Publication Cover
Catalysis Reviews
Science and Engineering
Volume 62, 2020 - Issue 1
1,098
Views
14
CrossRef citations to date
0
Altmetric
Articles

Recent advances in decarboxylative C-C bond formation using direct or in situ generated alkenyl acids

, & ORCID Icon

References

  • Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S. Recent Advances in the Suzuki–Miyaura Cross-Coupling Reaction Using Efficient Catalysts in Eco-Friendly Media. Green Chem. 2019, 21, 381–405.
  • Xie, J.; Jin, H.; Hashmi, A. S. K. The Recent Achievements of Redox-Neutral Radical C–C Cross-Coupling Enabled by Visible-Light. Chem. Soc. Rev. 2017, 46, 5193–5203.
  • De Barros, S. D.; Senra, J. D.; Lachter, E. R.; Malta, L. F. B. Metal-Catalyzed Cross-Coupling Reactions with Supported Nanoparticles: Recent Developments and Future Directions. Catal. Rev. 2016, 58, 439–496.
  • Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C. M.; Baran, P. S. Functionalized Olefin Cross-Coupling to Construct Carbon–Carbon Bonds. Nature. 2014, 516, 343–348.
  • Crabtree, R. H.; Lei, A. Introduction: C-H Activation. Chem. Rev. 2017, 117, 8481–8482.
  • Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Formation of C–C and C–Heteroatom Bonds by C–H Activation by Metal Organic Frameworks as Catalysts or Supports. ACS Catal. 2018, 9, 1081–1102.
  • Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Recent Applications of C–H Functionalization in Complex Natural Product Synthesis. Chem. Soc. Rev. 2018, 47, 8925–8967.
  • Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H Coupling Reactions between Two (Hetero) Arenes. Chem. Rev. 2017, 117, 8787–8863.
  • Kumar, R.; Van der Eycken, E. V. Recent Approaches for C–C Bond Formation via Direct Dehydrative Coupling Strategies. Chem. Soc. Rev. 2013, 42, 1121–1146.
  • Voll, C. C. A.; Swager, T. M. Extended π-Conjugated Structures via Dehydrative C–C Coupling. J. Am. Chem. Soc. 2018, 140, 17962–17967.
  • Shao, Z.; Zhang, H. N-Tosylhydrazones: Versatile Reagents for Metal-Catalyzed and Metal-Free Cross-Coupling Reactions. Chem. Soc. Rev. 2012, 41, 560–572.
  • De Gracia Retamosa, M.; Matador, E.; Monge, D.; Lassaletta, J. M.; Fernandez, R. Hydrazones as Singular Reagents in Asymmetric Organocatalysis. Chem. Eur. J. 2016, 22, 13430–13445.
  • Ciszewski, L. W.; Rybicka-Jasińska, K.; Gryko, D. Recent Developments in Photochemical Reactions of Diazo Compounds. Org. Biomol. Chem. 2019, 17, 432–448.
  • Felpin, F. X.; Sengupta, S. Biaryl Synthesis with Arenediazonium Salts: Cross-Coupling, CH-Arylation and Annulation Reactions. Chem. Soc. Rev. 2019, 48, 1150–1193.
  • Rodriguez, N.; Goossen, L. J. Decarboxylative Coupling Reactions: A Modern Strategy for C–C Bond Formation. Chem. Soc. Rev. 2011, 40, 5030–5048.
  • Borah, A. J.; Yan, G. Decarboxylative Functionalization of Cinnamic Acids. Org. Biomol. Chem. 2015, 13, 8094–8115.
  • Schwarz, J.; König, B. Decarboxylative Reactions with and without Light– A Comparison. Green Chem. 2018, 20, 323–361.
  • Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-Catalyzed Decarboxylative C–H Functionalization. Chem. Rev. 2017, 117, 8864–8907.
  • Park, K.; Lee, S. Transition Metal-Catalyzed Decarboxylative Coupling Reactions of Alkynyl Carboxylic Acids. RSC Adv. 2013, 3, 14165–14182.
  • Goossen, L. J.; Deng, G.; Levy, L. M. Synthesis of Biaryls via Catalytic Decarboxylative Coupling. Science. 2006, 313, 662–664.
  • Dzik, W. I.; Lange, P. P.; Goossen, L. J. Carboxylates as Sources of Carbon Nucleophiles and Electrophiles: Comparison of Decarboxylative and Decarbonylative Pathways. Chem. Sci. 2012, 3, 2671–2678.
