Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 2
2,391
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation

, , &

References

  • Akbari, A.; Amini, M.; Tarassoli, A.; Eftekhari-Sis, B.; Ghasemian, N.; Jabbari, E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct. Nano-Objects. 2018, 14, 19–48.
  • Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y. Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry. Chem. Soc. Rev. 2014, 43, 3480–3524.
  • Que Jr, L.; Tolman, W. B. Biologically Inspired Oxidation Catalysis. Nature 2008, 455, 333.
  • Valange, S.; Védrine, J. General and Prospective Views on Oxidation Reactions in Heterogeneous Catalysis. Catalysts. 2018, 8, 483.
  • Sheldon, R. Heterogeneous Catalytic Oxidation and Fine Chemicals. In Studies in Surface Science Catalysis; Guisnet, M.; Barrault, J.; Bouchoule, C.; Duprez, D.; Perot, G.; Maurel, R.; Montassier, C., Eds., Elsevier, 1991; pp 33–54.
  • Singh, J.; Alayon, E. M.; Tromp, M.; Safonova, O. V.; Glatzel, P.; Nachtegaal, M.; Frahm, R.; Van Bokhoven, J. A. Generating Highly Active Partially Oxidized Platinum during Oxidation of Carbon Monoxide over Pt/Al2O3: In Situ, Time‐resolved, and High‐energy‐resolution X‐ray Absorption Spectroscopy. Angew. Chem. 2008, 120, 9400–9404.
  • Kim, I. H.; Seo, H. O.; Park, E. J.; Han, S. W.; Kim, Y. D. Low Temperature CO Oxidation over Iron Oxide Nanoparticles Decorating Internal Structures of a Mesoporous Alumina. Sci. Rep. 2017, 7, 40497.
  • Bae, J.; Kim, J.; Jeong, H.; Lee, H. CO Oxidation on SnO2 Surfaces Enhanced by Metal Doping. Catal. Sci. Technol. 2018, 8, 782–789.
  • Zhao, X.; Hu, Y.; Jiang, H.; Yu, J.; Jiang, R.; Li, C. Engineering TiO2 Supported Pt Sub-nanoclusters via Introducing Variable Valence CO Ion in High-temperature Flame for CO Oxidation. Nanoscale 2018, 10, 13384–13392.
  • Duan, L.; Liu, H.; Muhammad, Y.; Shi, L.; Wu, H.; Zhang, J.; Yu, D.; Huang, L. Photo-mediated Co-loading of Highly Dispersed MnOx-Pt on g-C3N4 Boosts the Ambient Catalytic Oxidation of Formaldehyde. Nanoscale. 2019, 11, 8160–8169.
  • Fang, R.; He, M.; Huang, H.; Feng, Q.; Ji, J.; Zhan, Y.; Leung, D. Y. C.; Zhao, W. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature. Chemosphere. 2018, 213, 235–243.
  • Fujiwara, K.; Okuyama, K.; Pratsinis, S. E. Metal-support Interactions in Catalysts for Environmental Remediation. Environ. Sci. Nano. 2017, 4, 2076–2092.
  • Zhang, X.; Junhui, Y.; Jing, Y.; Ting, C.; Bei, X.; Zhe, L.; Kunfeng, Z.; Ling, Y.; Dannong, H. Excellent Low-temperature Catalytic Performance of Nanosheet Co-Mn Oxides for Total Benzene Oxidation. Appl. Catal. A. 2018, 566, 104–112.
  • Chlala, D.; Giraudon, J. M.; Nuns, N.; Labaki, M.; Lamonier, J. F. Highly Active Noble‐Metal‐Free Copper Hydroxyapatite Catalysts for the Total Oxidation of Toluene. ChemCatChem. 2017, 9, 2275–2283.
  • Chen, J.; Chen, X.; Xu, W.; Xu, Z.; Jia, H.; Chen, J. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl. Catal. B. 2018, 224, 825–835.
  • Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons, India, 2012.
  • Parmon, V. N.; Panov, G. I.; Uriarte, A.; Noskov, A. S. Nitrous Oxide in Oxidation Chemistry and Catalysis: Application and Production. Catal. Today. 2005, 100, 115–131.
  • Widmann, D.; Behm, R. Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts. Acc. Chem. Res. 2014, 47, 740–749.
  • Tabata, K.; Teng, Y.; Takemoto, T.; Suzuki, E.; Bañares, M. A.; Peña, M. A.; Fierro, J. L. G. Activation of Methane by Oxygen and Nitrogen Oxides. Catal. Rev. 2002, 44, 1–58.
  • Konova, P.; Stoyanova, M.; Naydenov, A.; Mehandjiev, D. Catalytic Oxidation of VOCs and CO by Ozone over Alumina Supported Cobalt Oxide. Appl. Catal. A. 2006, 298, 109–114.
  • Esrafili, M. D.; Mohammadian-Sabet, F.; Nematollahi, P. Oxidation of CO by N2O over Al-and Ti-doped Graphene: A Comparative Study. RSC Adv. 2016, 6, 64832–64840.
  • Sobolev, V. I.; Koltunov, K. Y. Gas-phase Oxidation of Alcohols with O2 and N2O Catalyzed by Au/TiO2: A Comparative Study. Catal. Lett. 2015, 145, 583–588.
  • Popolan, D. M.; Bernhardt, T. M. Communication: CO Oxidation by Silver and Gold Cluster Cations: Identification of Different Active Oxygen Species. J. Chem. Phys. 2011, 134, 091102.
  • Wang, H.; Guo, W.; Jiang, Z.; Yang, R.; Jiang, Z.; Pan, Y.; Shangguan, W. New Insight into the Enhanced Activity of Ordered Mesoporous Nickel Oxide in Formaldehyde Catalytic Oxidation Reactions. J. Catal. 2018, 361, 370–383.
  • Sabri, M.; King, H. J.; Gummow, R. J.; Lu, X.; Zhao, C.; Oelgemöller, M.; Chang, S. L.; Hocking, R. K. Oxidant or Catalyst for Oxidation? A Study of How Structure and Disorder Change the Selectivity for Direct versus Catalytic Oxidation Mediated by Manganese (III, IV) Oxides. Chem. Mater. 2018, 30, 8244–8256.
  • Zhao, K.; Zhang, L.; Wang, J.; Li, Q.; He, W.; Yin, J. J. Surface Structure-dependent Molecular Oxygen Activation of BiOCl Single-crystalline Nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753.
  • Haruta, M. Catalysis: Gold Rush. Nature. 2005, 437, 1098.
  • Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Copper‐Catalyzed Aerobic Oxidative C-H Functionalizations: Trends and Mechanistic Insights. Angew. Chem. Int. Ed. 2011, 50, 11062–11087.
  • Tang, X.; Wu, W.; Zeng, W.; Copper-Catalyzed Oxidative, J. H. Carbon–Carbon and/or Carbon–Heteroatom Bond Formation with O2 or Internal Oxidants. Acc. Chem. Res. 2018, 51, 1092–1105.
  • Whitney, W. R. The Corrosion of Iron. J. Am. Chem. Soc. 1903, 25, 394–406.
  • Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 2015, 54, 3465–3520.
  • Liu, X.; Ryabenkova, Y.; Conte, M. Catalytic Oxygen Activation versus Autoxidation for Industrial Applications: A Physicochemical Approach. Phys. Chem. Chem. Phys. 2015, 17, 715–731.
  • Nie, L.; Mei, D.; Xiong, H.; Peng, B.; Ren, Z.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L.; et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science. 2017, 358, 1419–1423.
  • Yoshida, H.; Hirakawa, T.; Oyama, H.; Nakashima, R.; Hinokuma, S.; Machida, M. Effect of Thermal Aging on Local Structure and Three-Way Catalysis of Cu/Al2O3. J. Phy. Chem C. 2019, 123, 10469–10476.
  • Gandhi, H. S.; Graham, G. W.; McCabe, R. W. Automotive Exhaust Catalysis. J. Catal. 2003, 216, 433–442.
  • Fehlner, F. P.; Mott, N. F. Low-temperature Oxidation. Oxid. Met. 1970, 2, 59–99.
  • Radjenovic, P. M.; Hardwick, L. J. Evaluating Chemical Bonding in Dioxides for the Development of Metal–oxygen Batteries: Vibrational Spectroscopic Trends of Dioxygenyls, Dioxygen, Superoxides and Peroxides. Phys. Chem. Chem. Phys. 2019, 21, 1552–1563.
  • Black, R.; Oh, S. H.; Lee, J.-H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc. 2012, 134, 2902–2905.
  • Hayyan, M.; Hashim, M. A.; AlNashef, I. M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085.
  • Montemore, M. M.; Van Spronsen, M. A.; Madix, R. J.; Friend, C. M. O2 Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chem. Rev. 2017, 118, 2816–2862.
  • Quiroz Torres, J.; Royer, S.; Bellat, J. P.; Giraudon, J. M.; Lamonier, J. F. Formaldehyde: Catalytic Oxidation as a Promising Soft Way of Elimination. ChemSusChem. 2013, 6, 578–592.
  • Komaguchi, K.; Maruoka, T.; Nakano, H.; Imae, I.; Ooyama, Y.; Harima, Y. Electron-transfer reaction of oxygen species on TiO2 nanoparticles induced by sub-band-gap illumination. J. Phy. Chem C. 2009, 114, 1240–1245.
  • Anpo, M.; Che, M.; Fubini, B.; Garrone, E.; Giamello, E.; Paganini, M. C. Generation of Superoxide Ions at Oxide Surfaces. Top. Catal. 1999, 8, 189.
  • Davy, H. VIII. Some New Experiments and Observations on the Combustion of Gaseous Mixtures, with an Account of a Method of Preserving a Continued Light in Mixtures of Inflammable Gases and Air without Flame. Philos. Trans. R. Soc. London. 1817, 107, 77–85.
  • Döbereiner, J. Propriétés nouvelles et remarquables reconnues au sus-oxide de platine, au sulphure oxidé et â la poussiere du même metal. Ann. Chim. Phys. 1823, 24, 91–96.
  • Henry, W.XLIV. On the Action of Finely-divided Platinum on Gaseous Mixtures, and Its Application to Their Analysis. The Philosophical Magazine 1825, 65, 269–283.
  • Cook, E. Peregrine Phillips, the Inventor of the Contact Process for Sulphuric Acid; Nature 1926, 117, 419-421.
  • Döbereiner, J. Neue Beiträge zur chemischen Dynamik des Platins. Justus Liebigs Annalen der Chemie. 1845, 53, 145–147.
  • Sheldon, R. A History of Oxygen Activation: 1773–1993. In The Activation of Dioxygen and Homogeneous Catalytic Oxidation; A.E.;Barton, D.H.R.; Martell, A.E.; Sawyer, D.T., Eds., Springer, Boston, MA, 1993; pp 9–30.
  • Steudel, R. Carl Friedrich Claus (1827-1900) - inventor of the Claus Process for sulfur production from hydrogen sulfide (update December 2015; with patents). 2015.
  • Ostwald, W. GB190200698 (A) - Improvements in the Manufacture of Nitric Acid and Nitrogen Oxides. 1902.
  • Lance, D.; Elworthy, E. G. French Patent 352687, 1905.
  • Chinchen, G.; Davies, P.; Sampson, R. The Historical Development of Catalytic Oxidation Processes. In Catalysis; Anderson, J.R.; Boudart, M., Eds., Springer, Berlin, Heidelberg, 1987; pp 1–67.
  • Andrussow, L. Über die schnell verlaufenden katalytischen Prozesse in strömenden Gasen und die Ammoniak-Oxydation (V). Berichte der deutschen chemischen Gesellschaft (A and B Series) 1927, 60, 2005–2018.
  • Lamb, A. B.; Bray, W. C.; Frazer, J. The Removal of Carbon Monoxide from Air. Ind. Eng. Chem. 1920, 12, 213–221.
  • Merrill, D. R.; Scalione, C. C. The Catalytic Oxidation of Carbon monoxide at Ordinary Temperatures J. Am. Chem. Soc. 1921, 43, 1982–2002.
  • Lefort, T. Process for the production of ethylene oxide. French patent 1931, 729952.
  • McKinney, P. V. Reduction of Palladium oxide by Carbon monoxide1. J. Am. Chem. Soc. 1932, 54, 4498–4504.
  • Padovani, C.; Franchetti, P. Incomplete Oxidation of Methane with Oxygen and Air. Giorn. Chim. Ind. Applicata. 1933, 15.
  • Hock, H.; Lang, S. Autoxydation von Kohlenwasserstoffen, IX. Mitteil.: Über Peroxyde von Benzol-Derivaten. Berichte der deutschen chemischen Gesellschaft (A and B Series). 1944, 77, 257–264.
  • Prettre, M.; Eichner, C.; Perrin, M. The Catalytic Oxidation of Methane to Carbon Monoxide and Hydrogen. Trans. Faraday Society. 1946, 42, 335b–339.
  • Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Rüttinger, R.; Kojer, H. Katalytische Umsetzungen von Olefinen an Platinmetall-Verbindungen Das Consortium-Verfahren zur Herstellung von Acetaldehyd. Angew. Chem. 1959, 71, 176–182.
  • Callahan, J. L.; Grasselli, R. K.; Milberger, E. C.; Strecker, H. A. Oxidation and Ammoxidation of Propylene over Bismuth Molybdate Catalyst. Product R&D. 1970, 9, 134–142.
  • Armor, J. N. A History of Industrial Catalysis. Catal. Today. 2011, 163, 3–9.
  • Callahan, J.; Grasselli, R. A Selectivity Factor in Vapor‐phase Hydrocarbon Oxidation Catalysis. AlChE. J. 1963, 9, 755–760.
  • Shen, J.; Zhu, Y.; Hu, Y.; Li, C. Atomically Dispersed Gold Supported Catalysts: Controllable Preparation and Potential for Low-Temperature CO Oxidation. Mater. Today Nano. 2018, 4, 54-69.
  • Fuller, M. J.; Warwick, M. E. SnO2–CuO Gels: Novel Catalysts for the Low-temperature Oxidation of Carbon Monoxide. J. Chem. Soc., Chem. Commun. 1973, 6, 210a–210a.
  • Fuller, M.; Warwick, M. The Catalytic Oxidation of Carbon Monoxide on Tin (IV) Oxide. J. Catal. 1973, 29, 441–450.
  • Krasnovsky, A. Primary Mechanisms of Photoactivation of Molecular Oxygen. History of Development and the Modern Status of Research. Biochemistry. 2007, 72, 1065–1080.
  • Bach, A. On the Role of Peroxides in the Processes of Slow Oxidation. Zh Russ Phys-Chem Soc. 1897, 29, 373–395.
  • Lewis, J. S. CCVI.—Low Temperature Oxidation of Hydrocarbons. J Chem Soc (Resumed). 1927, 1555–1572.
  • Bäckström, H. L. The Chain-reaction Theory of Negative Catalysis1. J. Am. Chem. Soc. 1927, 49, 1460–1472.
  • Criegee, R.; Pilz, H.; Flygare, H. Zur kenntnis der olefinperoxyde. Berichte der deutschen chemischen Gesellschaft (A and B Series). 1939, 72, 1799–1804.
  • Lewis, J. S. CVII.—Low-temperature Oxidation of Hydrocarbons. Part I. The Pressure–temperature Curves of Amylene–oxygen Mixtures. J Chem Soc (Resumed). 1929, 759–767.
  • Gee, G. Part II(a).—The Low Temperature Oxidation of Hydrocarbons. Introductory Paper. Trans. Faraday Society. 1946, 42, 197–201.
  • Mulcahy, M. F. R. The Kinetics of Oxidation of Hydrocarbons in the Gas Phase. A Theory of the Low-temperature Mechanism. Discuss. Faraday Soc. 1951, 10, 259–265.
  • Batten, J.; Ridge, M. On the Low-temperature Oxidation of Isobutane and Propylene. Aust. J. Chem. 1955, 8, 370–377.
  • Knox, J. A new mechanism for the low temperature oxidation of hydrocarbons in the gas phase. Combust. Flame. 1965, 9, 297–310.
  • Kazusaka, A.; Lunsford, J. H. The low-temperature catalytic oxidation of CO with N2O by molybdenum oxide supported on silica gel. J. Catal. 1976, 45, 25–31.
  • Mimoun, H.; Perez Machirant, M. M.; Seree De Roch, I. Activation of Molecular Oxygen: Rhodium-catalyzed Oxidation of Olefins. J. Am. Chem. Soc. 1978, 100, 5437–5444.
  • Long, R.; Huang, H.; Li, Y.; Song, L.; Xiong, Y. Palladium‐Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions. Adv. Mater. 2015, 27, 7025–7042.
  • Chang, C.-R.; Long, B.; Yang, X.-F.; Li, J. Theoretical Studies on the Synergetic Effects of Au–Pd Bimetallic Catalysts in the Selective Oxidation of Methanol. J. Phy. Chem C. 2015, 119, 16072–16081.
  • Li, Y.-F.; Aschauer, U.; Chen, J.; Selloni, A. Adsorption and Reactions of O2 on Anatase TiO2. Acc. Chem. Res. 2014, 47, 3361–3368.
  • Yang, W.; Zhu, Y.; You, F.; Yan, L.; Ma, Y.; Lu, C.; Gao, P.; Hao, Q.; Li, W. Insights into the Surface-defect Dependence of Molecular Oxygen Activation over Birnessite-type MnO2. Appl. Catal. B. 2018, 233, 184–193.
  • Bielanski, A.; Haber, J. Oxygen in catalysis Boca Raton: CRC Press; CRC Press, New York, 1990. DOi: 10.1201/9781482293289.
  • Coquet, R.; Howard, K. L.; Willock, D. J. Theory and simulation in heterogeneous gold catalysis. Chem. Soc. Rev. 2008, 37, 2046–2076.
  • Che, M.; Tench, A. Characterization and Reactivity of Molecular Oxygen Species on Oxide Surfaces, Adv. Catal. Elsevier. 1983, 32, 1–148.
  • Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density Functional Theory in Surface Chemistry and Catalysis. Proc. Natl. Acad. Sci. 2011, 108, 937–943.
  • Halwidl, D.; Mayr-Schmölzer, W.; Setvin, M.; Fobes, D.; Peng, J.; Mao, Z.; Schmid, M.; Mittendorfer, F.; Redinger, J.; Diebold, U. A Full Monolayer of Superoxide: Oxygen Activation on the Unmodified Ca3Ru2O7 (001) Surface. J. Mater. Chem. A. 2018, 6, 5703–5713.
  • Shen, X.; Liu, W.; Gao, X.; Lu, Z.; Wu, X.; Gao, X. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891.
  • Gottfried, J. M.; Schmidt, K. J.; Schroeder, S. L. M.; Christmann, K. Spontaneous and Electron-induced Adsorption of Oxygen on Au(110)-(1×2). Surf. Sci. 2002, 511, 65–82.
  • Howard, K. L.; Willock, D. J. A Periodic DFT Study of the Activation of O2 by Au Nanoparticles on α-Fe2O3. Faraday Discuss. 2011, 152, 135–151.
  • Hammer, B.; Norskov, J. K. Why Gold Is the Noblest of All the Metals. Nature. 1995, 376, 238.
  • Rodgers, M. A. Solvent-induced Deactivation of Singlet Oxygen: Additivity Relationships in Nonaromatic Solvents. J. Am. Chem. Soc. 1983, 105, 6201–6205.
  • Redington, R. L.; Olson, W. B.; Cross, P. C. Studies of Hydrogen Peroxide: The Infrared Spectrum and the Internal Rotation Problem. J. Chem. Phy. 1962, 36, 1311–1326.
  • Shamir, J.; Binenboym, J.; Claassen, H. H. The Vibrational Frequency of the Oxygen Molecule (O2+) Cation. J. Am. Chem. Soc. 1968, 90, 6223–6224.
  • Herzberg, G. Molecular spectra and molecular structure, Vol. 1. Spectra of diatomic molecules, Van Nostrand Reinhold, New York, 1950.
  • Zhao, Y.; Teng, B.-T.; Wen, X.-D.; Zhao, Y.; Chen, Q.-P.; Zhao, L.-H.; Luo, M.-F. Superoxide and Peroxide Species on CeO2(111), and Their Oxidation Roles. J. Phy. Chem C. 2012, 116, 15986–15991.
  • Krupenie, P. H. The spectrum of molecular oxygen. J. Phys. Chem. Ref. Data. 1972, 1, 423–534.
  • Li, C.; Domen, K.; Maruya, K.; Onishi, T. Dioxygen Adsorption on Well-outgassed and Partially Reduced Cerium Oxide Studied by FT-IR. J. Am. Chem. Soc. 1989, 111, 7683–7687.
  • Creighton, J.; Lippincott, E. Vibrational frequency and dissociation energy of the superoxide ion. J. Chem. Phy. 1964, 40, 1779–1780.
  • Rocha, T. C.; Oestereich, A.; Demidov, D. V.; Hävecker, M.; Zafeiratos, S.; Weinberg, G.; Bukhtiyarov, V. I.; Knop-Gericke, A.; Schlögl, R. The Silver–oxygen System in Catalysis: New Insights by near Ambient Pressure X-ray Photoelectron Spectroscopy. Phys. Chem. Chem. Phys. 2012, 14, 4554–4564.
  • Carbonio, E. A.; Rocha, T. C.; Klyushin, A. Y.; Píš, I.; Magnano, E.; Nappini, S.; Piccinin, S.; Knop-Gericke, A.; Schlögl, R.; Jones, T. E. Are multiple oxygen species selective in ethylene epoxidation on silver? Chem. Sci. 2018, 9, 990–998.
  • Yu, W.-Y.; Zhang, L.; Mullen, G. M.; Henkelman, G.; Mullins, C. B. Oxygen activation and reaction on Pd–Au bimetallic surfaces. J. Phy. Chem C. 2015, 119, 11754–11762.
  • Díaz, C.; Pijper, E.; Olsen, R.; Busnengo, H.; Auerbach, D.; Kroes, G. Chemically Accurate Simulation of a Prototypical Surface Reaction: H2 Dissociation on Cu (111). Science. 2009, 326, 832–834.
  • Behler, J.; Delley, B.; Lorenz, S.; Reuter, K.; Scheffler, M. Dissociation of O2 at Al (111): The Role of Spin Selection Rules. Phys. Rev. Lett. 2005, 94, 036104.
  • Ding, X.; Li, Z.; Yang, J.; Hou, J.; Zhu, Q. Adsorption Energies of Molecular Oxygen on Au Clusters. J. Chem. Phy. 2004, 120, 9594–9600.
  • Sun, K.; Kohyama, M.; Tanaka, S.; Takeda, S. Direct O2 Activation on Gold/Metal Oxide Catalysts through a Unique Double Linear O-Au-O Structure. ChemCatChem. 2013, 5, 2217–2222.
  • Li, H.; Choi, J.-I. J.; Mayr-Schmölzer, W.; Weilach, C.; Rameshan, C.; Mittendorfer, F.; Redinger, J.; Schmid, M.; Rupprechter, G. N. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-resolution X-ray Photoelectron Spectroscopy, Temperature-programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory. J. Phy. Chem C. 2015, 119, 2462–2470.
  • Paier, J.; Marsman, M.; Kresse, G. Dielectric Properties and Excitons for Extended Systems from Hybrid Functionals. Phys. Rev B. 2008, 78, 121201.
  • Yang, C.; Yu, X.; Heißler, S.; Nefedov, A.; Colussi, S.; Llorca, J.; Trovarelli, A.; Wang, Y.; Wöll, C. Surface faceting and reconstruction of ceria nanoparticles. Angew. Chem. Int. Ed. 2017, 56, 375–379.
  • Ford, D. C.; Nilekar, A. U.; Xu, Y.; Mavrikakis, M. Partial and Complete Reduction of O2 by Hydrogen on Transition Metal Surfaces. Surf. Sci. 2010, 604, 1565–1575.
  • Lee, H.; Ho, W. Single-bond Formation and Characterization with a Scanning Tunneling Microscope. Science. 1999, 286, 1719–1722.
  • Sadewasser, S.; Glatzel, T. Experimental Technique and Working Modes. In Kelvin Probe Force Microscopy; Sadewasser S.; Glatzel T., Eds., Springer Cham, Switzerland, 2012; pp 7–24.
  • Gross, L.; Schuler, B.; Pavliček, N.; Fatayer, S.; Majzik, Z.; Moll, N.; Peña, D.; Meyer, G. Atomic Force Microscopy for Molecular Structure Elucidation. Angew. Chem. Int. Ed. 2018, 57, 3888–3908.
  • Setvin, M.; Hulva, J.; Parkinson, G. S.; Schmid, M.; Diebold, U. Electron Transfer between Anatase TiO2 and an O2 Molecule Directly Observed by Atomic Force Microscopy. Proc. Natl. Acad. Sci. 2017, 114, E2556.
  • Nilius, N.; Freund, H.-J. Activating Nonreducible Oxides via Doping. Acc. Chem. Res. 2015, 48, 1532–1539.
  • Setvín, M.; Aschauer, U.; Scheiber, P.; Li, Y.-F.; Hou, W.; Schmid, M.; Selloni, A.; Diebold, U. Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101). Science. 2013, 341, 988.
  • Cui, Y.; Shao, X.; Baldofski, M.; Sauer, J.; Nilius, N.; Freund, H. J. Adsorption, Activation, and Dissociation of Oxygen on Doped Oxides. Angew. Chem. Int. Ed. 2013, 52, 11385–11387.
  • Lohrenscheit, M.; Hess, C. Direct Evidence for the Participation of Oxygen Vacancies in the Oxidation of Carbon Monoxide over Ceria‐Supported Gold Catalysts by Using Operando Raman Spectroscopy. ChemCatChem. 2016, 8, 523–526.
  • Jampaiah, D.; Venkataswamy, P.; Coyle, V. E.; Reddy, B. M.; Bhargava, S. K. Low-temperature CO Oxidation over Manganese, Cobalt, and Nickel Doped CeO 2 Nanorods. RSC Adv. 2016, 6, 80541–80548.
  • Liu, L. Z.; Li, T. H.; Wu, X. L.; Shen, J. C.; Chu, P. K. Identification of Oxygen Vacancy Types from Raman Spectra of SnO2 Nanocrystals. J. Raman Spectrosc. 2012, 43, 1423–1426.
  • Wang, H.; Luo, S.; Zhang, M.; Liu, W.; Wu, X.; Liu, S. Roles of Oxygen Vacancy and Ox− in Oxidation Reactions over CeO2 and Ag/CeO2 Nanorod Model Catalysts. J. Catal. 2018, 368, 365–378.
  • Schilling, C.; Ganduglia-Pirovano, M. V.; Hess, C. Experimental and Theoretical Study on the Nature of Adsorbed Oxygen Species on Shaped Ceria Nanoparticles. J. Phys. Chem. Lett. 2018, 9, 6593–6598.
  • Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 2005, 127, 3286–3287.
  • Long, R.; Huang, Y.; Wan, H. Surface Oxygen Species over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of in Situ Confocal Microprobe Raman Spectroscopy. J. Raman Spectrosc. 1997, 28, 29–32.
  • Li, X.; Ma, J.; Yang, L.; He, G.; Zhang, C.; Zhang, R.; He, H. Oxygen vacancies induced by transition metal doping in γ-MnO2 for highly efficient ozone decomposition. Environ. Sci. Technol. 2018, 52, 12685–12696.
  • Van Bokhoven, J. A.; Louis, C.; Miller, J. T.; Tromp, M.; Safonova, O. V.; Glatzel, P. Activation of Oxygen on Gold/alumina Catalysts: In Situ High‐energy‐resolution Fluorescence and Time‐resolved X‐ray Spectroscopy. Angew. Chem. Int. Ed. 2006, 45, 4651–4654.
  • Long, R.; Mao, K.; Ye, X.; Yan, W.; Huang, Y.; Wang, J.; Fu, Y.; Wang, X.; Wu, X.; Xie, Y. Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment. J. Am. Chem. Soc. 2013, 135, 3200–3207.
  • Chiesa, M.; Giamello, E.; Che, M. EPR Characterization and Reactivity of Surface-localized Inorganic Radicals and Radical Ions. Chem. Rev. 2009, 110, 1320–1347.
  • Chowdhury, B.; Bravo-Suarez, J. J.; Mimura, N.; Lu, J.; Bando, K. K.; Tsubota, S.; Haruta, M. In situ UV− vis and EPR study on the formation of hydroperoxide species during direct gas phase propylene epoxidation over Au/Ti-SiO2 catalyst. J. Phys. Chem. B. 2006, 110, 22995–22999.
  • Dyrek, K.; Che, M. EPR as a Tool to Investigate the Transition Metal Chemistry on Oxide Surfaces. Chem. Rev. 1997, 97, 305–332.
  • Yang, J.; Hu, S.; Fang, Y.; Hoang, S.; Li, L.; Yang, W.; Liang, Z.; Wu, J.; Hu, J.; Xiao, W.; et al. Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. ACS Catal. 2019, 9, 9751–9763.
  • Chiesa, M.; Giamello, E.; Paganini, M. C.; Sojka, Z.; Murphy, D. M. Continuous Wave Electron Paramagnetic Resonance Investigation of the Hyperfine Structure of 17 O 2− Adsorbed on the MgO Surface. J. Chem. Phy. 2002, 116, 4266–4274.
  • Chen, H.; Wang, Y.; Lv, Y.-K. Catalytic Oxidation of NO over MnO 2 with Different Crystal Structures. RSC Adv. 2016, 6, 54032–54040.
  • Ghosalya, M. K.; Reddy, K. P.; Jain, R.; Roy, K.; Gopinath, C. S. Subtle Interaction between Ag and O2: A near Ambient Pressure UV Photoelectron Spectroscopy (NAP-UPS) Investigations. J. Chem. Sci. 2018, 130, 30.
  • Yi, Y.; Zhang, P.; Qin, Z.; Yu, C.; Li, W.; Qin, Q.; Li, B.; Fan, M.; Liang, X.; Dong, L. Low Temperature CO Oxidation Catalysed by Flower-like Ni–CO–O: How Physicochemical Properties Influence Catalytic Performance. RSC Adv. 2018, 8, 7110–7122.
  • Liu, T.; Yao, Y.; Wei, L.; Shi, Z.; Han, L.; Yuan, H.; Li, B.; Dong, L.; Wang, F.; Sun, C. Preparation and Evaluation of Copper–Manganese Oxide as a High-Efficiency Catalyst for CO Oxidation and NO Reduction by CO. J. Phys. Chem. C. 2017, 121, 12757–12770.
  • Fujita, T.; Ishida, T.; Shibamoto, K.; Honma, T.; Ohashi, H.; Murayama, T.; Haruta, M. CO Oxidation over Au/ZnO: Unprecedented Change of the Reaction Mechanism at Low Temperature Caused by a Different O2 Activation Process. ACS Catal. 2019, 9, 8364–8372.
  • Zhu, L.; Wang, J.; Rong, S.; Wang, H.; Zhang, P. Cerium Modified Birnessite-type MnO2 for Gaseous Formaldehyde Oxidation at Low Temperature. Appl. Catal. B. 2017, 211, 212–221.
  • Wang, Z.; Wang, W.; Zhang, L.; Jiang, D. Surface Oxygen Vacancies on Co3O4 Mediated Catalytic Formaldehyde Oxidation at Room Temperature. Catal. Sci. Technol. 2016, 6, 3845–3853.
  • Yan, Z.; Xu, Z.; Cheng, B.; Jiang, C. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Appl. Surf. Sci. 2017, 404, 426–434.
  • Guo, M.; Lu, J.; Wu, Y.; Wang, Y.; Luo, M. UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria. Langmuir. 2011, 27, 3872–3877.
  • Rothenberg, G.; Feldberg, L.; Wiener, H.; Sasson, Y. Copper-catalyzed Homolytic and Heterolytic Benzylic and Allylic Oxidation Using Tert-butyl Hydroperoxide. J. Chem. Soc., Perk. Trans. 1998, 2, 2429–2434.
  • Elstner, E. F. Oxygen Activation and Oxygen Toxicity. Annu. Rev. Plant Biol. 1982, 33, 73–96.
  • Solomon, E. I.; Chen, P.; Metz, M.; Lee, S. K.; Palmer, A. E. Oxygen Binding, Activation, and Reduction to Water by Copper Proteins. Angew. Chem. Int. Ed. 2001, 40, 4570–4590.
  • Babcock, G. T.; Wikström, M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992, 356, 301–309.
  • Nosaka, Y.; Nosaka, A. Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336.
  • Solomon, E. I.; Stahl, S. S. Introduction: Oxygen Reduction and Activation in Catalysis. Chem. Rev. 2018, 118, 2299–2301.
  • Wang, X.; Huang, K.; Yuan, L.; Xi, S.; Yan, W.; Geng, Z.; Cong, Y.; Sun, Y.; Tan, H.; Wu, X.; et al. Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. J. Phys. Chem. Lett. 2018, 9, 4146–4154.
  • Hughes, M. D.; Xu, Y.-J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; et al. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation under Mild Conditions. Nature. 2005, 437, 1132.
  • Diwald, O.; Sterrer, M.; Knözinger, E.; Sushko, P. V.; Shluger, A. L. Wavelength Selective Excitation of Surface Oxygen Anions on Highly Dispersed MgO. J. Chem. Phy. 2002, 116, 1707–1712.
  • Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. Stabilization of Platinum Oxygen-reduction Electrocatalysts Using Gold Clusters. Science. 2007, 315, 220–222.
  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B. 2004, 108, 17886–17892.
  • Huang, Y. F.; Zhang, M.; Zhao, L. B.; Feng, J. M.; Wu, D. Y.; Ren, B.; Tian, Z. Q. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 2014, 53, 2353–2357.
  • Zhang, Z.; Jiang, Z.; Shangguan, W. Low-temperature Catalysis for VOCs Removal in Technology and Application: A State-of-the-art Review. Catal. Today. 2016, 264, 270–278.
  • Novello, P.; Varanasi, C. V.; Liu, J. Effects of light on catalytic activities and lifetime of plasmonic Au catalysts in the CO oxidation reaction. ACS Catal. 2018, 9, 578–586.
  • Abis, L.; Dimitratos, N.; Sankar, M.; Freakley, S.; Hutchings, G. Plasmonic oxidation of glycerol using AuPd/TiO2 catalysts. Catal. Sci. Technol. 2019, 9, 5686-5591.
  • Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical Transformations on Plasmonic Metal Nanoparticles. Nat. Mater. 2015, 14, 567.
  • Zhang, Y.; Aslan, K.; Previte, M. J.; Geddes, C. D. Plasmonic Engineering of Singlet Oxygen Generation. Proc. Natl. Acad. Sci. 2008, 105, 1798–1802.
  • He, W.; Cai, J.; Jiang, X.; Yin, -J.-J.; Meng, Q. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity. Phys. Chem. Chem. Phys. 2018, 20, 16117–16125.
  • Gao, L.; Liu, R.; Gao, F.; Wang, Y.; Jiang, X.; Gao, X. Plasmon-Mediated Generation of Reactive Oxygen Species from Near-Infrared Light Excited Gold Nanocages for Photodynamic Therapy in Vitro. ACS Nano. 2014, 8, 7260–7271.
  • Labouret, T.; Audibert, J.-F.; Pansu, R. B.; Palpant, B. Plasmon-Assisted Production of Reactive Oxygen Species by Single Gold Nanorods. Small. 2015, 11, 4475–4479.
  • Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa, F.; Nagano, T. Highly efficient and photostable photosensitizer based on BODIPY chromophore. J. Am. Chem. Soc. 2005, 127, 12162–12163.
  • Erbas-Cakmak, S.; Akkaya, E. U. Toward Singlet Oxygen Delivery at a Measured Rate: A Self-reporting Photosensitizer. Org. Lett. 2014, 16, 2946–2949.
  • Bregnhøj, M. The Electronic Transitions of Molecular Oxygen; Springer Nature, Switzerland, 2018.
  • