Publication Cover
Catalysis Reviews
Science and Engineering
Volume 62, 2020 - Issue 4
1,977
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Catalytic glycerol dehydration-oxidation to acrylic acid

, , , &

References

  • Galadima, A.; Muraza, O. Sustainable Production of Glycerol Carbonate from By-Product in Biodiesel Plant. Waste Biomass Valorization. 2017, 8, 141–152. DOI: 10.1007/s12649-016-9560-y.
  • Moon, C.; Ahn, J. H.; Kim, S. W.; Sang, B. I.; Um, Y. Effect of Biodiesel-Derived Raw Glycerol on 1,3-Propanediol Production by Different Microorganisms. Appl. Biochem. Biotechnol. 2010, 161, 502–510. DOI: 10.1007/s12010-009-8859-6.
  • Zhao, H.; Zhou, C. H.; Wu, L. M.; Lou, J. Y.; Li, N.; Yang, H. M.; Tong, D. S.; Yu, W. H. Catalytic Dehydration of Glycerol to Acrolein over Sulfuric Acid-Activated Montmorillonite Catalysts. Appl. Clay Sci. 2013, 74, 154–162. DOI: 10.1016/j.clay.2012.09.011.
  • Guo, X.; Dong, H.; Li, B.; Dong, L.; Mu, X.; Chen, X. Influence of the Functional Groups of Multiwalled Carbon Nanotubes on Performance of Ru Catalysts in Sorbitol Hydrogenolysis to Glycols. J. Mol. Catal. A: Chem. 2017, 426, 79–87. DOI: 10.1016/j.molcata.2016.11.003.
  • Alonso-Gomez, L.; Niño-López, A. M.; Romero-Garzón, A. M.; Pineda-Gomez, P.; Del Real-Lopez, A.; Rodriguez-Garcia, M. E. Physicochemical Transformation of Cassava Starch during Fermentation for Production of Sour Starch in Colombia. Starch - Stärke. 2016, 68, 1139–1147. DOI: 10.1002/star.201600059.
  • Noe Arroyo-Lopez, F.; Perez-Torrado, R.; Querol, A.; Barrio, E. Modulation of the Glycerol and Ethanol Syntheses in the Yeast Saccharomyces Kudriavzevii Differs from that Exhibited by Saccharomyces Cerevisiae and Their Hybrid. Food Microbiol. 2010, 27, 628–637. DOI: 10.1016/j.fm.2010.02.001.
  • Zhou, C. H.; Zhao, H.; Tong, D. S.; Wu, L. M.; Yu, W. H. Recent Advances in Catalytic Conversion of Glycerol. Catal. Rev.: Sci. Eng. 2013, 55, 369–453. DOI: 10.1080/01614940.2013.816610.
  • Lari, G. M.; Pastore, G.; Haus, M.; Ding, Y. Y.; Papadokonstantakis, S.; Mondelli, C.; Perez-Ramirez, J. Environmental and Economical Perspectives of a Glycerol Biorefinery. Energy Environ. Sci. 2018, 11, 1012–1029. DOI: 10.1039/c7ee03116e.
  • OECD/FAO. OECD-FAO Agricultural Outlook 2018-2027; OECD Publishing, Paris/Food and Agriculture Organization of the United Nations: Rome, 2018. DOI:10.1787/agr_outlook-2018-en.
  • Talebian-Kiakalaieh, A.; Amin, N. A. S.; Hezaveh, H. Glycerol for Renewable Acrolein Production by Catalytic Dehydration. Renewable Sustainable Energy Rev. 2014, 40, 28–59. DOI: 10.1016/j.rser.2014.07.168.
  • Yan, H.; Qin, H.; Feng, X.; Jin, X.; Liang, W.; Sheng, N.; Zhu, C.; Wang, H.; Yin, B.; Liu, Y.; et al. Synergistic Pt/MgO/SBA-15 Nanocatalysts for Glycerol Oxidation in Base-Free Medium: Catalyst Design and Mechanistic Study. J. Catal. 2019, 370, 434–446. DOI: 10.1016/j.jcat.2019.01.015.
  • Zhou, W.; Luo, J.; Wang, Y.; Liu, J.; Zhao, Y.; Wang, S.; Ma, X. WOx Domain Size, Acid Properties and Mechanistic Aspects of Glycerol Hydrogenolysis over Pt/WOx/ZrO2. Appl. Catal., B. 2019, 242, 410–421. DOI: 10.1016/j.apcatb.2018.10.006.
  • Kraleva, E.; Atia, H. Keggin-Type Heteropolyacids Supported on Sol–Gel Oxides as Catalysts for the Dehydration of Glycerol to Acrolein. Reaction Kinetics, Mechanisms and Catalysis. 2019, 126, 103–117. DOI: 10.1007/s11144-018-1471-4.
  • Bozkurt, Ö. D.; Bağlar, N.; Çelebi, S.; Uzun, A. Assessment of Acid Strength in Sodium-Exchanged Resin Catalysts: Consequences on Glycerol Etherification with Isobutene in Batch and Flow Reactors. Mol. Catal. 2019, 466, 1–12. DOI: 10.1016/j.mcat.2018.12.027.
  • Zhu, S.; Zhu, Y.; Gao, X.; Mo, T.; Zhu, Y.; Li, Y. Production of Bioadditives from Glycerol Esterification over Zirconia Supported Heteropolyacids. Bioresour. Technol. 2013, 130, 45–51. DOI: 10.1016/j.biortech.2012.12.011.
  • Feng, Y.; Yin, H.; Wang, A.; Shen, L.; Yu, L.; Jiang, T. Gas Phase Hydrogenolysis of Glycerol Catalyzed by Cu/ZnO/MOx (MOx=Al2O3, TiO2, and ZrO2) Catalysts. Chem. Eng. J. 2011, 168, 403–412. DOI: 10.1016/j.cej.2011.01.049.
  • Gong, L.; Lu, Y.; Ding, Y.; Lin, R.; Li, J.; Dong, W.; Wang, T.; Chen, W. Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over a Pt/WO3/TiO2/SiO2 Catalyst in Aqueous Media. Appl. Catal. A. 2010, 390, 119–126. DOI: 10.1016/j.apcata.2010.10.002.
  • Ochoa-Gómez, J. R.; Gómez-Jiménez-Aberasturi, O.; Maestro-Madurga, B.; Pesquera-Rodríguez, A.; Ramírez-López, C.; Lorenzo-Ibarreta, L.; Torrecilla-Soria, J.; Villarán-Velasco, M. C. Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate by Transesterification: Catalyst Screening and Reaction Optimization. Appl. Catal. A. 2009, 366, 315–324. DOI: 10.1016/j.apcata.2009.07.020.
  • Sun, D. L.; Yamada, Y.; Sato, S.; Ueda, W. Glycerol as a Potential Renewable Raw Material for Acrylic Acid Production. Green Chem. 2017, 19, 3186–3213. DOI: 10.1039/c7gc00358g.
  • Avalos, A. S.; Hakkarainen, M.; Odelius, K. Superiorly Plasticized PVC/PBSA Blends through Crotonic and Acrylic Acid Functionalization of PVC. Polymers. 2017, 9. DOI: 10.3390/polym9030084.
  • Cabana, S.; Sofia Lecona-Vargas, C.; Ivan Melendez-Ortiz, H.; Contreras-Garcia, A.; Barbosa, S.; Taboada, P.; Magarinos, B.; Bucio, E.; Concheiro, A.; Alvarez-Lorenzo, C. Silicone Rubber Films Functionalized with Poly(Acrylic Acid) Nanobrushes for Immobilization of Gold Nanoparticles and Photothermal Therapy. J. Drug Deliv. Sci. Technol. 2017, 42, 245–254. DOI: 10.1016/j.jddst.2017.04.006.
  • Riccardi, C. M.; Kasi, R. M.; Kumar, C. V. Nanoarmoring of Enzymes by Interlocking in Cellulose Fibers with Poly(Acrylic Acid). In Nanoarmoring of Enzymes: Rational Design of Polymer-Wrapped Enzymes; Kumar, C. V., Ed.; Elsevier: United States 2017; Vol. 590, pp 475–500. DOI: 10.1016/bs.mie.2017.01.009.
  • Beerthuis, R.; Rothenberg, G.; Shiju, N. R. Catalytic Routes Towards Acrylic Acid, Adipic Acid and Epsilon-Caprolactam Starting from Biorenewables. Green Chem. 2015, 17, 1341–1361. DOI: 10.1039/c4gc02076f.
  • Jo, B. Y.; Kum, S. S.; Moon, S. H. Performance of WOx-Cadded Mo-V-Te-Nb-O Catalysts in the Partial Oxidation of Propane to Acrylic Acid. Appl. Catal. A. 2010, 378, 76–82. DOI: 10.1016/j.apcata.2010.02.002.
  • Lin, M. M.;. Selective Oxidation of Propaneto Acrylic Acid with Molecular Oxygen. Appl. Catal. A. 2001, 207, 1–16. DOI: 10.1016/s0926-860x(00)00609-8.
  • Mestl, G.; Margitfalvi, J. L.; Vegvari, L.; Szijjarto, G. P.; Tompos, A. Combinatorial Design and Preparation of Transition Metal Doped MoVTe Catalysts for Oxidation of Propane to Acrylic Acid. Appl. Catal. A. 2014, 474, 3–9. DOI: 10.1016/j.apcata.2013.08.022.
  • Chieregato, A.; Basile, F.; Concepcion, P.; Guidetti, S.; Liosi, G.; Dolores Soriano, M.; Trevisanut, C.; Cavani, F.; Lopez Nietoc, J. M. Glycerol Oxidehydration into Acrolein and Acrylic Acid over W-V-Nb-O Bronzes with Hexagonal Structure. Catal. Today. 2012, 197, 58–65. DOI: 10.1016/j.cattod.2012.06.024.
  • Diallo, M. M.; Laforge, S.; Pouilloux, Y.; Mijoin, J. Influence of the Preparation Procedure and Crystallite Size of Fe-MFI Zeolites in the Oxidehydration of Glycerol to Acrolein and Acrylic Acid. Catal. Commun. 2019, 126, 21–25. DOI: 10.1016/j.catcom.2019.04.014.
  • Almena, A.; Bueno, L.; Diez, M.; Martin, M. Integrated Biodiesel Facilities: Review of Glycerol-based Production of Fuels and Chemicals. Clean Technol. Environ. Policy. 2018, 20, 1639–1661. DOI: 10.1007/s10098-017-1424-z.
  • Zhang, H.; Hu, Z.; Huang, L.; Zhang, H.; Song, K.; Wang, L.; Shi, Z.; Ma, J.; Zhuang, Y.; Shen, W.; et al. Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity. ACS Catal. 2015, 5, 2548–2558. DOI: 10.1021/cs5019953.
  • Witsuthammakul, A.; Sooknoi, T. Direct Conversion of Glycerol to Acrylic Acid via Integrated Dehydration-Oxidation Bed System. Appl. Catal. A. 2012, 413, 109–116. DOI: 10.1016/j.apcata.2011.10.045.
  • Yang, S.; Kim, M.; Yang, S.; Kim, D. S.; Lee, W. J.; Lee, H. Production of Acrylic Acid from Biomass-Derived Allyl Alcohol by Selective Oxidation Using Au/Ceria Catalysts. Catal. Sci. Technol. 2016, 6, 3616–3622. DOI: 10.1039/C5CY02099A.
  • Li, X.; Zhang, Y. Highly Efficient Process for the Conversion of Glycerol to Acrylic Acid via Gas Phase Catalytic Oxidation of an Allyl Alcohol Intermediate. ACS Catal. 2016, 6, 143–150. DOI: 10.1021/acscatal.5b01843.
  • Liu, R.; Wang, T.; Cai, D.; Jin, Y. Highly Efficient Production of Acrylic Acid by Sequential Dehydration and Oxidation of Glycerol. Ind. Eng. Chem. Res. 2014, 53, 8667–8674. DOI: 10.1021/ie403270k.
  • Liu, L.; Wang, B.; Du, Y.; Zhong, Z.; Borgna, A. Bifunctional Mo3VOx/H4SiW12O40/Al2O3 Catalysts for One-Step Conversion of Glycerol to Acrylic Acid: Catalyst Structural Evolution and Reaction Pathways. Appl. Catal., B. 2015, 174, 1–12. DOI: 10.1016/j.apcatb.2015.02.032.
  • Tichy, J.;. Oxidation of Acrolein to Acrylic Acid over Vanadium-Molybdenum Oxide Catalysts. Appl. Catal. A. 1997, 157, 363–385. DOI: 10.1016/s0926-860x(97)00025-2.
  • Ulgen, A.; Hoelderich, W. F. Conversion of Glycerol to Acrolein in the Presence of WO3/TiO2 Catalysts. Appl. Catal., A. 2011, 400, 34–38. DOI: 10.1016/j.apcata.2011.04.005.
  • Bethell, J. R.; Gasson, E. J.; Hadley, D. J.; Neale, R. F., Oxidation of Acrolein and Methacrolein with a Molybdenum Polyvalent Metaloxygen Catalyst. U.S. Patent 3435069, Mar 25, 1969.
  • Jiang, X. C.; Zhou, C. H.; Tesser, R.; Di Serio, M.; Tong, D. S.; Zhang, J. R. Coking of Catalysts in Catalytic Glycerol Dehydration to Acrolein. Ind. Eng. Chem. Res. 2018, 57, 10736–10753. DOI: 10.1021/acs.iecr.8b01776.
  • Katryniok, B.; Paul, S.; Belliere-Baca, V.; Rey, P.; Dumeignil, F. Glycerol Dehydration to Acrolein in the Context of New Uses of Glycerol. Green Chem. 2010, 12, 2079–2098. DOI: 10.1039/c0gc00307g.
  • Chen, C.; Kosuke, N.; Murayama, T.; Ueda, W. Single-Crystalline-Phase Mo3VOx: An Efficient Catalyst for the Partial Oxidation of Acrolein to Acrylic Acid. ChemCatChem. 2013, 5, 2869–2873. DOI: 10.1002/cctc.201300268.
  • Bagheri, S.; Muhd Julkapli, N. Mo3VOx Catalyst in Biomass Conversion: A Review in Structural Evolution and Reaction Pathways. Int. J. Hydrogen Energy. 2017, 42, 2116–2126. DOI: 10.1016/j.ijhydene.2016.09.173.
  • Andrushkevich, T. V.;. Heterogeneous Catalytic Oxidation of Acrolein to Acrylic Acid: Mechanism and Catalysts. Catal. Rev.: Sci. Eng. 1993, 35, 213–259. DOI: 10.1080/01614949308014606.
  • Tichý, J.;. Oxidation of Acrolein to Acrylic Acid over Vanadium-Molybdenum Oxide Catalysts. Appl. Catal. A. 1997, 157, 363–385. DOI: 10.1016/s0926-860x(97)00025-2.
  • Talebian-Kiakalaieh, A.; Amin, N. A. S.; Zakaria, Z. Y. Gas Phase Selective Conversion of Glycerol to Acrolein over Supported Silicotungstic Acid Catalyst. J. Ind. Eng. Chem. 2016, 34, 300–312. DOI: 10.1016/j.jiec.2015.11.024.
  • Alhanash, A.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Gas-Phase Dehydration of Glycerol to Acrolein Catalysed by Caesium Heteropoly Salt. Appl. Catal. A. 2010, 378, 11–18. DOI: 10.1016/j.apcata.2010.01.043.
  • Viswanadham, B.; Nagaraju, N.; Rohitha, C. N.; Vishwanathan, V.; Chary, K. V. R. Synthesis, Characterization and Catalytic Dehydration of Glycerol to Acrolein over Phosphotungstic Acid Supported Y-Zeolite Catalysts. Catal. Lett. 2018, 148, 397–406. DOI: 10.1007/s10562-017-2236-9.
  • Ding, J.; Ma, T.; Shao, R.; Xu, W.; Wang, P.; Song, X.; Guan, R.; Yeung, K. L.; Han, W. Gas Phase Dehydration of Glycerol to Acrolein on the Amino Siloxane-Functionalized MCM-41 Supported Wells-Dawson Type H6P2W18O62 Catalyst. New J. Chem. 2018. DOI: 10.1039/C8NJ02824A.
  • Talebian-Kiakalaieh, A.; Amin, N. A. S. Thermo-Kinetic and Diffusion Studies of Glycerol Dehydration to Acrolein Using HSiW-Gamma-Al2O3 Supported ZrO2 Solid Acid Catalyst. Renew. Energy. 2017, 114, 794–804. DOI: 10.1016/j.renene.2017.07.096.
  • Zou, B.; Ren, S.; Ye, X. P. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium. ChemSusChem. 2016, 9, 3268–3271. DOI: 10.1002/cssc.201601020.
  • Lago, C. D.; Decolatti, H. P.; Tonutti, L. G.; Dalla Costa, B. O.; Querini, C. A. Gas Phase Glycerol Dehydration over H-ZSM-5 Zeolite Modified by Alkaline Treatment with Na2CO3. J. Catal. 2018, 366, 16–27. DOI: 10.1016/j.jcat.2018.07.036.
  • Silva, T. Q.; Dos Santos, M. B.; Santiago, A. A. C.; Santana, D. O.; Cruz, F. T.; Andrade, H. M. C.; Mascarenhas, A. J. S. Gas Phase Glycerol Oxidative Dehydration over Bifunctional V/H-Zeolite Catalysts with Different Zeolite Topologies. Catal. Today. 2017, 289, 38–46. DOI: 10.1016/j.cattod.2016.08.011.
  • Pala Rosas, I.; Luis Contreras, J.; Salmones, J.; Tapia, C.; Zeifert, B.; Navarrete, J.; Vazquez, T.; Carolina Garcia, D. Catalytic Dehydration of Glycerol to Acrolein over a Catalyst of Pd/LaY Zeolite and Comparison with the Chemical Equilibrium. Catalysts. 2017, 7. DOI: 10.3390/catal7030073.
  • Kim, Y. T.; Jung, K.-D.; Park, E. D. A Comparative Study for Gas-Phase Dehydration of Glycerol over H-Zeolites. Appl. Catal. A. 2011, 393, 275–287. DOI: 10.1016/j.apcata.2010.12.007.
  • Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. Sustainable Production of Acrolein: Investigation of Solid Acid–Base Catalysts for Gas-Phase Dehydration of Glycerol. Green Chem. 2007, 9, 1130–1136. DOI: 10.1039/B702200J.
  • Garcia-Sancho, C.; Cecilia, J. A.; Moreno-Ruiz, A.; Merida-Robles, J. M.; Santamaria-Gonzalez, J.; Moreno-Tost, R.; Maireles-Torres, P. Influence of the Niobium Supported Species on the Catalytic Dehydration of Glycerol to Acrolein. Appl. Catal. B. 2015, 179, 139–149. DOI: 10.1016/j.apcatb.2015.05.014.
  • Dalil, M.; Carnevali, D.; Edake, M.; Auroux, A.; Dubois, J. L.; Patience, G. S. Gas Phase Dehydration of Glycerol to Acrolein: Coke on WO3/TiO2 Reduces By-Products. J. Mol. Catal. A Chem. 2016, 421, 146–155. DOI: 10.1016/j.molcata.2016.05.022.
  • Deleplanque, J.; Dubois, J. L.; Devaux, J. F.; Ueda, W. Production of Acrolein and Acrylic Acid through Dehydration and Oxydehydration of Glycerol with Mixed Oxide Catalysts. Catal. Today. 2010, 157, 351–358. DOI: 10.1016/j.cattod.2010.04.012.
  • Lee, Y. Y.; Lee, K. A.; Park, N. C.; Kim, Y. C. The Effect of PO4 to Nb2O5 Catalyst on the Dehydration of Glycerol. Catal. Today. 2014, 232, 114–118. DOI: 10.1016/j.cattod.2013.11.051.
  • Katryniok, B.; Paul, S.; Dumeignil, F. Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catal. 2013, 3, 1819–1834. DOI: 10.1021/cs400354p.
  • Katryniok, B.; Paul, S.; Capron, M.; Dumeignil, F. Towards the Sustainable Production of Acrolein by Glycerol Dehydration. ChemSusChem. 2009, 2, 719–730. DOI: 10.1002/cssc.200900134.
  • Buhler, W.; Dinjus, E.; Ederer, H. J.; Kruse, A.; Mas, C. Ionic Reactions and Pyrolysis of Glycerol as Competing Reaction Pathways in Near- and Supercritical Water. J. Supercrit. Fluids. 2002, 22, 37–53. DOI: 10.1016/s0896-8446(01)00105-x.
  • Okuhara, T.;. Water-Tolerant Solid Acid Catalysts. Chem. Rev. 2002, 102, 3641–3666. DOI: 10.1021/cr0103569.
  • Kim, Y. T.; Jung, K.-D.; Park, E. D. Gas-Phase Dehydration of Glycerol over Silica-Alumina Catalyst. Appl. Catal. B. 2011, 107, 177–187. DOI: 10.1016/j.apcatb.2011.07.011.
  • Atia, H.; Armbruster, U.; Martin, A. Dehydration of Glycerol in Gas Phase Using Heteropolyacid Catalysts as Active Compounds. J. Catal. 2008, 258, 71–82. DOI: 10.1016/j.jcat.2008.05.027.
  • Park, H.; Yun, Y. S.; Kim, T. Y.; Lee, K. R.; Baek, J.; Yi, J. Kinetics of the Dehydration of Glycerol over Acid Catalysts with an Investigation of Deactivation Mechanism by Coke. Appl. Catal. B. 2015, 176-177, 1–10. DOI: 10.1016/j.apcatb.2015.03.046.
  • Talebian-Kiakalaieh, A.; Amin, N. A. S. Kinetic Modeling, Thermodynamic, and Mass-Transfer Studies of Gas-Phase Glycerol Dehydration to Acrolein over Supported Silicotungstic Acid Catalyst. Ind. Eng. Chem. Res. 2015, 54, 8113–8121. DOI: 10.1021/acs.iecr.5b02172.
  • de Oliveira, A. S.; Vasconcelos, S. J. S.; de Sousa, J. R.; de Sousa, F. F.; Filho, J. M.; Oliveira, A. C. Catalytic Conversion of Glycerol to Acrolein over Modified Molecular Sieves: Activity and Deactivation Studies. Chem. Eng. J. 2011, 168, 765–774. DOI: 10.1016/j.cej.2010.09.029.
  • Bozell, J. J.; Petersen, G. R. Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—the US Department of Energy’s “Top 10” Revisited. Green Chem. 2010, 12, 539–554. DOI: 10.1039/B922014C.
  • Adams, A. H.; Haaß, F.; Buhrmester, T.; Kunert, J.; Ott, J.; Vogel, H.; Fuess, H. Structure and Reaction Studies on Vanadium Molybdenum Mixed Oxides. J. Mol. Catal. A: Chem. 2004, 216, 67–74. DOI: 10.1016/j.molcata.2004.02.005.
  • Mars, P.; van Krevelen, D. W. Oxidations Carried Out by Means of Vanadium Oxide Catalysts. Chem. Eng. Sci. 1954, 3, 41–59. DOI: 10.1016/S0009-2509(54)80005-4.
  • Anderson, A. B.; Ewing, D. W.; Kim, Y.; Grasselli, R. K.; Burrington, J. D.; Brazdil, J. F. Mechanism for Propylene Oxidation to Acrolein on Bi2Mo3O12: A Quantum Chemical Study. J. Catal. 1985, 96, 222–233. DOI: 10.1016/0021-9517(85)90375-6.
  • Possato, L. G.; Cassinelli, W. H.; Meyer, C. I.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. Thermal Treatments of Precursors of Molybdenum and Vanadium Oxides and the Formed Moxvyoz Phases Active in the Oxydehydration of Glycerol. Appl. Catal. A. 2017, 532, 1–11. DOI: 10.1016/j.apcata.2016.12.010.
  • Fjermestad, T.; Li, W. Q.; Rugg, G.; Ishida, S.; Okuno, M.; Sagi, K.; Genest, A.; Rösch, N. Acrolein Oxidation to Acrylic Acid over the MoVOx Material. Insights from DFT Modeling. Appl. Catal., A. 2018, 565, 68–75. DOI: 10.1016/j.apcata.2018.07.044.
  • Knoche, S.; Heid, M.; Gora, N.; Ohlig, D.; Drochner, A.; Hess, C.; Etzold, B.; Vogel, H. Mechanistic Study on the Selective Oxidation of Acrolein to Acrylic Acid: Identification of the Rate‐Limiting Step via Perdeuterated Acrolein. ChemCatChem. 2019, 11, 3242–3252. DOI: 10.1002/cctc.201900549.
  • Knoche, S.; Heid, M.; Gora, N.; Ohlig, D.; Drochner, A.; Vogel, H.; Etzold, B. J. M. Activity Hysteresis during Cyclic Temperature-Programmed Reactions in the Partial Oxidation of Acrolein to Acrylic Acid. Chem. Eng. Technol. 2017, 40, 2084–2095. DOI: 10.1002/ceat.201700111.
  • Miller, J. H.; Bhan, A. Reaction Pathways in Acrolein Oxidation over a Mixed-Oxide Catalyst. ChemCatChem. 2018, 10, 5242–5255. DOI: 10.1002/cctc.201801027.
  • Arceo, E.; Marsden, P.; Bergman, R. G.; Ellman, J. A. An Efficient Didehydroxylation Method for the Biomass-Derived Polyols Glycerol and Erythritol. Mechanistic Studies of A Formic Acid-Mediated Deoxygenation. Chem. Commun. 2009, 3357–3359. DOI: 10.1039/B907746D.
  • Kim, M.; Lee, H. Highly Selective Production of Acrylic Acid from Glycerol via Two Steps Using Au/CeO2 Catalysts. ACS Sustain. Chem. Eng. 2017, 5, 11371–11376. DOI: 10.1021/acssuschemeng.7b02457
  • Abad, A.; Concepción, P.; Corma, A.; García, H. A Collaborative Effect between Gold and A Support Induces the Selective Oxidation of Alcohols. Angew. Chem. Int. Ed. 2005, 44, 4066–4069. DOI: 10.1002/anie.200500382.
  • Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J. Reactivity of the Gold/Water Interface during Selective Oxidation Catalysis. Science. 2010, 330, 74. DOI: 10.1126/science.1195055.
  • Freund, H. J.;. Oxygen Activation on Oxide Surfaces: A Perspective at the Atomic Level. Catal. Today. 2014, 238, 2–9. DOI: 10.1016/j.cattod.2014.05.037.
  • Donglong, H.; Xiaoyu, Z.; Dongshen, T.; Weihua, Y.; Chunhui, Z. Catalytic Oxidehydration of Glycerol to Acrylic Acid. Progress in Chemistry. 2016, 28, 375–390. DOI: 10.7536/PC150604.
  • Sadakane, M.; Kodato, K.; Kuranishi, T.; Nodasaka, Y.; Sugawara, K.; Sakaguchi, N.; Nagai, T.; Matsui, Y.; Ueda, W. Molybdenum–Vanadium-Based Molecular Sieves with Microchannels of Seven-Membered Rings of Corner-Sharing Metal Oxide Octahedra. Angew. Chem. Int. Ed. 2008, 47, 2493–2496. DOI: 10.1002/anie.200705448.
  • Sudarsanam, P.; Peeters, E.; Makshina, E. V.; Parvulescu, V. I.; Sels, B. F. Advances in Porous and Nanoscale Catalysts for Viable Biomass Conversion. Chem. Soc. Rev. 2019, 48, 2366–2421. DOI: 10.1039/C8CS00452H.
  • Pestana, C. F. M.; Guerra, A. C. O.; Ferreira, G. B.; Turci, C. C.; Mota, C. J. A. Oxidative Dehydration of Glycerol to Acrylic Acid over Vanadium-Impregnated Zeolite Beta. J. Braz. Chem. Soc. 2013, 24, 100–105. DOI: 10.1590/s0103-50532013000100014.
  • Wang, F.; Xu, J.; Dubois, J.-L.; Ueda, W. Catalytic Oxidative Dehydration of Glycerol over a Catalyst with Iron Oxide Domains Embedded in an Iron Orthovanadate Phase. ChemSusChem. 2010, 3, 1383–1389. DOI: 10.1002/cssc.201000245.
  • Sarkar, B.; Pendem, C.; Konathala, L. N. S.; Tiwari, R.; Sasaki, T.; Bal, R. Cu Nanoclusters Supported on Nanocrystalline SiO2-MnO2: A Bifunctional Catalyst for the One-Step Conversion of Glycerol to Acrylic Acid. Chem. Commun. 2014, 50, 9707–9710. DOI: 10.1039/c4cc03842h.
  • Rasteiro, L. F.; Vieira, L. H.; Possato, L. G.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. Hydrothermal Synthesis of Mo-V Mixed Oxides Possessing Several Crystalline Phases and Their Performance in the Catalytic Oxydehydration of Glycerol to Acrylic Acid. Catal. Today. 2017, 296, 10–18. DOI: 10.1016/j.cattod.2017.04.006.
  • Yun, Y. S.; Lee, K. R.; Park, H.; Kim, T. Y.; Yun, D.; Han, J. W.; Yi, J. Rational Design of A Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catal. 2015, 5, 82–94. DOI: 10.1021/cs501307v.
  • Omata, K.; Matsumoto, K.; Murayama, T.; Ueda, W. Direct Oxidative Transformation of Glycerol to Acrylic Acid over Nb-Based Complex Metal Oxide Catalysts. Catal. Today. 2016, 259, 205–212. DOI: 10.1016/j.cattod.2015.07.016.
  • Possato, L. G.; Cassinelli, W. H.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. One-Step Glycerol Oxidehydration to Acrylic Acid on Multifunctional Zeolite Catalysts. Appl. Catal. A. 2015, 492, 243–251. DOI: 10.1016/j.apcata.2014.12.049.
  • Possato, L. G.; Chaves, T. F.; Cassinelli, W. H.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. The Multiple Benefits of Glycerol Conversion to Acrolein and Acrylic Acid Catalyzed by Vanadium Oxides Supported on Micro-Mesoporous MFI Zeolites. Catal. Today. 2017, 289, 20–28. DOI: 10.1016/j.cattod.2016.08.005.
  • Paula, A. S.; Possato, L. G.; Ratero, D. R.; Contro, J.; Keinan-Adamsky, K.; Soares, R. R.; Goobes, G.; Martins, L.; Nery, J. G. One-Step Oxidehydration of Glycerol to Acrylic Acid Using ETS-10-Like Vanadosilicates. Microporous Mesoporous Mater. 2016, 232, 151–160. DOI: 10.1016/j.micromeso.2016.05.014.
  • Shen, L.; Yin, H.; Wang, A.; Lu, X.; Zhang, C. Gas Phase Oxidehydration of Glycerol to Acrylic Acid over Mo/V and W/V Oxide Catalysts. Chem. Eng. J. 2014, 244, 168–177. DOI: 10.1016/j.cej.2014.01.051.
  • Chieregato, A.; Bandinelli, C.; Concepcion, P.; Dolores Soriano, M.; Puzzo, F.; Basile, F.; Cavani, F.; Lopez Nieto, J. M. Structure-Reactivity Correlations in Vanadium-Containing Catalysts for One-Pot Glycerol Oxidehydration to Acrylic Acid. ChemSusChem. 2017, 10, 234–244. DOI: 10.1002/cssc.201600954.
  • Yoda, E.; Ootawa, A. Dehydration of Glycerol on H-MFI Zeolite Investigated by FT-IR. Appl. Catal. A. 2009, 360, 66–70. DOI: 10.1016/j.apcata.2009.03.009.
  • Diallo, M. M.; Mijoin, J.; Laforge, S.; Pouilloux, Y. Preparation of Fe-BEA Zeolites by Isomorphous Substitution for Oxidehydration of Glycerol to Acrylic Acid. Catal. Commun. 2016, 79, 58–62. DOI: 10.1016/j.catcom.2016.03.003.
  • Wang, F.; Dubois, J.-L.; Ueda, W. Catalytic Dehydration of Glycerol over Vanadium Phosphate Oxides in the Presence of Molecular Oxygen. J. Catal. 2009, 268, 260–267. DOI: 10.1016/j.jcat.2009.09.024.
  • Chieregato, A.; Dolores Soriano, M.; Basile, F.; Liosi, G.; Zamora, S.; Concepcion, P.; Cavani, F.; Lopez Nieto, J. M. One-Pot Glycerol Oxidehydration to Acrylic Acid on Multifunctional Catalysts: Focus on the Influence of the Reaction Parameters in Respect to the Catalytic Performance. Appl. Catal. B-Environ. 2014, 150, 37–46. DOI: 10.1016/j.apcatb.2013.11.045.
  • Chieregato, A.; Dolores Soriano, M.; Garcia-Gonzalez, E.; Puglia, G.; Basile, F.; Concepcion, P.; Bandinelli, C.; Lopez Nieto, J. M.; Cavani, F. Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem. 2015, 8, 398–406. DOI: 10.1002/cssc.201402721.
  • Dolores Soriano, M.; Concepcion, P.; Lopez Nieto, J. M.; Cavani, F.; Guidetti, S.; Trevisanut, C. Tungsten-Vanadium Mixed Oxides for the Oxidehydration of Glycerol into Acrylic Acid. Green Chem. 2011, 13, 2954–2962. DOI: 10.1039/c1gc15622e.
  • Rasteiro, L. F.; Vieira, L. H.; Santilli, C. V.; Martins, L. Surfactant-Assisted Synthesis of Mo-V Mixed Oxide Catalysts for Upgraded One-Step Conversion of Glycerol to Acrylic Acid. RSC Adv. 2018, 8, 11975–11982. DOI: 10.1039/c8ra01443d.
  • Kuznetsova, T. G.; Andrushkevich, T. V.; Gorshkova, T. P. Catalytic Properties of V−Mo−O Systems in Acrolein Oxidation. React. Kinet. Catal. Lett. 1986, 30, 149–156. DOI: 10.1007/bf02068159.
  • Ozkan, U. S.; Watson, R. B. The Structure-Function Relationships in Selective Oxidation Reactions over Metal Oxides. Catal. Today. 2005, 100, 101–114. DOI: 10.1016/j.cattod.2004.12.018.
  • Lauriol-Garbey, P.; Postole, G.; Loridant, S.; Auroux, A.; Belliere-Baca, V.; Rey, P.; Millet, J. M. M. Acid-Base Properties of Niobium-Zirconium Mixed Oxide Catalysts for Glycerol Dehydration by Calorimetric and Catalytic Investigation. Appl. Catal. B. 2011, 106, 94–102. DOI: 10.1016/j.apcatb.2011.05.011.
  • Habibi, M. H.; Tangestaninejad, S.; Mirkhani, V.; Yadollahi, B. Novel Catalytic Acetylation and Formylation of Alcohols with Potassium Dodecatungstocobaltate Trihydrate (K5cow12o40 *3H2O). Tetrahedron. 2001, 57, 8333–8337. DOI: 10.1016/s0040-4020(01)00806-7.
  • Kozhevnikov, I. V.;. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev. 1998, 98, 171–198. DOI: 10.1021/cr960400y.
  • Thanasilp, S.; Schwank, J. W.; Meeyoo, V.; Pengpanich, S.; Hunsom, M. Preparation of Supported POM Catalysts for Liquid Phase Oxydehydration of Glycerol to Acrylic Acid. J. Mol. Catal. A: Chem. 2013, 380, 49–56. DOI: 10.1016/j.molcata.2013.09.023.
  • Suganuma, S.; Hisazumi, T.; Taruya, K.; Tsuji, E.; Katada, N. Keggin-Type Molybdovanadophosphoric Acids Loaded on ZSM-5 Zeolite as a Bifunctional Catalyst for Oxidehydration of Glycerol. Mol. Catal. 2018, 449, 85–92. DOI: 10.1016/j.mcat.2018.02.015.
  • Li, X.; Zhang, Y. Oxidative Dehydration of Glycerol to Acrylic Acid over Vanadium-Substituted Cesium Salts of Keggin-Type Heteropolyacids. ACS Catal. 2016, 6, 2785–2791. DOI: 10.1021/acscatal.6b00213.
  • Rhule, J. T.; Hill, C. L.; Judd, D. A. Polyoxometalates in Medicine. Chem. Rev. 1998, 98, 327–357. DOI: 10.1021/cr960396q.
  • Thanasilp, S.; Schwank, J. W.; Meeyoo, V.; Pengpanich, S.; Hunsom, M. One-pot Oxydehydration of Glycerol to Value-added Compounds over Metal-doped SiW/HZSM-5 Catalysts: Effect of Metal Type and Loading. Chem. Eng. J. 2015, 275, 113–124. DOI: 10.1016/j.cej.2015.04.010.
  • Neuber, M.; Ernst, S.; Geerts, H.; Grobet, P. J.; Jacobs, P. A.; Kokotailo, G. T.; Weitkamp, J. Carbonaceous Deposits Formed on Zeolites HY, HZSM-20 and H-Beta during the Conversion of Polynuclear Aromatics. In Studies in Surface Science and Catalysis; Delmon, B., Froment, G. F., Eds.; Elsevier: Netherlands 1987; Vol. 34, pp 567–577. DOI: 10.1016/S0167-2991(09)60392-X.
  • Wu, D.; Wu, F.; Gu, Z. Catalyst Attrition in an ASTM Fluidized Bed. Catal. Today. 2016, 264, 70–74. DOI: 10.1016/j.cattod.2015.09.007.
  • Kumar, M.; Hammond, G. B.; Xu, B. Cationic Gold Catalyst Poisoning and Reactivation. Org. Lett. 2014, 16, 3452–3455. DOI: 10.1021/ol501663f.
  • Guisnet, M.; Costa, L.; Ribeiro, F. R. Prevention of Zeolite Deactivation by Coking. J. Mol. Catal. A: Chem. 2009, 305, 69–83. DOI: 10.1016/j.molcata.2008.11.012.
  • Bartholomew, C. H.;. Mechanisms of Catalyst Deactivation. Appl. Catal. A. 2001, 212, 17–60. DOI: 10.1016/S0926-860X(00)00843-7.
  • Rodrigues, M. V.; Vignatti, C.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. Glycerol Dehydration Catalyzed by MWW Zeolites and the Changes in the Catalyst Deactivation Caused by Porosity Modification. Appl. Catal. A. 2015, 495, 84–91. DOI: 10.1016/j.apcata.2015.02.010.
  • Vieira, L. H.; Carvalho, K. T. G.; Urquieta-González, E. A.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. Effects of Crystal Size, Acidity, and Synthesis Procedure on the Catalytic Performance of Gallium and Aluminum MFI Zeolites in Glycerol Dehydration. J. Mol. Catal. A: Chem. 2016, 422, 148–157. DOI: 10.1016/j.molcata.2015.12.019.
  • Guisnet, M.; Magnoux, P. Coking and Deactivation of Zeolites: Influence of the Pore Structure. Appl. Catal. 1989, 54, 1–27. DOI: 10.1016/S0166-9834(00)82350-7.
  • Behera, B.; Gupta, P.; Ray, S. S. Structure and Composition of Hard Coke Deposited on Industrial Fluid Catalytic Cracking Catalysts by Solid State 13C Nuclear Magnetic Resonance. Appl. Catal., A. 2013, 466, 123–130. DOI: 10.1016/j.apcata.2013.06.038.
  • Erfle, S.; Armbruster, U.; Bentrup, U.; Martin, A.; Brueckner, A. Impact of Redox Properties on Dehydration of Glycerol to Acrolein over Heteropolyacids Assessed by Operando-EPR Spectroscopy. Appl. Catal. A. 2011, 391, 102–109. DOI: 10.1016/j.apcata.2010.04.042.
  • Suprun, W.; Lutecki, M.; Haber, T.; Papp, H. Acidic Catalysts for the Dehydration of Glycerol: Activity and Deactivation. J. Mol. Catal. A: Chem. 2009, 309, 71–78. DOI: 10.1016/j.molcata.2009.04.017.
  • Decolatti, H. P.; Dalla Costa, B. O.; Querini, C. A. Dehydration of Glycerol to Acrolein Using H-ZSM5 Zeolite Modified by Alkali Treatment with NaOH. Microporous Mesoporous Mater. 2015, 204, 180–189. DOI: 10.1016/j.micromeso.2014.11.014.
  • Hulteberg, C.; Leveau, A.; Brandin, J. G. M. Pore Condensation in Glycerol Dehydration. Top. Catal. 2013, 56, 813–821. DOI: 10.1007/s11244-013-0039-9.
  • Possato, L. G.; Diniz, R. N.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. A Comparative Study of Glycerol Dehydration Catalyzed by Micro/Mesoporous MFI Zeolites. J. Catal. 2013, 300, 102–112. DOI: 10.1016/j.jcat.2013.01.003.
  • Čejka, J.; Mintova, S. Perspectives of Micro/Mesoporous Composites in Catalysis. Catal. Rev. 2007, 49, 457–509. DOI: 10.1080/01614940701583240.
  • Erfle, S.; Armbruster, U.; Bentrup, U.; Martin, A.; Brückner, A. Impact of Redox Properties on Dehydration of Glycerol to Acrolein over Heteropolyacids Assessed by Operando-EPR Spectroscopy. Appl. Catal. A. 2011, 391, 102–109. DOI: 10.1016/j.apcata.2010.04.042.
  • Park, D. S.; Kwak, B. K.; Kim, N. D.; Park, J. R.; Cho, J.-H.; Oh, S.; Yi, J. Capturing Coke Precursors in a Pd Lattice: A Carbon-Supported Heteropoly Acid Catalyst for the Dehydration of Glycerol into Acrolein. ChemCatChem. 2012, 4, 836–843. DOI: 10.1002/cctc.201100473.
  • Jia, C. J.; Liu, Y.; Schmidt, W.; Lu, A. H.; Schueth, F. Small-Sized HZSM-5 Zeolite as Highly Active Catalyst for Gas Phase Dehydration of Glycerol to Acrolein. J. Catal. 2010, 269, 71–79. DOI: 10.1016/j.jcat.2009.10.017.
  • Tsukuda, E.; Sato, S.; Takahashi, R.; Sodesawa, T. Production of Acrolein from Glycerol over Silica-Supported Heteropoly Acids. Catal. Commun. 2007, 8, 1349–1353. DOI: 10.1016/j.catcom.2006.12.006.
  • Kim, Y. T.; Jung, K.-D.; Park, E. D. Gas-Phase Dehydration of Glycerol over ZSM-5 Catalysts. Microporous Mesoporous Mater. 2010, 131, 28–36. DOI: 10.1016/j.micromeso.2009.11.037.
  • Chai, S.-H.; Tao, L.-Z.; Yan, B.; Vedrine, J. C.; Xu, B.-Q. Sustainable Production of Acrolein: Effects of Reaction Variables, Modifiers Doping and ZrO2 Origin on the Performance of WO3/ZrO2 Catalyst for the Gas-phase Dehydration of Glycerol. RSC Adv. 2014, 4, 4619–4630. DOI: 10.1039/C3RA46511J.
  • Cavani, F.; Guidetti, S.; Trevisanut, C.; Ghedini, E.; Signoretto, M. Unexpected Events in Sulfated Zirconia Catalyst during Glycerol-to-Acrolein Conversion. Appl. Catal. A. 2011, 409, 267–278. DOI: 10.1016/j.apcata.2011.10.015.
  • Liu, C.; Liu, R.; Wang, T. Glycerol Dehydration to Acrolein: Selectivity Control over CsPW/Nb2O5 Catalyst. Can. J. Chem. Eng. 2015, 93, 2177–2183. DOI: 10.1002/cjce.22339.
  • Carriço, C. S.; Cruz, F. T.; Dos Santos, M. B.; Oliveira, D. S.; Pastore, H. O.; Andrade, H. M. C.; Mascarenhas, A. J. S. MWW-Type Catalysts for Gas Phase Glycerol Dehydration to Acrolein. J. Catal. 2016, 334, 34–41. DOI: 10.1016/j.jcat.2015.11.010.
  • Dalla Costa, B. O.; Legnoverde, M. S.; Lago, C.; Decolatti, H. P.; Querini, C. A. Sulfonic Functionalized SBA-15 Catalysts in the Gas Phase Glycerol Dehydration. Thermal Stability and Catalyst Deactivation. Microporous Mesoporous Mater. 2016, 230, 66–75. DOI: 10.1016/j.micromeso.2016.04.035.
  • Toghyani, M.; Rahimi, A. Exergy Analysis of an Industrial Unit of Catalyst Regeneration Based on the Results of Modeling and Simulation. Energy. 2015, 91, 1049–1056. DOI: 10.1016/j.energy.2015.08.113.
  • Pieck, C. L.; Querini, C. A.; Parera, J. M. Influence of O2 and O3 Regeneration on the Metallic Phase of the Pt—Re/Al2O3 Catalyst. Appl. Catal., A. 1997, 165, 207–218. DOI: 10.1016/S0926-860X(98)80013-6.
  • Dalil, M.; Carnevali, D.; Dubois, J.-L.; Patience, G. S. Transient Acrolein Selectivity and Carbon Deposition Study of Glycerol Dehydration over WO3/TiO2 Catalyst. Chem. Eng. J. 2015, 270, 557–563. DOI: 10.1016/j.cej.2015.02.058.
  • Srinivasa Rao, G.; Pethan Rajan, N.; Hari Sekhar, M.; Ammaji, S.; Chary, K. V. R. Porous Zirconium Phosphate Supported Tungsten Oxide Solid Acid Catalysts for the Vapour Phase Dehydration of Glycerol. J. Mol. Catal. A: Chem. 2014, 395, 486–493. DOI: 10.1016/j.molcata.2014.09.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.