T. Cu2O/TiO2/carbon Aerogel Electrode and Its Efficient Electrosorption–Assisted Visible Light Photocatalytic Degradation of 2,4,6-Trichlorophenol. Appl. Mater. Interf. 2012, 4, 3965–3972.
  • Yu, L.; Yang, X.; Ye, Y.; Peng, X.; Wang, D. Silver Nanoparticles Decorated Anatase TiO2 Nanotubes For Removal of Pentachlorophenol From Water. J.Coll. Interf. Sci. 2015, 453, 100–106.
  • Su, K.; Ai, Z.; Zhang, L. Efficient Visible Light-Driven Photocatalytic Degradation of Pentachlorophenol With Bi2O3/TiO2−xBxE. J. Phys. Chem. 2012, 116, 17118–17123.
  • Zhou, Q.; Ding, Y.; Xiao, J.; Liu, G.; Guo, X. Investigation of the Feasibility of TiO2 Nanotubes for the Enrichment of Ddt and Its Metabolites At Trace Levels in Environmental Water Samples. J. Chromat. A. 2007, 1147, 10–16.
  • Maddila, S.; Rana, S.; Pagadala, R.; Maddila, S.; Vasam, C.; Jonnalagadda, S. Ozone-Driven Photocatalyzed Degradation and Mineralization of Pesticide, Triclopyr by Au/TiO2. J. Environ. Sci. Health. Part B. 2015, 50, 571–583.
  • Kanan, S.; Samara, F. Dioxins and Furans: A Review from Chemical and Environmental Perspectives. Trends Environ. Anal. Chem. 2018, 17, 1–13.
  • Samara, F.; Al Shamsi, M.; Kanaan, F.; Kanan, S. “Photocatalytic UV Degradation of 2, 3, 7, 8-Tetrachlorodibenzofuran in the Presence of Silver Zeolite. Res. Chem Intermed. 2017. DOI: 10.1007/s11164-017-2913-8.
  • Samara, F.; Jermani, E.; Kanan, S. Photocatalytic UV-degradation of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (Tcdd) in the Presence of Silver Doped Zeolite. Arabian J. Chem. In Press. DOI: 10.1016/j.arabjc.2014.12.009.
  • Zaleska, A.; Hupka, J.; Wiergowski, M.; Biziuk, M. Photocatalytic Degradation of Lindane, P, p`–DDT and Methoxychlor in An Aqueous Environment. J. Photochem. Photobiol. A Chem. 2000, 135, 213–220.
  • Farre, M.; Franch, M.; Malato, S.; Ayllon, J.; Peral, J.; Domenech, X. Degradation of Some Biorecalcitrant Pesticides by Homogeneous and Heterogeneous Photocatalytic Ozonation. Chemosphere. 2005, 58, 1127–1133.
  • Ananpattarachai, J.; Kajitvichyanukul, P. Photocatalytic Degradation of p,p′-DDT Under Uv and Visible Light Using Interstitial N-Doped TiO2. J. Environ. Sci. Health Part B. 2015, 50, 247–260.
  • Lin, Y.; Tseng, S.; Huang, W.; Wu, W. Enhanced Photocatalysis of Pentachlorophenol by Metal-Modified Titanium (IV) Oxide. J. Environ. Sci. Health. Part B. 2006, 41, 1143–1158.
  • San, N.; Hatipoğlu, A.; Çinar, Z. Effect of Molecular Properties on the Photocatalytic Degradation Rates of Dichlorophenols and Dichloroanilines in Aqueous TiO2 Suspensions. Toxicol. Environ. Chem. 2004, 86, 147–162.
  • Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986.
  • Farkas, J.; Náfrádi, M.; Hlogyik, T.; Pravda, B.; Schrantz, K.; Hernádi, K.; Alapi, T. Comparison of Advanced Oxidation Processes in the Decomposition of Diuron and Monuron – Efficiency, Intermediates, Electrical Energy per Order and the Effect of Various Matrices. Environ. Sci. Water Res. Technol. 2018, 4, 1345–1360.
  • Calvayrac, C.; Bontemps, N.; Nouga-Bissoue, A.; Romdhane, S.; Coste, C.-M.; Cooper, J.-F. Photolysis of Tembotrione and Its Main by-Products under Extreme Artificial Conditions. Sci. Total Environ. 2013, 452-453, 227–232.
  • Saravanan, P.; Pakshirajan, K.; Saha, P. Degradation of Phenol by TiO2–Based Heterogeneous Photocatalysts in Presence of Sunlight. J. Hydro–Environ. Res. 2009, 3, 45–50.
  • Naeem, K.; Ouyang, F. Influence of Supports on Photocatalytic Degradation of Phenol and 4-Chlorophenol in Aqueous Suspensions of Titanium Dioxide. J. Environ. Sci. 2013, 25, 399–404.
  • Perchet, G.; Merlina, G.; Revel, J.; Hafidi, M.; Richard, C.; Pinelli, C. Evaluation of A TiO2 Photocatalysis Treatment on Nitrophenols and Nitramines Contaminated Plant Wastewaters by Solid-Phase Extraction Coupled With Esi Hplc–Ms. J. Hazard. Mater. 2009, 166, 284–290.
  • Turki, A.; Guillard, C.; Dappozze, F.; Ksibi, Z.; Berhault, G.; Kochkar, H. Phenol Photocatalytic Degradation Over Anisotropic TiO2 Nanomaterials: Kinetic Study, Adsorption Isotherms and Formal Mechanisms. Appl. Catal. B. Environ. 2015, 163, 404–414.
  • Tolosana–Moranchel, A.; anderson, J.; Casas, J.; Faraldos, M.; Bahamonde, A. Defining the Role of Substituents on Adsorption and Photocatalytic Degradation of Phenolic Compounds. J.Environ. Chem. Eng. 2017, 5, 4612–4620.
  • Carbajo, S.; Jimenez, M.; Miralles, S.; Malato, S.; Faraldos, M.; Bahamonde, A. Study of Application of Titania Catalysts on Solar Photocatalysis: Influence of Type of Pollutants and Water Matrices. Chem. Eng. J. 2016, 291, 64–73.
  • Morales–Mejia, J.; Almanza, R.; Gutierrez, F. Solar Photocatalytic Oxidation of Hydroxy Phenols in a Cpc Reactor With Thick TiO2 Films. Energy Procedia. 2014, 57, 597–606.
  • Ksibi, M.; Zemzemi, A.; Boukchina, R. Photocatalytic Degradability of Substituted Phenols Over Uv Irradiated TiO2. J. Photochem. Photobiol. A Chem. 2003, 159, 61–70.
  • Shen, X.; Zhu, L.; Liu, G.; Yu, H.; Tang, H. Enhanced Photocatalytic Degradation and Selective Removal of Nitrophenols by Using Surface Molecular Imprinted Titania, Environ. Sci. Technol. 2008, 42, 1687–1692.
  • Patel, S.; Yadav, N.; Patel, S. Evaluation of Degradation Characteristics of Reactive Dyes by UV/Fenton, UV/fenton/activated Charcoal, and UV/fenton/TiO2 Processes: A Comparative Study. Sep. Sci. Technol. 2013, 48, 1788–1800.
  • Malato, S.; Caaceres, J.; Fernaandez–Alba, A.; Piedra, L.; Hernando, M.; Agu–Era, A.; Vial, J. Photocatalytic Treatment of Diuron by Solar Photocatalysis: Evaluation of Main Intermediates and Toxicity. Environ. Sci. Technol. 2003, 37, 2516–2524.
  • Solís, R.; Rivas, F.; Martínez–Piernas, F.; Agüera, A.; Ozonation, A. Photocatalysis and Photocatalytic Ozonation of Diuron. Intermediates Identification. Chem. Eng. J. 2016, 292, 72–81.
  • Tabasideh, S.; Maleki, A.; Shahmoradi, B.; Ghahremani, E.; Mckay., G. Sonophotocatalytic Degradation of Diazinon in Aqueous Solution Using Iron Doped TiO2 Nanoparticles. Sep. Pur. Technol. 2017, 189, 186–192.
  • Mirmasoomi, S.; Ghazi, M.; Galedari, M. Photocatalytic Degradation of Diazinon Under Visible Light Using TiO2/Fe2O3 Nanocomposite Synthesized by Ultrasonic–Assisted Impregnation Method. Sep. Purif. Technol. 2017, 175, 418–427.
