Publication Cover
Catalysis Reviews
Science and Engineering
Volume 62, 2020 - Issue 1
841
Views
32
CrossRef citations to date
0
Altmetric
Articles

Ag-catalyzed azide-alkyne cycloaddition: copper free approaches for synthesis of 1,4-disubstituted 1,2,3-triazoles

&
Pages 96-117 | Received 20 Jun 2019, Accepted 19 Sep 2019, Published online: 20 Oct 2019

References

  • Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3-triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. DOI:10.1002/asia.201100432.
  • Keri, R. S.; Patil, S. A.; Budagumpi, S.; Nagaraja, B. M. Triazole: A Promising Antitubercular Agent. Chem. Biol. Drug Des. 2015, 86, 410–423. DOI:10.1111/cbdd.12527.
  • Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of Novel 1,2,3-triazole Derivatives as Anticancer Agents Using QSAR and in Silico Structural Modification. SpringerPlus. 2015, 4, 571. DOI:10.1186/s40064-015-1352-5.
  • Xi, W.; Scott, T. F.; Kloxin, C. J.; Bowman, C. N. Click Chemistry in Materials Science. Adv. Funct. Mater. 2014, 24, 2572–2590. DOI:10.1002/adfm.v24.18.
  • Binder, W. H.; Sachsenhofer, R. ‘click’ Chemistry in Polymer and Material Science: An Update. Macromol. Rapid Commun. 2008, 29, 952–981. DOI:10.1002/marc.v29:12/13.
  • Dontsova, D.; Pronkin, S.; Wehle, M.; Chen, Z.; Fettkenhauer, C.; Clavel, G.; Antonietti, M. Triazoles: A New Class of Precursors for the Synthesis of Negatively Charged Carbon Nitride Derivatives. Chem. Mater. 2015, 27, 5170–5179. DOI:10.1021/acs.chemmater.5b00812.
  • Fahrenbach, A. C.; Stoddart, J. F. Reactions under the Click Chemistry Philosophy Employed in Supramolecular and Mechanostereochemical Systems. Chem. Asian J. 2011, 6, 2660–2669. DOI:10.1002/asia.201100457.
  • Schulze, B.; Schubert, U. S. Beyond Click Chemistry - Supramolecular Interactions of 1,2,3-triazoles. Chem. Soc. Rev. 2014, 43, 2522–2571. DOI:10.1039/c3cs60386e.
  • Lutz, J. F.;. 1,3-dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science. Angew. Chem. Int. Ed. 2007, 46, 1018–1025. DOI:10.1002/(ISSN)1521-3773.
  • Kempe, K.; Krieg, A.; Becer, C. R.; Schubert, U. S. “clicking” On/with Polymers: A Rapidly Expanding Field for the Straightforward Preparation of Novel Macromolecular Architectures. Chem. Soc. Rev. 2012, 41, 176–191. DOI:10.1039/c1cs15107j.
  • Beghdadi, S.; Miladi, I. A.; Addis, D.; Romdhane, H. B.; Bernard, J.; Drockenmuller, E. Synthesis and Polymerization of C-vinyl- and N-vinyl-1,2,3-triazoles. Polym. Chem. 2012, 3, 1680–1692. DOI:10.1039/C1PY00446H.
  • Wacharasindhu, S.; Bardhan, S.; Wan, Z. K.; Tabei, K.; Mansour, T. S. Oxidative Palladium Catalysis in S(N)Ar Reactions Leading to Heteroaryl Ethers from Pyridotriazol-1-yloxy Heterocycles with Aryl Boronic Acids. J. Am. Chem. Soc. 2009, 131, 4174–4175. DOI:10.1021/ja808622z.
  • Chattopadhyay, B.; Gevorgyan, V. Transition-Metal-Catalyzed Denitrogenative Transannulation: Converting Triazoles into Other Heterocyclic Systems. Angew. Chem. Int. Ed. 2012, 51, 862–872. DOI:10.1002/anie.v51.4.
  • Seo, B.; Jeon, W. H.; Kim, J.; Kim, S.; Lee, P. H. Synthesis of Fluorenes via Tandem Copper-catalyzed [3 + 2] Cycloaddition and Rhodium-catalyzed Denitrogenative Cyclization in a 5-exo Mode from 2-ethynylbiaryls and N-sulfonyl Azides in One Pot. J. Org. Chem. 2015, 80, 722–732. DOI:10.1021/jo5027113.
  • Kim, C.-E.; Park, Y.; Park, S.; Lee, P. H. Diastereoselective Synthesis of Tetrahydrofurano- and Tetrahydropyrano-dihydropyrroles Containing N,O-Acetal Moieties via Rhodium-Catalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles with Oxacycloalkenes. Adv. Synth. Catal. 2015, 357, 210–220. DOI:10.1002/adsc.v357.1.
  • Baures, P. W.;. Heterocyclic HIV-1 Protease Inhibitors. Org. Lett. 1999, 1, 249. DOI:10.1021/ol990586y.
  • Kallander, L. S.; Thompson, S. K. WO 2001078723, 2001.
  • Melo, J. O. F.; Donnici, C. L.; Augusti, R.; Lopes, M. T. P.; Mikhailovskii, A. G. Synthesis of Novel and Hardly-obtainable 1,2,3-triazoles with Potential Antitumoral Activity by a Diazo-transfer Reaction from 5,7-dinitro-3-diazo-1,3- Dihydro-2h-indol-2-one to Enaminones. Heterocycl. Commun. 2003, 9, 235. DOI:10.1515/HC.2003.9.3.235.
  • Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; Clercq, E. D.; Perno, C. F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. 1,2,3-triazole-[2,5-bis-o-(tert-butyldimethylsilyl)-.beta.-d-ribofuranosyl]-3’-spiro-5’’-(4’’-amino-1’’,2’’-oxathiole 2’’,2’’-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J. Med. Chem. 1994, 37, 4185. DOI:10.1021/jm00050a015.
  • Bohacek, R. S.; McMartinand, C.; Guida, W. C. The Art and Practice of Structure-based Drug Design: A Molecular Modeling Perspective. Med.Res.Rev. 1996, 16, 3. DOI:10.1002/(ISSN)1098-1128.
  • Soltis, M. J.; Yeh, H. J.; Cole, W. K. A. N.; Wersto, R. P.; Kohn, E. C. Identification and characterization of human metabolites of CAI [5-amino-1-1(4'-chlorobenzoyl-3,5-dichlorobenzyl)-1,2,3-triazole- 4-carboxamide). Drug Metab. Dispos. 1996, 24, 799.
  • Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2012. DOI:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
  • Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-triazoles by Regiospecific Copper(i)-catalyzed 1,3-dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. DOI:10.1021/jo011148j.
  • Meldal, M.; Tornøe, C. W. Cu-catalyzed Azide-alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. DOI:10.1021/cr0783479.
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)‐Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. DOI: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.
  • Fokin, V. V.; Matyjaszewski, K. Organic Chemistry-Breakthroughs, Perspectives; Wiley-VCH Verlag GmbH and Co. KGaA, Germany, 2012; pp 247–277.
  • Huisgen, R.;. 1,3-dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. Engl. 1963, 2, 565–598. DOI:10.1002/(ISSN)1521-3773.
  • Zhang, L.; Chen, X. G.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. C. Ruthenium-catalyzed Cycloaddition of Alkynes and Organic Azides. J. Am. Chem. Soc. 2005, 127, 15998–15999. DOI:10.1021/ja054114s.
  • Meng, X.; Xu, X.; Gao, T.; Chen, B. Zn/C‐Catalyzed Cycloaddition of Azides and Aryl Alkynes. Eur. J. Org. Chem. 2010, 5409–5414. DOI:10.1002/ejoc.201000610.
  • Paplal, B.; Nagaraju, S.; Sridhar, B.; Kashinath, D. Regioselective Synthesis of Functionalized 1,2,3-triazoles via Oxidative [3+2]-cycloaddition Using Zn(OAc) 2 - T BuOOH or ZnO Nanoparticle as Catalyst System in Aqueous Medium. Catal.Commun. 2017, 9, 115–120. DOI:10.1016/j.catcom.2017.05.006.
  • Morozova, M. A.; Yusubov, M. S.; Kratochvil, B.; Eigner, V.; Bondarev, A. A.; Yoshimura, A.; Saito, A.; Zhdankin, V. V.; Trusova, M. E.; Postnikov, P. S. Regioselective Zn(OAc) 2-catalyzed Azide–Alkyne Cycloaddition in Water: The Green Click-chemistry. Org. Chem. Front. 2017, 4, 978–985. DOI:10.1039/C6QO00787B.
