Publication Cover
Catalysis Reviews
Science and Engineering
Volume 62, 2020 - Issue 4
1,285
Views
22
CrossRef citations to date
0
Altmetric
Review

Controlled hydrogenolysis over heterogeneous catalysts for lignin valorization

&
Pages 607-630 | Received 29 Aug 2018, Accepted 02 Apr 2019, Published online: 04 Jun 2020

References

  • Huber, G. W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106(9), 4044–4098. DOI: 10.1021/cr068360d.
  • Farag, S.; Kouisni, L.; Chaouki, J. Lumped Approach in Kinetic Modeling of Microwave Pyrolysis of Kraft Lignin. Energy Fuels. 2014, 28(2), 1406–1417. DOI: 10.1021/ef4023493.
  • Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110(6), 3552–3599. DOI: 10.1021/cr900354u.
  • Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115(21), 11559–11624. DOI: 10.1021/acs.chemrev.5b00155.
  • Goheen, D. W. Hydrogenation of Lignin by the Noguchi Process. In Lignin Structure and Reactions; Marton, J., Ed.; American Chemical Society:  Washinton, DC, 1966; Vol. 59, pp 205–225. DOI: 10.1021/ba-1966-0059.ch014.
  • Nimz, H. H. Products Derived from Hemicelluloses and Lignin. In Alternative Uses for Agricultural Surpluses, Raymond, W. F., Larvor, P., Eds.; Springer Netherlands: Dordrecht, 1986; pp 64–72.
  • Martin Ragnar, G. H.; Lindström, M. E.; Wimby, M.; Blechschmidt, J.; Heinemann, S. Pulp. In Ullmann’s Encyclopedia of Industrial Chemistry; Heinemann, S., Blechschmidt, J., Wimby, M., Eds.; Wiley-VCH: Weinhei, 2014; pp 1–92. DOI: 10.1002/14356007.a18_545.pub4.
  • Marques, A. P.; Evtuguin, D. V.; Magina, S.; Amado, F. M. L.; Prates, A. Structure of Lignosulphonates from Acidic Magnesium-Based Sulphite Pulping of Eucalyptus Globulus. J. Wood Chem. Technol. 2009, 29(4), 337–357. DOI: 10.1080/02773810903207762.
  • Calvo-Flores, F. G.; Isac-Garcı´a, J. A. D. J.; Martı´n-Martı´Nez, F. J. Isolation of Lignins. In Lignin and Lignans as Renewable Raw Materials; Calvo-Flores, F. G., Isac‐García , J. A. D. J., Eds.; John Wiley & Sons, Ltd.: United Kingdom, 2015; pp 113–144. DOI: 10.1002/9781118682784.ch5.
  • Galkin, M. V.; Samec, J. S. M. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem. 2016, 9(13), 1544–1558. DOI: 10.1002/cssc.201600237.
  • Liitiä, T. M.; Maunu, S. L.; Hortling, B.; Toikka, M.; Kilpeläinen, I. Analysis of Technical Lignins by Two- and Three-Dimensional NMR Spectroscopy. J. Agric. Food Chem. 2003, 51(8), 2136–2143. DOI: 10.1021/jf0204349.
  • Lange, J.-P.;. Renewable Feedstocks: The Problem of Catalyst Deactivation and Its Mitigation. Angew. Chem. Int. Ed. 2015, 54(45), 13186–13197. DOI: 10.1002/anie.201503595.
  • Aro, T.; Fatehi, P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem. 2017, 10(9), 1861–1877. DOI: 10.1002/cssc.201700082.
  • Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Liquid Fuels, Hydrogen and Chemicals from Lignin: A Critical Review. Renewable Sustainable Energy Rev. 2013, 21, 506–523. DOI: 10.1016/j.rser.2012.12.022.
  • Francis, R. C.; Shin, S. J.; Omori, S.; Amidon, T. E.; Blain, T. J. Soda Pulping of Hardwoods Catalyzed by Anthraquinone and Methyl Substituted Anthraquinones. J. Wood Chem. Technol. 2006, 26(2), 141–152. DOI: 10.1080/02773810600701737.
  • Doherty, W. O. S.; Mousavioun, P.; Fellows, C. M. Value-adding to Cellulosic Ethanol: Lignin Polymers. Ind. Crops Prod. 2011, 33(2), 259–276. DOI: 10.1016/j.indcrop.2010.10.022.
  • de la Torre, M. J.; Moral, A.; Hernández, M. D.; Cabeza, E.; Tijero, A. Organosolv Lignin for Biofuel. Ind. Crops Prod. 2013, 45, 58–63. DOI: 10.1016/j.indcrop.2012.12.002.
  • El Hage, R.; Brosse, N.; Sannigrahi, P.; Ragauskas, A. Effects of Process Severity on the Chemical Structure of Miscanthus Ethanol Organosolv Lignin. Polym. Degrad. Stab. 2010, 95(6), 997–1003. DOI: 10.1016/j.polymdegradstab.2010.03.012.
  • Zhao, X.; Cheng, K.; Liu, D. Organosolv Pretreatment of Lignocellulosic Biomass for Enzymatic Hydrolysis. Appl. Microbiol. Biotechnol. 2009, 82(5), 815–827. DOI: 10.1007/s00253-009-1883-1.
  • Viell, J.; Harwardt, A.; Seiler, J.; Marquardt, W. Is Biomass Fractionation by Organosolv-like Processes Economically Viable? A Conceptual Design Study. Bioresour. Technol. 2013, 150, 89–97. DOI: 10.1016/j.biortech.2013.09.078.
  • Deuss, P. J.; Lancefield, C. S.; Narani, A.; de Vries, J. G.; Westwood, N. J.; Barta, K. Phenolic Acetals from Lignins of Varying Compositions via Iron(iii) Triflate Catalysed Depolymerisation. Green Chem. 2017, 19(12), 2774–2782. DOI: 10.1039/C7GC00195A.
  • Lancefield, C. S.; Panovic, I.; Deuss, P. J.; Barta, K.; Westwood, N. J. Pre-treatment of Lignocellulosic Feedstocks Using Biorenewable Alcohols: Towards Complete Biomass Valorisation. Green Chem. 2017, 19(1), 202–214. DOI: 10.1039/C6GC02739C.
  • Katahira, R.; Mittal, A.; McKinney, K.; Chen, X.; Tucker, M. P.; Johnson, D. K.; Beckham, G. T. Base-Catalyzed Depolymerization of Biorefinery Lignins. ACS Sustainable Chem. Eng. 2016, 4(3), 1474–1486. DOI: 10.1021/acssuschemeng.5b01451.
  • Pu, Y.; Hu, F.; Huang, F.;  Ragauskas, Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenerg. Res. 2015, 8, 992–1003. DOI: 10.1007/s12155-015-9655-5.
  • Samuel, R.; Cao, S.; Das, B. K.; Hu, F.; Pu, Y.; Ragauskas, A. J. Investigation of the Fate of Poplar Lignin during Autohydrolysis Pretreatment to Understand the Biomass Recalcitrance. RSC Adv. 2013, 3(16), 5305–5309. DOI: 10.1039/c3ra40578h.
  • Kim, K. H.; Simmons, B. A.; Singh, S. Catalytic Transfer Hydrogenolysis of Ionic Liquid Processed Biorefinery Lignin to Phenolic Compounds. Green Chem. 2017, 19(1), 215–224. DOI: 10.1039/C6GC02473D.
  • Tolbert, A.; Akinosho, H.; Khunsupat, R.; Naskar, A. K.; Ragauskas, A. J. Characterization and Analysis of the Molecular Weight of Lignin for Biorefining Studies. Biofuels Bioprod. Biorefin. 2014, 8(6), 836–856. DOI: 10.1002/bbb.1500.
  • Dorrestijn, E.; Laarhoven, J. J.; Arends, I.; Mulder, P. The Occurrence and Reactivity of Phenoxyl Linkages in Lignin and Low Rank Coal. J. Anal. Appl. Pyrol. 2000, 54(1), 153–192. DOI: 10.1016/S0165-2370(99)00082-0.
  • Parthasarathi, R.; Romero, R. A.; Redondo, A.; Gnanakaran, S. Theoretical Study of the Remarkably Diverse Linkages in Lignin. J. Phys. Chem. Lett. 2011, 2(20), 2660–2666. DOI: 10.1021/jz201201q.
  • Younker, J. M.; Beste, A.; Buchanan, A. C. Computational Study of Bond Dissociation Enthalpies for Substituted β-O-4 Lignin Model Compounds. ChemPhysChem. 2011, 12(18), 3556–3565. DOI: 10.1002/cphc.201100477.
  • Zhu, C.; Cao, J.; Zhao, X.-Y.; Xie, T.; Ren, J.; Wei, X.-Y. Mechanism of Ni-catalyzed Selective C-O Cleavage of Lignin Model Compound Benzyl Phenyl Ether under Mild Condition. J. Energ. Inst. 2007, 92(1), 74–81. DOI: 10.1016/j.joei.2017.11.004.
  • Duzee, E. M. V.; Adkins, H. Hydrogenation and Hydrogenolysis of Ethers. J. Am. Chem. Soc. 1935, 57(1), 147–151. DOI: 10.1021/ja01304a040.
  • Chandler, G.; Sasse, W. Synthetical Applications of Activated Metal Catalysts. XVII. The Hydrogenolysis of Aromatic Ethers by Raney Nickel. Aust. J. Chem. 1963, 16(1), 20–30. DOI: 10.1071/CH9630020.
  • He, J.; Zhao, C.; Lercher, J. A. Ni-Catalyzed Cleavage of Aryl Ethers in the Aqueous Phase. J. Am. Chem. Soc. 2012, 134(51), 20768–20775. DOI: 10.1021/ja309915e.
  • Konnerth, H.; Zhang, J.; Ma, D.; Prechtl, M. H. G.; Yan, N. Base Promoted Hydrogenolysis of Lignin Model Compounds and Organosolv Lignin over Metal Catalysts in Water. Chem. Eng. Sci. 2015, 123, 155–163. DOI: 10.1016/j.ces.2014.10.045.
  • He, J.; Lu, L.; Zhao, C.; Mei, D.; Lercher, J. A. Mechanisms of Catalytic Cleavage of Benzyl Phenyl Ether in Aqueous and Apolar Phases. J. Catal. 2014, 311, 41–51. DOI: 10.1016/j.jcat.2013.10.024.
  • Luo, Y.-R.; Pacey, P. Generalization of an Empirical Model for Bond Dissociation Energies. Can. J. Chem. 1993, 71(4), 572–577. DOI: 10.1139/v93-079.
  • Song, Q.; Wang, F.; Xu, J. Hydrogenolysis of Lignosulfonate into Phenols over Heterogeneous Nickel Catalysts. Chem. Commun. 2012, 48(56), 7019–7021. DOI: 10.1039/c2cc31414b.
  • Zhang, J.; Teo, J.; Chen, X.; Asakura, H.; Tanaka, T.; Teramura, K.; Yan, N. A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water. ACS Catal. 2014, 4(5), 1574–1583. DOI: 10.1021/cs401199f.
  • Zhang, J.; Asakura, H.; van Rijn, J.; Yang, J.; Duchesne, P.; Zhang, B.; Chen, X.; Zhang, P.; Saeys, M.; Yan, N. Highly Efficient, NiAu-catalyzed Hydrogenolysis of Lignin into Phenolic Chemicals. Green Chem. 2014, 16(5), 2432–2437. DOI: 10.1039/C3GC42589D.
  • Zhang, J.; Yan, N. NiAg Catalysts for Selective Hydrogenolysis of the Lignin C–O Bond. Particle Particle Syst. Charact. 2016, 33(9), 610–619. DOI: 10.1002/ppsc.201600005.
  • Zhang, J.; Ibrahim, M.; Collière, V.; Asakura, H.; Tanaka, T.; Teramura, K.; Philippot, K.; Yan, N. Rh Nanoparticles with NiOx Surface Decoration for Selective Hydrogenolysis of CO Bond over Arene Hydrogenation. J. Mol. Catal. A: Chem. 2016, 422, 188–197. DOI: 10.1016/j.molcata.2016.01.014.
  • Graydon, W. F.; Langan, M. D. Rhodium Cluster Ultradispersed Catalysts of High and Low Activity. J. Catal. 1981, 69(1), 180–192. DOI: 10.1016/0021-9517(81)90140-8.
  • Parsell, T. H.; Owen, B. C.; Klein, I.; Jarrell, T. M.; Marcum, C. L.; Haupert, L. J.; Amundson, L. M.; Kenttämaa, H. I.; Ribeiro, F.; Miller, J. T.; et al. Cleavage and Hydrodeoxygenation (HDO) of C–O Bonds Relevant to Lignin Conversion Using Pd/Zn Synergistic Catalysis. Chem. Sci. 2013, 4(2), 806–813. DOI: 10.1039/C2SC21657D.
  • Ye, Y.; Zhang, Y.; Fan, J.; Chang, J. Selective Production of 4-ethylphenolics from Lignin via Mild Hydrogenolysis. Bioresour. Technol. 2012, 118, 648–651. DOI: 10.1016/j.biortech.2012.05.127.
  • Dong, L.; Yin, -L.-L.; Xia, Q.; Liu, X.; Gong, X.-Q.; Wang, Y. Size-dependent Catalytic Performance of Ruthenium Nanoparticles in the Hydrogenolysis of a β-O-4 Lignin Model Compound. Catal. Sci. Technol. 2018, 8(3), 735–745. DOI: 10.1039/C7CY02014G.
  • Strassberger, Z.; Alberts, A. H.; Louwerse, M. J.; Tanase, S.; Rothenberg, G. Catalytic Cleavage of Lignin β-O-4 Link Mimics Using Copper on Alumina and Magnesia–alumina. Green Chem. 2013, 15(3), 768–774. DOI: 10.1039/c3gc37056a.
  • Paone, E.; Espro, C.; Pietropaolo, R.; Mauriello, F. Selective Arene Production from Transfer Hydrogenolysis of Benzyl Phenyl Ether Promoted by a Co-precipitated Pd/Fe3O4 Catalyst. Catal. Sci. Technol. 2016, 6(22), 7937–7941. DOI: 10.1039/C6CY01626J.
  • Park, J.; Riaz, A.; Insyani, R.; Kim, J. Understanding the Relationship Between the Structure and Depolymerization Behavior of Lignin. Fuel. 2018, 217, 202–210. DOI: 10.1016/j.fuel.2017.12.079.
  • Verziu, M.; Tirsoaga, A.; Cojocaru, B.; Bucur, C.; Tudora, B.; Richel, A.; Aguedo, M.; Samikannu, A.; Mikkola, J. P. Hydrogenolysis of Lignin over Ru-based Catalysts: The Role of the Ruthenium in a Lignin Fragmentation Process. Mol. Catal. 2018, 450, 65–76. DOI:10.1016/j.mcat.2018.03.004.
  • El Hage, R.; Brosse, N.; Chrusciel, L.; Sanchez, C.; Sannigrahi, P.; Ragauskas, A. Characterization of Milled Wood Lignin and Ethanol Organosolv Lignin from Miscanthus. Polym. Degrad. Stab. 2009, 94(10), 1632–1638. DOI: 10.1016/j.polymdegradstab.2009.07.007.
  • Lancefield, C. S.; Rashid, G. M. M.; Bouxin, F.; Wasak, A.; Tu, W.-C.; Hallett, J.; Zein, S.; Rodríguez, J.; Jackson, S. D.; Westwood, N. J.; et al. Investigation of the Chemocatalytic and Biocatalytic Valorization of a Range of Different Lignin Preparations: The Importance of β-O-4 Content. ACS Sustainable Chem. Eng. 2016, 4(12), 6921–6930. DOI: 10.1021/acssuschemeng.6b01855.
  • Constant, S.; Wienk, H. L. J.; Frissen, A. E.; Peinder, P. D.; Boelens, R.; van Es, D. S.; Grisel, R. J. H.; Weckhuysen, B. M.; Huijgen, W. J. J.; Gosselink, R. J. A.; et al. New Insights into the Structure and Composition of Technical Lignins: A Comparative Characterisation Study. Green Chem. 2016, 18(9), 2651–2665. DOI: 10.1039/C5GC03043A.
  • Bouxin, F. P.; McVeigh, A.; Tran, F.; Westwood, N. J.; Jarvis, M. C.; Jackson, S. D. Catalytic Depolymerisation of Isolated Lignins to Fine Chemicals Using a Pt/alumina Catalyst: Part 1—impact of the Lignin Structure. Green Chem. 2015, 17(2), 1235–1242. DOI: 10.1039/C4GC01678E.
  • Harris, E. E.; D’Ianni, J.; Adkins, H. Reaction of Hardwood Lignin with Hydrogen. J. Am. Chem. Soc. 1938, 60(6), 1467–1470. DOI: 10.1021/ja01273a056.
  • Pepper, J. M.; Hagerman, D. C. The Isolation and Oxidation of Aspen Lignins. Can. J. Chem. 1954, 32(6), 614–627. DOI: 10.1139/v54-080.
  • Pepper, J. M.; Steck, W. The Effect of Time and Temperature on the Hydrogenation of Aspen Lignin. Can. J. Chem. 1963, 41(11), 2867–2875. DOI: 10.1139/v63-420.
  • Bower, J. R.; Cooke, L. M.; Hibbert, H. Studies on Lignin and Related Compounds. LXX. Hydrogenolysis and Hydrogenation of Maple Wood. J. Am. Chem. Soc. 1943, 65(6), 1192–1195. DOI: 10.1021/ja01246a049.
  • Pepper, J. M.; Lee, Y. W. Lignin and Related Compounds. I. A Comparative Study of Catalysts for Lignin Hydrogenolysis. Can. J. Chem. 1969, 47(5), 723–727. DOI: 10.1139/v69-118.
  • Sudo, K.; Mullord, D. J.; Pepper, J. M. Lignin and Related Compounds. VIII. Lignin Monomers and Dimers from Hydrogenolysis of Aspen Poplar Wood Using Rhodium-on-charcoal Catalyst. Can. J. Chem. 1981, 59(7), 1028–1031. DOI: 10.1139/v81-152.
  • Horáček, J.; Homola, F.; Kubičková, I.; Kubička, D. Lignin to Liquids over Sulfided Catalysts. Catal. Today. 2012, 179(1), 191–198. DOI: 10.1016/j.cattod.2011.06.031.
  • Torr, K. M.; van de Pas, D. J.; Cazeils, E.; Suckling, I. D. Mild Hydrogenolysis of In-situ and Isolated Pinus Radiata Lignins. Bioresour. Technol. 2011, 102(16), 7608–7611. DOI: 10.1016/j.biortech.2011.05.040.
  • Barta, K.; Warner, G. R.; Beach, E. S.; Anastas, P. T. Depolymerization of Organosolv Lignin to Aromatic Compounds over Cu-doped Porous Metal Oxides. Green Chem. 2014, 16(1), 191–196. DOI: 10.1039/C3GC41184B.
  • Chen, H.; He, S.; Cao, X.; Zhang, S.; Xu, M.; Pu, M.; Su, D.; Wei, M.; Evans, D. G.; Duan, X. Ru-Cluster-Modified Ni Surface Defects toward Selective Bond Breaking between C–O and C–C. Chem. Mater. 2016, 28(13), 4751–4761. DOI: 10.1021/acs.chemmater.6b01784.
  • Xiao, L.-P.; Wang, S.; Li, H.; Li, Z.; Shi, Z.-J.; Xiao, L.; Sun, R.-C.; Fang, Y.; Song, G. Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide. ACS Catal. 2017, 7(11), 7535–7542. DOI: 10.1021/acscatal.7b02563.
  • Shuai, L.; Sitison, J.; Sadula, S.; Ding, J.; Thies, M. C.; Saha, B. Selective C–C Bond Cleavage of Methylene-Linked Lignin Models and Kraft Lignin. ACS Catal. 2018, 8(7), 6507–6512. DOI: 10.1021/acscatal.8b00200.
  • Rinaldi, R.; Jastrzebski, R.; Clough, M. T.; Ralph, J.; Kennema, M.; Bruijnincx, P. C. A.; Weckhuysen, B. M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. 2016, 55(29), 8164–8215.
  • Zhao, Y.; Deng, L.; Liao, B.; Fu, Y.; Guo, Q.-X. Aromatics Production via Catalytic Pyrolysis of Pyrolytic Lignins from Bio-Oil. Energy Fuels. 2010, 24(10), 5735–5740. DOI: 10.1021/ef100896q.
  • Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin Depolymerization (LDP) in Alcohol over Nickel-based Catalysts via a Fragmentation–hydrogenolysis Process. Energy Environ. Sci. 2013, 6(3), 994–1007. DOI: 10.1039/c2ee23741e.
  • Garrett, M. D.; Bennett, S. C.; Hardacre, C.; Patrick, R.; Sheldrake, G. N. New Methods in Biomass Depolymerisation: Catalytic Hydrogenolysis of Barks. RSC Adv. 2013, 3(44), 21552–21557. DOI: 10.1039/c3ra44382e.
  • Van den Bosch, S.; Schutyser, W.; Koelewijn, S. F.; Renders, T.; Courtin, C. M.; Sels, B. F. Tuning the Lignin Oil OH-content with Ru and Pd Catalysts during Lignin Hydrogenolysis on Birch Wood. Chem. Commun. 2015, 51(67), 13158–13161. DOI: 10.1039/C5CC04025F.
  • Qi, S.-C.; Hayashi, J.-I.; Kudo, S.; Zhang, L. Catalytic Hydrogenolysis of Kraft Lignin to Monomers at High Yield in Alkaline Water. Green Chem. 2017, 19(11), 2636–2645. DOI: 10.1039/C7GC01121K.
  • Wang, D.; Wang, Y.; Li, X.; Chen, L.; Li, G.; Li, X. Lignin Valorization: A Novel in Situ Catalytic Hydrogenolysis Method in Alkaline Aqueous Solution. Energy Fuels. 2018, 32(7), 7643–7651. DOI: 10.1021/acs.energyfuels.8b01032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.