  • Hossaini, H.; Mousssavi, G.; Farrokhi, M. The investigation of the LED–Activated FeFNS–TiO2 Nanocatalyst For Photocatalytic Degradation and Mineralization of Organophosphate Pesticides in Water. Water Res. 2014, 59, 130–144.
  • Nahar, M. S.; Hasegawa, K.; Kagaya, S. Photocatalytic Degradation of Phenol by Visible Light-Responsive Iron-Doped TiO2 and Spontaneous Sedimentation of the TiO2 Particles. Chemosphere. 2006, 65, 1976–1982.
  • Yu, B.; Zeng, J.; Gong, L.; Zhang, M.; Zhang, L.; Chen, X. Investigation of the Photocatalytic Degradation of Organochlorine Pesticides on A nanoTiO2 Coated Film. Talanta. 2007, 72, 1667–1674.
  • Salaeh, S.; Perisic, D.; Biosic, M.; Kusic, H.; Babic, S.; Stangar, U.; Dionysiou, D.; Bozic, A. Diclofenac Removal by Simulated Solar Assisted Photocatalysis Using TiO2-Based Zeolite Catalyst; Mechanisms, Pathways and Environmental Aspects. Chem. Eng. J. 2016, 304, 289–302.
  • Irmak, S.; Kusvuran, E.; Erbatur, O. Degradation of 4-Chloro-2-Methylphenol in Aqueous Solution by UV Irradiation in the Presence of Titanium Dioxide. Appl. Catal. B. Environ. 2004, 54, 85–91.
  • Venkatachalam, N.; Palanichamy, M.; Arabindoo, B.; Murugesan, V. Enhanced Photocatalytic Degradation of 4-Chlorophenol by Zr4+ Doped Nano TiO2. J. Mol. Catal. A: Chem. 2007, 266, 158–165.
  • Wang, Y.; Pan, Z.; Qin, D.; Bai, S.; Peng, Q. Preparation of Ce–TiO2/carbon Aerogel Electrode and Its Performance in Degradation of 4-Chlorophenol. J. Rare Earths. 2018, 36, 374–378.
  • Elghniji, K.; Hentati, O.; Mlaik, N.; Mahfoudh, A.; Ksibi, M. Photocatalytic Degradation of 4-Chlorophenol Under P–Modified TiO2/UV System: Kinetics, Intermediates, Phytotoxicity and Acute Toxicity. J Environ Sci. 2012, 24(3), 479–487.
  • Choi, K.; Park, S.; Park, B.; Jung, J. Recyclable Ag–Coated Fe3O4@TiO2 For Efficient Photocatalytic Oxidation of Chlorophenol. Surf. Coat. Technol. 2017, 320, 240–245.
  • Kuan, C.; Chang, S.; Schroeder, S. Fenton–Like Oxidation of 4-Chlorophenol: Homogeneous or Heterogeneous? Indust. Eng. Chem. Res. 2015, 54, 8122–8129.
  • Abeish, A.; Ang, M.; Znad, H. Enhanced Solar–Photocatalytic Degradation of Combined Chlorophenols Using Ferric Ions and Hydrogen Peroxide. Indust. Eng. Chem. Res. 2014, 53, 10583–10589.
  • Zhao, B.; Meleb, G.; Pio, P.; Li, J.; Palmisano, L.; Vasapollo, G. Degradation of 4–Nitrophenol (4–Np) Using Fe–TiO2 As A Heterogeneous photo–Fenton Catalyst. J. Hazard. Mater. 2010, 176, 569–574.
  • Zheng, Z.; Huang, B.; Meng, X.; Wang, J.; Wang, S.; Lou, Z.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y. Metallic Zinc- Assisted Synthesis of Ti3+Self-Doped TiO2 With Tunable Phase Composition and Visible-Light Photocatalytic Activity. Chem. Commun. 2013, 49, 868−870.
  • Fu, R.; Gao, S.; Xu, H.; Wang, Q.; Wang, Z.; Huang, B.; Dai, Y. Fabrication of Ti3+ Self-Doped TiO2(A) nanoparticle/TiO2(R) Nanorod Heterojunctions With Enhanced Visible-Light-Driven Photo-Catalytic Properties. RSC Adv. 2014, 4, 37061−37069.
  • Zhao, Z.; Tan, H.; Zhao, H.; Lv, Y.; Zhou, L.-J.; Song, Y.; Sun, Z. Reduced TiO2 Rutile Nanorods With Well-Defined Facets and their Visible-Light Photocatalytic Activity. Chem. Commun. 2014, 50, 2755−2757.
  • Pei, D.; Gong, L.; Zhang, A.; Zhang, X.; Chen, J.; Mu, Y.; Yu, H. Defective Titanium Dioxide Single Crystals Exposed by High-Energy {001} Facets for Efficient Oxygen Reduction. Nat. Commun. 2015, 6, 8696.
  • Fang, W.; Dappozze, F.; Guillard, C.; Zhou, Y.; Xing, M.; Mishra, S.; Daniele, S.; Zhang, J. Zn-Assisted TiO2–X Photocatalyst With Efficient Charge Separation For Enhanced Photocatalytic Activities. J. Phys. Chem. C. 2017, 121, 17068–17076.
  • Fenoll, J.; Flores, P.; Hellın, P.; Hernandez, J.; Navarro, S. Minimization of Methabenzthiazuron Residues in Leaching Water Using Amended Soils and Photocatalytic Treatment With TiO2 and ZnO. J. Environ. Sci. 2014, 26, 757–764.
  • Strbac, D.; Aggelopoulos, C.; Strbac, G.; Dimitropoulos, M.; Novakovi´C, M.; Iveti´C, T.; Yannopoulos, S. Photocatalytic Degradation of Naproxen andmethylene Blue: Comparison Between ZnO, TiO2 and their Mixture. Process Saf. Environ. Prot. 2018, 113, 174–183.
  • Calıskan, Y.; Yatmaz, H.; Bektas, N. Photocatalytic Oxidation of High Concentrated Dye Solutions Enhanced by Hydrodynamic Cavitation in a Pilot Reactor. Process Saf. Environ. Prot. 2017, 111, 428–438.
  • Topkaya, E.; Konyar, M.; Yatmaz, H.; Ozturk, K. Pure ZnO and Composite ZnO/TiO2 Catalyst Plates: A Comparative Study for the Degradation of Azo Dye, Pesticide and Antibiotic in Aqueous Solutions. J.Coll. Int. Sci. 2014, 430, 6–11.
  • Athanasekou, C.; Romanos, G.; Katsaros, F.; Kordatos, K.; Likodimos, V.; Falaras, P. Very Efficient Composite Titania Membranes in Hybrid Ultrafiltration/Photocatalysis Water Treatment Processes. J. Memb. Sci. 2012, 392–393, 192–203.
  • Nuengmatcha, P.; Chanthai, S.; Mahachai, R.; Oh, W. Sonocatalytic Performance of ZnO/graphene/TiO2 Nanocomposite For Degradation of Dye Pollutants (Methylene Blue, Texbrite Bac-L, Texbrite Bbu-L and Texbrite Nfw-L) Under Ultrasonic Irradiation. Dyes Pigm. 2016, 134, 487–497.
  • Fenoll, J.; Sabater, P.; Navarro, G.; Vela, N.; Pérez-Lucas, G.; Navarro, S. Abatement Kinetics of 30 Sulfonylurea Herbicide Residues in Water by Photocatalytic Treatment with Semiconductor Materials. J. Environ. Manage. 2013, 130, 361–368.
  • Ramos-Delgado, N.; Gracia-Pinill, L.; Maya-Trevi˜no, L.; Hinojosa-Reyesa, L.; Guzman-Mara, J.; Hernández-Ramírez, A. Solar Photocatalytic Activity of TiO2 Modified With Wo3 on the Degradation of An Organophosphorus Pesticide. J. Hazard. Mater. 2013, 263P, 36–44.
  • Sakkas, V.; Arabatiz, I.; Konstantinou, I.; Dimou, A.; Albanis, T.; Falaras, P. Metolachlor Photocatalytic Degradation Using TiO2 Photocatalysts. Appl. Catal. B. Environ. 2004, 49, 195–205.
  • Oros-Ruiza, S.; Zanellaa, R.; Prado, B. Photocatalytic Degradation of Trimethoprim by Metallic Nanoparticlessupported on TiO2-P25. J. Hazard. Mater. 2013, 263P, 28–35.
  • ChongYeon, P.; Trisha, G.; ZeDa, M.; Ullah, K.; Nikam, V.; WonChun, O. Preparation of CuS/graphene oxide/TiO2 Composites Designed For High Photonic Effect and Photocatalytic Activity Under Visible Light. Chin. J. Catal. 2013, 34, 711–717.
  • Gaidau, C.; Petica, A.; Ignat, M.; Iordache, O.; Ditu, L.; Ionescu, M. Enhanced Photocatalysts Based on Ag-TiO2 and Ag-N-TiO2 Nanoparticles For Multifunctional Leather Surface Coating. Open Chem. 2016, 14, 383–392.
  • Li, X.; Wang, F.; Qian, Q.; Liu, X.; Xiao, L.; Chen, Q. Ag/TiO2 Nanofibers Heterostructure With Enhanced Photocatalytic Activity For Parathion. Mat. Let. 2012, 66, 370–373.
  • Aragay, G.; Pino, F.; MerkoçI, A. L. Nanomaterials for Sensing and Destroying Pesticides. Chem.Rev. 2012, 112, 5317−5338.
  • Kanan, M.; Kanan, S.; Patterson, H. Luminescence Properties of silver(I)-exchanged Zeolite Y and Its Use As A Catalyst To Photodecompose Carbaryl in the Presence of Natural Organic Matter. Res. Chem. Int. 2003, 29, 691–704.
  • Kanan, S.; Kanan, M.; Patterson, H. Silver Nanoclusters Doped in X and Mordenite Zeolites as Heterogeneous Catalysts for the Decomposition of Carbamate Pesticides in Solution. Res. Chem. Int. 2006, 32, 871–885.
  • Kanan, S.; Abdo, N.; Khalil, M.; Li, X.; Abu-Yousef, I.; Barilrobert, F.; Patterson, H. A Study of the Effect of Microwave Treatment on Metal Zeolites and their Use as Photocatalysts toward Naptalam. Appl. Catal. B. Environ. 2011, 106, 350–358.
  • Kanan, S.; Abu-Yousef, I.; Abdo, N.; Abdel Hamid, A. Influence of AgY Zeolite on the Photocatalyticoxidation of Pirimicarb. Int. J. Environ. Eng. 2014, 6, 370–382.
  • Kanan, S.; Nusri, S. The Effect of Silver and Silver-Platinum Doped into 5A Zeolite on the Degradation of Naptalam. Adv. Mater. Res. 2014, 856, 43–47.
  • Ahern, J.; Kanan, S.; Patterson, H. Heterogeneous Photocatalysis with Nanoclusters of D10 Metal Ions Doped in Zeolites. Comments Inorg. Chem. 2015, 35, 59–81.
  • Ahern, J.; Kanan, S.; Sara, Z.; Job, T.; Alnaizy, R.; Abu Farha, N.; Patterson, H. Photocatalysis of Fenoxycarb over Silver-Modified Zeolites”. Environ. Sci. Poll. Res. 2015, 22, 3186–3192.
  • Kanan, S.; Malkawi, A. Mixed Silver–Zinc Encapsulated zeolite-Y Powders Toward the Photodegradation of Aqueous Fenoxycarb Solutions. Desalin. Water Treat. 2017, 100, 281.
  • Herrera–Melian, J.; Martin–Rodriguez, A.; Ortega–Mendez, A.; Arana, J.; Dona–Rodriguez, J.; Perez–Pena, J. Degradation and Detoxification of 4–Nitrophenol by Advanced Oxidation Technologies and Bench–Scale Constructed Wetlands. J. Environ. Manag. 2012, 105, 53–60.
  • Lin, J.; Sopajaree, K.; Jitjanesuwan, T.; Lu, M. Application of Visible Light on Copper- Doped Titanium Dioxide Catalyzing Degradation of Chlorophenols, . Sep. Purif. Technol. 2018, 191, 233–243.
  • Rui, Z.; Jingguo, W.; Jianyu, C.; Lin, H.; Kangguo, M. Photocatalytic Degradation of Pesticide Residues With Re3+–Doped nano–TiO2. J. Rare Earth. 2010, 28, 353–356.
  • Malpass, G.; Miwa, D.; Machado, S.; Olivi, P.; Motheo, A. Oxidation of the Pesticide Atrazine at DSA® Electrodes. J. Hazard. Mater. B. 2006, 137, 565–572.
  • Malpass, G.; Miwa, D.; Miwa, A.; Machado, S.; Motheo, A. Photo–Assisted Electrochemical Oxidation of Atrazine on a Commercial Ti/Ru0.3Ti0.7O2 Dsa Electrode. Environ. Sci. Technol. 2007, 41, 7120–7125.
  • Komtchou, S.; Dirany, A.; Drogui, P.; Delegan, N.; El Khakani, M.; Robert, D.; Lafrance, P. Degradation of Atrazine in Aqueous Solution With Electrophotocatalytic Process Using TiO2–X Photoanode. Chemosphere. 2016, 157, 79–88.
  • Joice, J.; Infant, A.; Aishwarya, S.; Sivakumar, T. Nano Structured Ni and Ru Impregnated TiO2 Photocatalysts: Synthesis, Characterization and Photocatalytic Degradation of Neonicotinoid Insecticides. J. Nanosci. Naotechnol. 2019, 19, 2575–2589.
  • Riaz, R.; Chong, F.; Man, Z.; Khan, M.; Dutta, B. Photodegradation of Orange Ii Under Visible Light Using Cu−Ni/TiO2: Influence of Cu: Ni Mass Composition, Preparation, and Calcination Temperature. Ind. Eng. Chem. Res. 2013, 52, 4491−4503.
  • Zhang, H.; Lü, M.; Liu, S.; Xiu, Z.; Zhou, G.; Zhou, Y.; Qiu, Z.; Zhang, A.; Ma, Q. Preparation and Photocatalytic Properties of Sillenite Bi12TiO20 Films. Surf. Coat. Technol. 2008, 202, 4930–4934.
  • Lin, X.; Lv, P.; Guan, Q.; Li, H.; Zhai, H.; Liu, C. Bismuth Titanate Microspheres: Directed Synthesis and their Visible Light Photocatalytic Activity. Appl. Surf. Sci. 2012, 258, 7146–7153.
  • Alam, U.; Fleisch, M.; Kretschmer, I.; Bahnemann, D.; Muneer, M. One-Step Hydrothermal Synthesis of Bi-TiO2 Nanotube/Graphene Composites: An Efficient Photocatalyst For Spectacular Degradation of Organic Pollutants Under Visible Light Irradiation. Appl. Catal. B Environ. 2017, 218, 758–769.
  • Zhang, X.; Zhang, L.; Xie, T.; Wang, D. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures. J. Phys. Chem. C. 2009, 113, 7371–7378.
  • Wu, Y.; Lu, G.; Li, S. The Doping Effect of Bi on TiO2 For Photocatalytic Hydrogen Generation and Photodecolorization of Rhodamine B. J. Phys. Chem. C. 2009, 113, 9950–9955.
  • Reddy, P.; Srinivas, B.; Kala, P.; Kumari, V.; Subrahmanyam, M. Preparation and Characterization of Bi-Doped TiO2 and Its Solar Photocatalytic Activity for the Degradation of Isoproturon Herbicide. Mater. Res. Bull. 2011, 46, 1766–1771.
  • Rengaraj, S.; Li, X.; Tanner, P.; Pan, Z.; Pang, G. Photocatalytic Degradation of methylparathion—An Endocrine Disruptor by Bi3+–Doped TiO2. J. Mol. Catal. A. Chem. 2006, 247, 36–43.
  • Qui˜nones, D.; Rey, A.; Álvarez, P.; Beltrán, F.; LiPuma, G. Boron Doped TiO2 Catalysts For Photocatalytic Ozonation of Aqueous Mixtures of Common Pesticides: Diuron, O–Phenylphenol, Mcpa and Terbuthylazine. Appl. Catal. B. Environ. 2015, 178, 74–81.
  • Azis, M.; Nurwahidah, A.; Wibowo, D.; Nurdin, M. Photoelectrocatalyst of Fe Co–Doped N–TiO2/Ti Nanotubes: Pesticide Degradation of Thiamethoxam Under UV-Visible Lights. Environ. Nanotechnol. Monit. manag. 2017, 8, 103–111.
  • Zabar, R.; Komel, T.; Fabjan, J.; Kralj, M.; Trebse, P. Photocatalytic Degradation With Immobilised TiO2 of Three Selected Neonicotinoid Insecticides: Imidacloprid, Thiamethoxam and Clothianidin. Chemosphere. 2012, 89, 293–301.
  • Mir, N.; Khan, A.; Muneer, M.; Vijayalakhsmi, S. Photocatalytic Degradation of A Widely Used Insecticide Thiamethoxam in Aqueous Suspension of TiO2: Adsorption, Kinetics, Product Analysis and Toxicity Assessment. Sci. Total Environ. 2013, 458–460, 388–398.
  • Mir, N.; Haque, M.; Khan, M.; Muneer, M.; Vijayalakshmi, S. Photocatalytic Degradation of Herbicide Bentazone in Aqueous Suspension of TiO2: Mineralization, Identification of Intermediates and Reaction Pathways. Environ. Technol. 2014, 35, 407–415.
  • Rivas, J.; Solis, R.; Gimeno, O.; Sagasti, J. Photocatalytic Elimination of Aqueous 2-Methyl-4-Chlorophenoxyacetic Acid in the Presence of Commercial and Nitrogen-Doped TiO2. Int. J. Environ. Sci. Technol. 2015, 12, 513–526.
  • Dhanya, T.; Sugunan, S. Preparation, Characterization and Photocatalytic Activity of N Doped TiO2. IOSR J. Appl. Chem. 2013, 4, 27–33.
  • Reddy, P.; Reddy, P.; Sharma, V.; Srinivas, B.; Kumari, V.; Subrahmanyam, M. Photocatalytic Degradation of Isoproturon Pesticide on C, N and S Doped TiO2. J. Water Resour. Prot. 2010, 2, 235–244.
  • Rasoulnezhad, H.; Hosseinzadeh, G.; Hosseinzadeh, R.; Ghasemian, N. Preparation of Transparent Nanostructured N-Doped TiO2 Thin Films by Combination of Sonochemical and Cvd Methods With Visible Light Photocatalytic Activity. J. Adv. Ceram. 2018, 7, 185–196.
  • Yoshida, T.; Niimi, S.; Yamamoto, M.; Nomoto, T.; Yagi, S. Effective Nitrogen Doping Into TiO2 (N-Tio2) For Visible Light Response Photocatalysis. J. Colloid Interface Sci. 2015, 447, 278–281.
  • Factorovich, M.; Guz, L.; Candal, R. N-TiO2: Chemical Synthesis and Photocatalysis. Adv. Phys. Chem. 2011, Article ID 821204, doi. DOI: 10.1155/2011/821204. .
  • Solís, R.; Rivas, F.; Gimeno, O.; Pérez‐Bote, J. Photocatalytic Ozonation of Pyridine‐Based Herbicides by N‐Doped Titania. J. Chem. Technol. Biotechnol. 2016, 91, 1998–2008.
  • Senthilnathan, J.; Philip, L. Removal of Mixed Pesticides From Drinking Water System by Photodegradation Using Suspended and Immobilized TiO2. J. Environ. Sci. Health. Part B. 2009, 44, 262–270.
  • Jafari, S.; Moussavi, G.; Hossaini, H. Degradation and Mineralization of Diazinon Pesticide in Uvc and Uvc/TiO2 Process. Desalin. Water Treat. 2016, 57, 3782–3790.
  • Nakaoka, Y.; Katsumata, H.; Kaneco, S.; Suzuki, T.; Ohta, K. Photocatalytic Degradation of Diazinon in Aqueous Solution by Platinized TiO2. Desalin. Water Treat. 2010, 13, 427–436.
  • Sraw, A.; Toor, A.; Wanchoo, R. Adsorption Kinetics and Degradation Mechanism Study of Water Persistent Insecticide Quinalphos: For Heterogeneous Photocatalysis Onto TiO2. Desalin. Water Treat. 2016, 57, 16831–16842.
  • Chen, H.; Shen, M.; Chen, R.; Dai, K.; Peng, T. Photocatalytic Degradation of Commercialmethyl Parathion in Aqueous Suspension Containing La‐Doped TiO2 Nanoparticles. Environ. Technol. 2011, 32, 1515–1522.
  • Sakellarides, T.; Sakkas, V.; Lambropoulou, D.; Albanis, T. Application of Solid-Phase Microextraction (Spme) For Photocatalytic Studies of Fenitrothion and Methyl Parathion in Aqueous TiO2 Suspensions. Internat. J. Environ. Anal. Chem. 2004, 84, 161–172.
  • Gomez, S.; Marchena, C.; Pizzio, L.; Pierella, L. Preparation and Characterization of TiO2/HZSM-11 Zeolite For Photodegradation of Dichlorvos in Aqueous Solution. J.Hazard. Mater. 2013, 258–259, 19–26.
  • Shankar, M.; Cheralathan, K.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Enhanced Photocatalytic Activity For the Destruction of Monocrotophos Pesticide by TiO2/H. J. Mol. Catal. 2004, 223, 195–200.
  • Abdennouri, M.; Baalala, M.; Galadi, A.; El Makhfouk, M.; Bensitel, M.; Nohair, N.; Sadiq, M.; Boussaoud, A.; Barka, N. Photocatalytic Degradation of Pesticides by Titanium Dioxide and Titanium Pillared Purified Clays. Arabian J. Chem. 2016, 9, S313–S318.
  • MeiJiao, L.; Jing, L.; XuYu, Y.; ChangAn, Z.; Jia, Y.; Hao, H.; XianBao, W. Applications of Graphene-Based Materials in Environmental Protection and Detection. Chin. Sci. Bull. 2013, 58, 2698–2710.
  • Li, K.; Xiong, J.; Chen, T.; Yan, L.; Dai, Y.; Song, D.; Lv, Y.; Zeng, Z. Preparation of graphene/TiO2 Composites by Nonionic Surfactant Strategy and their Simulated Sunlight and Visible Light Photocatalytic Activity Towards Representative Aqueous POPs Degradation. J. Hazard. Mater. 2013, 250– 251, 19–28.
  • Gunti1, S.; McCrory1, M.; Kumar1, A.; Ram, M. Enhanced Photocatalytic Remediation Using Graphene (G)-Titanium Oxide (Tio2) Nanocomposite Material in Visible Light Radiation. Am. J. Anal. Chem. 2016, 7, 576–587.
  • Shen, Y.; Fang, Q.; Chen, B. Environmental Applications of Three-Dimensional Graphene-Based Macrostructures: Adsorption, Transformation, and Detection. Environ. Sci. Technol. 2015, 49, 67–84.
  • Alvarez, P.; Qui~Nones, D.; Terrones, I.; Rey, A.; Beltran, F. Insights into the Removal of Terbuthylazine from Aqueous Solution by Several Treatment Methods. Water Res. 2016, 98, 334–343.
  • Cruz, M.; Gomez, C.; Duran–Valle, C.; Pastrana–Martínez, L.; Faria, J.; Silva, A.; Faraldos, M.; Bahamonde, A. Bare TiO2 and Graphene Oxide TiO2 Photocatalysts on the Degradation of Selected Pesticides and Influence of the Water Matrix. Appl. Surf. Sci. 2017, 416, 1013–1021.
  • Negishi, N.; Sano, T.; Hirakawa, T.; Koiwa, F.; Chawengkijwanich, C.; Pimpha, N.; Echavia, G. Photocatalytic Detoxification of Aqueous Organophosphorus by TiO2 Immobilized Silica Gel. Appl. Catal. B. Environ. 2012, 128, 105–118.
  • Garcia–Munoz, P.; Carbajo, J.; Faraldos, M.; Bahamonde, A. Photocatalytic Degradation of Phenol and Isoproturon: Effect of Adding an Activated Carbon to Titania Catalyst. J. Photochem. Photobiol. A. 2014, 287, 8–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.