  • McNulty, J.; Keskar, K.; Vemula, R. The First Well-Defined Silver(I)-Complex-Catalyzed Cycloaddition of Azides onto Terminal Alkynes at Room Temperature. Chem. Eur. J. 2011, 17, 14727–14730. DOI:10.1002/chem.201103244.
  • McNulty, J.; Keskar, K. Discovery of a Robust and Efficient Homogeneous Silver(I) Catalyst for the Cycloaddition of Azides onto Terminal Alkynes. Eur. J. Org. Chem. 2012, 5462–5470. DOI:10.1002/ejoc.v2012.28.
  • Ortega-Arizmendi, A. I.; Aldeco-Perez, E.; Cuevas-Yanez, E. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and‘‘Abnormal’’ Silver N-Heterocyclic Carbene Complex. Sci. World J. 2013, 186537.
  • Salam, N.; Sinha, A.; Roy, A. S.; Mondal, P.; Jana, N. R.; Islam, S. M. Synthesis of Silver–Graphene Nanocomposite and Its Catalytic Application for the One-pot Three-component Coupling Reaction and One-pot Synthesis of 1,4-disubstituted 1,2,3-triazoles in Water. RSC Adv. 2014, 4, 10001–10012. DOI:10.1039/c3ra47466f.
  • Basu, P.; Bhanja, P.; Salam, N.; Dey, T. K.; Bhumik, A.; Das, D.; Islam, S. M. Silver Nanoparticles Supported over Al 2 O 3 @fe 2 O 3 Core-shell Nanoparticles as an Efficient Catalyst for One-pot Synthesis of 1,2,3-triazoles and Acylation of Benzyl Alcohol. Mol. Catal. 2017, 439, 31–40. DOI:10.1016/j.mcat.2017.05.005.
  • Ferretti, A. M.; Ponti, A.; Molteni, G. Silver(I) Oxide Nanoparticles as a Catalyst in the Azide–Alkyne Cycloaddition. Tetrahedron Lett. 2015, 56, 5727–5730. DOI:10.1016/j.tetlet.2015.08.083.
  • Ali, A. A.; Chetia, M.; Saikia, B.; Saikia, P. J.; Sarma, D. AgN(CN)2/DIPEA/H2O-EG: A Highly Efficient Catalytic System for Synthesis of 1,4-disubstituted-1,2,3 Triazoles at Room Temperature. Tetrahedron Lett. 2015, 56, 5892–5895. DOI:10.1016/j.tetlet.2015.09.025.
  • Rao, H. S. P.; Chakibanda, G. Raney Ni Catalyzed Azide-alkyne Cycloaddition Reaction. RSC Adv. 2014, 4, 46040–46048. DOI:10.1039/C4RA07057G.
  • Arado, O. D.; Monig, H.; Wagner, H.; Franke, J.-H.; Langewisch, G.; Held, P. A.; Studer, A.; Fuchs, H. On-surface Azide-alkyne Cycloaddition on Au(111). ACS Nano. 2013, 7, 8509–8515. DOI:10.1021/nn4022789.
  • Boominathan, M.; Pugazhenthiran, N.; Nagaraj, M.; Muthusubramanian, S.; Murugesan, S.; Bhuvanesh, N. Nanoporous Titania-Supported Gold Nanoparticle-Catalyzed Green Synthesis of 1,2,3-triazoles in Aqueous Medium. ACS Sustain. Chem. Eng. 2013, 1, 1405–1411. DOI:10.1021/sc400147r.
  • Michael, A.;. Ueber Die Einwirkung Von Diazobenzolimid Auf Acetylendicarbonsäuremethylester. J. Prakt. Chem. 1893, 48, 94–95. DOI:10.1002/prac.18930480114.
  • El-Sagheer, A. H.; Brown, T. Click Nucleic Acid Ligation: Applications in Biology and Nanotechnology. Acc. Chem. Res. 2012, 45, 1258–1267. DOI:10.1021/ar200321n.
  • Yang, M. Y.; Li, J.; Chen, P. R. Transition Metal-mediated Bioorthogonal Protein Chemistry in Living Cells. Chem. Soc. Rev. 2014, 43, 6511–6526. DOI:10.1039/c4cs00117f.
  • Sumerlin, B. S.; Vogt, A. P. Macromolecular Engineering through Click Chemistry and Other Efficient Transformations. Macromolecules. 2010, 43, 1–13. DOI: 10.1021/ma901447e.
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew.Chem. 2002,114. 2708. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. DOI:10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0.
  • Fletcher, J. T.; Walz, S. E.; Keeney, M. E. Monosubstituted 1,2,3-triazoles from Two-step One-pot Deprotection/click Additions of Trimethylsilylacetylene. Tetrahedron Lett. 2008, 49, 7030–7032. DOI:10.1016/j.tetlet.2008.09.136.
  • Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. Copper(I)-catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc. 2005, 127, 210–216. DOI:10.1021/ja0471525.
  • Orgueira, H. A.; Fokas, D.; Isome, Y.; Chan, P. C. M.; Baldino, C. M. Regioselective Synthesis of [1,2,3]-triazoles Catalyzed by Cu(I) Generated in Situ from Cu(0) Nanosize Activated Powder and Amine Hydrochloride Salts. Tetrahedron Lett. 2005, 46, 2911–2914. DOI:10.1016/j.tetlet.2005.02.127.
  • Girard, C.; Onen, E.; Aufort, M.; Beauviere, S.; Samson, E.; Herscovici, J. Reusable Polymer-supported Catalyst for the [3+2] Huisgen Cycloaddition in Automation Protocols. Org. Lett. 2006, 8, 1689–1692. DOI: 10.1021/ol060283l.
  • Jlalia, I.; Elamair, H.; Meganem, F.; Herscovici, J.; Girard, C. Copper(I)-doped Wyoming’s Montmorillonite for the Synthesis of Disubstituted 1,2,3-triazoles. Tetrahedron Lett. 2008, 49, 6756–6758. DOI: 10.1016/j.tetlet.2008.09.031.
  • Burrows, C. J.; Muller, J. G. Oxidative Nucleobase Modifications Leading to Strand Scission. Chem. Rev. 1998, 98, 1109–1152.
  • Bebensee, F.; Bombis, C.; Vadapoo, S. R.; Cramer, J. R.; Besenbacher, F.; Gothelfand, K. V.; Linderoth, T. R. On-surface Azide-alkyne Cycloaddition on Cu(111): Does It “click” in Ultrahigh Vacuum? J. Am. Chem. Soc. 2013, 135, 2136–2139. DOI: 10.1021/ja312303a.
  • Aucagne, V.; Leigh, D. A. Chemoselective Formation of Successive Triazole Linkages in One Pot: “Click-click” Chemistry. Org. Lett. 2006, 8, 4505–4507. DOI: 10.1021/ol061657d.
  • Silvestri, I. P.; Andemarian, F.; Khairallah, G. N.; Yap, S. W.; Quach, T.; Tsegay, S.; Williams, C. M.; O’Hair, R. A. R.; Donnelly, P. S.; Williams, S. J. Copper(I)-catalyzed Cycloaddition of Silver Acetylides and Azides: Incorporation of Volatile Acetylenes into the Triazole Core. Org. Biomol. Chem. 2011, 9, 6082–6088. DOI:10.1039/c1ob05360d.
  • Jurcˇek, M.; Kouwer, P. H. J.; Rowan, A. E. Triazole: A Unique Building Block for the Construction of Functional Materials. Chem. Commun. 2011, 47, 8740–8749. DOI:10.1039/c1cc10685f.
  • Hein, J. E.; Fokin, V. V. Copper-catalyzed Azide-alkyne Cycloaddition (cuaac) and Beyond: New Reactivity of copper(I) Acetylides. Chem. Soc. Rev. 2010, 39, 1302–1315. DOI:10.1039/b904091a.
  • Batten, S. R.; Murray, K. S. Structure and Magnetism of Coordination Polymers Containing Dicyanamide and Tricyanomethanide. Coord. Chem. Rev. 2003, 246, 103. DOI:10.1016/S0010-8545(03)00119-X.
  • Turner, D. R.; Chesman, A. S. R.; Murray, K.; Deacon, G. B.; Batten, S. R. The Chemistry and Complexes of Small Cyano Anions. Chem. Commun. 2011, 47, 10189–10210. DOI:10.1039/c1cc11909e.
  • Britton, D.; Chow, Y. M. The Crystal Structure of Silver Dicyanamide, AgN(CN)2. Acta Crystallogr. Sect. B. 1977, 33, 697–699. DOI:10.1107/S056774087700449X.
  • Britton, D.;. Silver Dicyanamide, AgN(CN)2 – Orthorhombic Modification. Acta Crystallogr., Sect. C. 1990, 46, 2297–2299. DOI:10.1107/S0108270190005479.
  • Sultana, J.; Khupse, N. D.; Chakrabarti, S.; Chattopadhyay, P.; Sarma, D. Ag2CO3-catalyzed Cycloaddition of Organic Azides onto Terminal Alkynes: A Green and Sustainable Protocol Accelerated by Aqueous Micelles of CPyCl. Tetrahedron Lett. 2019, 60, 1117–1121. DOI:10.1016/j.tetlet.2019.03.036.
  • Banerji, B.; Chandrasekhar, K.; Killi, S. K.; Pramanik, S. K.; Uttam, P.; Sen, S.; Maiti, N. C. Silver-catalysed Azide–Alkyne Cycloaddition (agaac): Assessing the Mechanism by Density Functional Theory Calculations. R. Soc. Opensci. 2016, 3, 160090. DOI:10.1098/rsos.160090.
  • Boz, E.; Tüzün, N. Ş. Ag-catalyzed Azide Alkyne Cycloaddition: A DFT Approach. Dalton Trans. 2016, 45, 5752–5764. DOI:10.1039/c5dt04902d.
  • Baigand, R. B. N.; Varma, R. S. A Highly Active Magnetically Recoverable Nano Ferrite-glutathione-copper (nano-fgt-cu) Catalyst for Huisgen 1,3-dipolar Cycloadditions. Green Chem. 2012, 14, 625. DOI: 10.1039/c2gc16301b.
  • Sharghi, H.; Khalifeh, R.; Doroodmand, M. M. Copper Nanoparticles on Charcoal for Multicomponent Catalytic Synthesis of 1,2,3-triazole Derivatives from Benzyl Halides or Alkyl Halides, Terminal Alkynes and Sodium Azide in Water as a “Green” Solvent. Adv. Synth. Catal. 2009, 351, 207. DOI: 10.1002/adsc.200800612.
  • Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent Synthesis of 1,2,3‐Triazoles in Water Catalyzed by Copper Nanoparticles on Activated Carbon. Adv. Synth. Catal. 2010, 352, 3208. DOI: 10.1002/adsc.201000637.
  • Kumar, B. S. P. A.; Reddy, K. H. V.; Madhav, B.; Ramesh, K.; Nageswar, Y. V. D. Magnetically Separable CuFe2O4 Nano Particles Catalyzed Multicomponent Synthesis of 1,4-disubstituted 1,2,3-triazoles in Tap Water Using ‘click Chemistry’. Tetrahedron Lett. 2012, 53, 4595. DOI: 10.1016/j.tetlet.2012.06.077.
  • Zhao, Y. B.; Yan, Z. Y.; Liang, Y. M. Efficient Synthesis of 1,4-disubstituted 1,2,3-triazoles in Ionic Liquid/water System. Tetrahedron Lett. 2006, 47, 1545. DOI: 10.1016/j.tetlet.2006.01.004.
  • Yanand, J.; Wang, L. Synthesis of 1,4-Disubstituted 1,2,3-Triazoles by Use of Copper(I) and Amino Acids Ionic Liquid Catalytic System. Synthesis. 2010, 3, 447.
  • Shin, J. A.; Lim, Y. G.; Lee, K. H. J. Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction in Water Using Cyclodextrin as a Phase Transfer Catalyst. Org. Chem. 2012, 77, 4117. DOI: 10.1021/jo3000095.
  • Hudson, R.; Liand, C. J.; Moores, A. Magnetic Copper–Iron Nanoparticles as Simple Heterogeneous Catalysts for the Azide–Alkyne Click Reaction in Water. Green Chem. 2012, 14, 622. DOI: 10.1039/c2gc16421c.
  • Banerji, B.; Chandrasekhar, K.; Killi, S. K.; Pramanik, S. K.; Pal, U.; Sen, S.; Maiti, N. C. Silver-catalysed azide–alkyne cycloaddition (AgAAC): assessing the mechanism by density functional theory calculations. RSC Open Sci. 2016, 3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.