  • Hackenberger, D.; Weber, P.; Blakemore, D. C.; Goossen, L. J. Synthesis of 3-Substituted 2-Arylpyridines via Cu/Pd-Catalyzed Decarboxylative Cross-Coupling of Picolinic Acids with (Hetero) Aryl Halides. J. Org. Chem. 2017, 82, 3917–3925.
  • Pichette Drapeau, M.; Bahri, J.; Lichte, D.; Goossen, L. J. Decarboxylative Ipso- Amination of Activated Benzoic Acids. Angew. Chem. Int. Ed. 2019, 131, 902–906.
  • Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible‐Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034–10072.
  • Bloom, S.; Liu, C.; Kölmel, D. K.; Qiao, J. X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. Decarboxylative Alkylation for Site-Selective Bioconjugation of Native Proteins via Oxidation Potentials. Nature Chem. 2018, 10, 205–211.
  • Sharma, A.; Sharma, N.; Kumar, R.; Shard, A.; Sinha, A. K. Direct Olefination of Benzaldehydes into Hydroxy Functionalized Oligo (P-phenylenevinylenes) via Pd-Catalyzed Heterodomino Knoevenagel-Decarboxylation-Heck Sequence and Its Application for Fluoride Sensing π-Conjugated Units. Chem. Commun. 2010, 46, 3283–3285.
  • Sharma, N.; Sharma, A.; Shard, A.; Kumar, R.; Sinha, A. K. Pd‐Catalyzed Orthogonal Knoevenagel/Perkin Condensation–Decarboxylation–Heck/Suzuki Sequences: Tandem Transformations of Benzaldehydes into Hydroxy‐Functionalized Antidiabetic Stilbene–Cinnamoyl Hybrids and Asymmetric Distyrylbenzenes. Chem. Eur. J. 2011, 17, 10350–10356.
  • Shard, A.; Sharma, N.; Bharti, R.; Dadhwal, S.; Kumar, R.; Sinha, A. K. Tandem Heck/Decarboxylation/Heck Strategy: Protecting‐Group‐Free Synthesis of Symmetric and Unsymmetric Hydroxylated Stilbenoids. Angew. Chem. Int. Ed. 2012, 51, 12250–12253.
  • Goossen, L. J.; Rodríguez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy, L. M. Biaryl Synthesis via Pd-Catalyzed Decarboxylative Coupling of Aromatic Carboxylates with Aryl Halides. J. Am. Chem. Soc. 2007, 129, 4824–4833.
  • Wang, Z.; Ding, Q.; He, X.; Wu, J. Palladium-Catalyzed Decarboxylative Cross-Coupling Reaction of Cinnamic Acid with Aryl Iodide. Org. Biomol. Chem. 2009, 7, 863–865.
  • Sarpietro, M. G.; Spatafora, C.; Accolla, M. L.; Cascio, O.; Tringali, C.; Castelli, F. Effect of Resveratrol-Related Stilbenoids on Biomembrane Models. J. Nat. Prod. 2013, 76, 1424–1431.
  • Akinwumi, B.; Bordun, K. A.; Anderson, H. Biological Activities of Stilbenoids. Inter. J. Mol. Sci. 2018, 19, 792.
  • Rameau, N.; Russo, B.; Mangematin, S.; Pinel, C.; Djakovitch, L. Stilbene Synthesis through Decarboxylative Cross-Coupling of Substituted Cinnamic Acids with Aryl Halides. Appl. Catal. A. 2018, 560, 132–143.
  • Yamashita, M.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of α, ω-Diarylbutadienes and-Hexatrienes via Decarboxylative Coupling of Cinnamic Acids with Vinyl Bromides under Palladium Catalysis. Org. Lett. 2009, 12, 592–595.
  • Cahiez, G.; Moyeux, A.; Poizat, M. Stereoselective Synthesis of Triarylethylenes via Copper–Palladium Catalyzed Decarboxylative Cross-Coupling: Synthesis of (Z)-tamoxifen. Chem. Commun. 2014, 50, 8982–8984.
  • Wang, C.; Lei, Y.; Guo, M.; Shang, Q.; Liu, H.; Xu, Z.; Wang, R. Photoinduced, Copper-Promoted Regio-and Stereoselective Decarboxylative Alkylation of α, β-Unsaturated Acids with Alkyl Iodides. Org. Lett. 2007, 19, 6412–6415.
  • Noyori, S.; Nishihara, Y. Recent Advances in Cross-Coupling Reactions with Aryl Chlorides, Tosylates, and Mesylates. In Applied Cross-Coupling Reactions; Nishihara, Y., Ed.,Springer: Berlin, Heidelberg, 2013; pp 177–202.
  • Fortman, G. C.; Nolan, S. P. N-Heterocyclic Carbene (NHC) Ligands and Palladium in Homogeneous Cross-Coupling Catalysis: A Perfect Union. Chem. Soc. Rev. 2011, 40, 5151–5169.
  • Goossen, L. J.; Zimmermann, B.; Knauber, T. Palladium/Copper‐Catalyzed Decarboxylative Cross‐Coupling of Aryl Chlorides with Potassium Carboxylates. Angew. Chem. Int. Ed. 2008, 47, 7103–7106.
  • Tang, J.; Hackenberger, D.; Goossen, L. J. Branched Arylalkenes from Cinnamates: Selectivity Inversion in Heck Reactions by Carboxylates as Deciduous Directing Groups. Angew. Chem. Int. Ed. 2016, 55, 11296–11299.
  • Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330.
  • Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking beyond Intuition. Science. 2007, 317, 1881–1886.
  • Chen, Q.; Wang, C.; Zhou, J.; Wang, Y.; Xu, Z.; Wang, R. CuSO4-Mediated Decarboxylative Difluoroacetamidation of α, β-Unsaturated Carboxylic Acids. J. Org. Chem. 2016, 81, 2639–2645.
  • Ma, J. J.; Yi, W. B.; Lu, G. P.; Decarboxylative, C. C. Denitrative Trifluoromethylation for the Synthesis of Cvinyl-CF3 Compounds with Togni (II) Reagent. Adv. Synth. Catal. 2015, 357, 3447–3452.
  • He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. Copper‐Catalyzed Di‐and Trifluoromethylation of α, β‐Unsaturated Carboxylic Acids: A Protocol for Vinylic Fluoroalkylations. Angew. Chem. Int. Ed. 2012, 51, 3944–3947.
  • Xu, P.; Abdukader, A.; Hu, K.; Cheng, Y.; Zhu, C. Room Temperature Decarboxylative Trifluoromethylation of α, β-Unsaturated Carboxylic Acids by Photoredox Catalysis. Chem. Commun. 2014, 50, 2308–2310.
  • Li, Z.; Cui, Z.; Liu, Z. Q. Copper and Iron-Catalyzed Decarboxylative Tri-and Difluoromethylation of α, β-Unsaturated Carboxylic Acids with CF3SO2Na and (CF2HSO2)2Zn via a Radical Process. Org. Lett. 2013, 15, 406–409.
  • Patra, T.; Deb, A.; Manna, S.; Sharma, U.; Maiti, D. Iron‐Mediated Decarboxylative Trifluoromethylation of α, β‐Unsaturated Carboxylic Acids with Trifluoromethanesulfinate. Eur. J. Org. Chem. 2013, 2013, 5247–5250.
  • Yin, J.; Li, Y.; Zhang, R.; Jin, K.; Duan, C. Copper/Silver-Mediated Decarboxylative Trifluoromethylation of α, β-Unsaturated Carboxylic Acids with CF3SO2Na. Synthesis. 2014, 46, 607–612.
  • Shang, X. J.; Li, Z.; Liu, Z. Q. An I2O5-Promoted Decarboxylative Trifluoromethylation of Cinnamic Acids. Tetrahedron Lett. 2015, 56, 233–235.
  • Li, G.; Wang, T.; Fei, F.; Su, Y. M.; Li, Y.; Lan, Q.; Wang, X. S. Nickel‐Catalyzed Decarboxylative Difluoroalkylation of α, β‐Unsaturated Carboxylic Acids. Angew. Chem. Int. Ed. 2016, 55, 3491–3495.
  • Lai, Y. L.; Lin, D. Z.; Huang, J. M. Copper-Catalyzed Decarboxylative Difluoroalkylation and Perfluoroalkylation of α, β-Unsaturated Carboxylic Acids. J. Org. Chem. 2016, 82, 597–605.
  • Ma, J. J.; Yi, W. B. Copper-Catalyzed Fluoroalkylation of Alkynes, and Alkynyl & Vinyl Carboxylic Acids with Fluoroalkyl Halides. Org. Biomol. Chem. 2017, 15, 4295–4299.
  • Zhang, Y.; Du, H.; Zhu, M.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Copper-Catalyzed Decarboxylative Trifluoroethylation of Cinnamic Acids. Tetrahedron Lett. 2017, 58, 880–883.
  • Zhang, H. R.; Chen, D. Q.; Han, Y. P.; Qiu, Y. F.; Jin, D. P.; Liu, X. Y. Merging Photoredox with Copper Catalysis: Decarboxylative Difluoroacetylation of α, β-Unsaturated Carboxylic Acids with ICF2CO2Et. Chem. Commun. 2016, 52, 11827–11830.
  • Wei, X. J.; Boon, W.; Hessel, V.; Noël, T. Visible-Light Photocatalytic Decarboxylation of α, β-Unsaturated Carboxylic Acids: Facile Access to Stereoselective Difluoromethylated Styrenes in Batch and Flow. ACS Catal. 2017, 7, 7136–7140.
  • Tang, W. K.; Feng, Y. S.; Xu, Z. W.; Cheng, Z. F.; Xu, J.; Dai, J. J.; Xu, H. J. Visible-Light-Enabled Decarboxylative Mono-and Difluoromethylation of Cinnamic Acids under Metal-Free Conditions. Org. Lett. 2017, 19, 5501–5504.
  • Yang, H.; Sun, P.; Zhu, Y.; Yan, H.; Lu, L.; Qu, X.; Mao, J. Copper-Catalyzed Decarboxylative C(sp2)–C(sp3) Coupling Reactions via Radical Mechanism. Chem. Commun. 2012, 48, 7847–7849.
  • Yang, H.; Yan, H.; Sun, P.; Zhu, Y.; Lu, L.; Liu, D.; Rong, G.; Mao, J. Iron-Catalyzed Direct Alkenylation of Sp3 (C–H) Bonds via Decarboxylation of Cinnamic Acids under Ligand-Free Conditions. Green Chem. 2013, 15, 976–981.
  • Zhao, J.; Fang, H.; Han, J.; Pan, Y. Iron-Catalyzed Decarboxylative Alkenylation of Cycloalkanes with ArylVinyl Carboxylic Acids via a Radical Process. Beilstein. J. Org. Chem. 2013, 9, 1718–1723.
  • Ji, J.; Liu, P.; Sun, P. Peroxide Promoted Tunable Decarboxylative Alkylation of Cinnamic Acids to Form Alkenes or Ketones under Metal-Free Conditions. Chem. Commun. 2015, 51, 7546–7549.
  • Zhang, J. X.; Wang, Y. J.; Zhang, W.; Wang, N. X.; Bai, C. B.; Xing, Y. L.; Li, Y. H.; Wen, J. L. Selective Nickel and Manganese-Catalyzed Decarboxylative Cross Coupling of Some α, β -unsaturated Carboxylic Acids with Cyclic Ethers. Sci. Rep. 2014, 4, 7446.
  • Zhao, J.; Zhou, W.; Han, J.; Li, G.; Pan, Y. Iron-Catalyzed Alkenylation of Cyclic Ethers via Decarboxylative sp3(C)–Sp2(C) Coupling. Tetrahedron Lett. 2013, 54, 6507–6510.
  • Liu, Z.; Wang, L.; Liu, D.; Wang, Z. Visible-Light-Mediated Oxidative Decarboxylative Coupling of Cinnamic Acid Derivatives with Tetrahydrofuran. Synlett. 2015, 26, 2849–2852.
  • Cui, Z.; Shang, X.; Shao, X. F.; Liu, Z. Q. Copper-Catalyzed Decarboxylative Alkenylation of Sp3 C–H Bonds with Cinnamic Acids via a Radical Process. Chem. Sci. 2012, 3, 2853–2858.
  • Fang, Z.; Wei, C.; Lin, J.; Liu, Z.; Wang, W.; Xu, C.; Wang, Y. Silver-Catalyzed Decarboxylative C(sp2)–C(sp3) Coupling Reactions via a Radical Mechanism. Org. Biomol. Chem. 2017, 15, 9974–9978.
  • Chen, S.; Shao, Z.; Fang, Z.; Chen, Q.; Tang, T.; Fu, W.; Design, T. T. Synthesis of the Basic Cu-Doped Zeolite X Catalyst with High Activity in Oxidative Coupling Reactions. J. Catal. 2015, 338, 38–46.
  • Wang, W.; Lorion, M. M.; Shah, J.; Kapdi, A. R.; Ackermann, L. Late‐Stage Peptide Diversification by Position‐Selective C− H Activation. Angew. Chem. Int. Ed. 2018, 57, 14700–14717.
  • Sharma, R.; Thakur, K.; Kumar, R.; Kumar, I.; Sharma, U. Distant C-H Activation/Functionalization: A New Horizon of Selectivity beyond Proximity. Catal. Rev. 2015, 57, 345–405.
  • Zhang, L.; Qiu, R.; Xue, X.; Pan, Y.; Xu, C.; Wang, D.; Li, H. Rh (I)-catalyzed Decarbonylative Direct C2-Olefination of Indoles with Vinyl Carboxylic Acids. Chem. Commun. 2014, 50, 12385–12388.
  • Qiu, R.; Zhang, L.; Xu, C.; Pan, Y.; Pang, H.; Xu, L.; Li, H. Rhodium‐Catalyzed Decarbonylative Direct Olefination of Arenes with Vinyl Carboxylic Acids. Adv. Synth. Catal. 2015, 357, 1229–1236.
  • Kwon, S.; Kang, D.; Hong, S. Rh (I)‐catalyzed Site‐Selective Decarbonylative Alkenylation and Arylation of Quinolones under Chelation Assistance. Eur. J. Org. Chem. 2015, 2015, 3671–3678.
  • Xu, C.; Zhang, L.; Xu, J.; Pan, Y.; Li, F.; Li, H.; Xu, L. Rhodium (I)‐catalyzed Decarbonylative Direct Olefination of 6‐Arylpurines with Vinyl Carboxylic Acids Directed by the Purinyl N1 Atom. Chem. Select. 2016, 1, 653–658.
  • Xu, J.; Chen, C.; Zhao, H.; Xu, C.; Pan, Y.; Xu, X.; Fan, B. Rhodium (I)-catalysed Decarbonylative Direct C–H Vinylation and Dienylation of Arenes. Org. Chem. Front. 2018, 5, 734–740.
  • Rouchet, J. B. E.; Hachem, M.; Schneider, C.; Hoarau, C. Pd-Catalyzed Regioselective Decarboxylative/C–H α-Alkoxyalkenylation of Heterocycles Using α-Carboxyvinylethers. ACS Catal. 2017, 7, 5363–5369.
  • Yang, Y.; Chen, L.; Zhang, Z.; Zhang, Y. Palladium-Catalyzed Oxidative C− H Bond and C-C Double Bond Cleavage: C-3 Acylation of Indolizines with α, β-Unsaturated Carboxylic Acids. Org. Lett. 2011, 13, 1342–1345.
  • Agasti, S.; Dey, A.; Maiti, D. Traceless Directing Group Mediated Branched Selective Alkenylation of Unbiased Arenes. Chem. Commun. 2016, 52, 12191–12194.
  • Agasti, S.; Sharma, U.; Naveen, T.; Maiti, D. Orthogonal Selectivity with Cinnamic Acids in 3-Substituted Benzofuran Synthesis through C–H Olefination of Phenols. Chem. Commun. 2015, 51, 5375–5378.
  • Kancherla, R.; Naveen, T.; Maiti, D. Divergent Reactivity in Palladium‐Catalyzed Annulation with Diarylamines and α, β‐Unsaturated Acids: Direct Access to Substituted 2‐Quinolinones and Indoles. Chem. Eur. J. 2015, 21, 8723–8726.
  • Sharma, N.; Mohanakrishnan, D.; Shard, A.; Sharma, A.; Sinha, A. K.; Sahal, D. Stilbene–Chalcone Hybrids: Design, Synthesis, and Evaluation as a New Class of Antimalarial Scaffolds that Trigger Cell Death through Stage Specific Apoptosis. J. Med. Chem. 2011, 55, 297–311.
  • Sinha, A. K.; Kumar, V.; Sharma, A.; Sharma, A.; Kumar, R. An Unusual, Mild and Convenient One-Pot Two-Step Access to (E)-stilbenes from Hydroxy-Substituted Benzaldehydes and Phenylacetic Acids under Microwave Activation: A New Facet of the Classical Perkin Reaction. Tetrahedron. 2007, 63, 11070–11077.
  • Zhao, Y.; Sun, L.; Zeng, T.; Wang, J.; Peng, Y.; Song, G. Direct Olefination of Benzaldehydes into 1, 3-Diarylpropenes via a Copper-Catalyzed Heterodomino Knoevenagel-Decarboxylation-Csp3-H Activation Sequence. Org. Biomol. Chem. 2014, 12, 3493–3498.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.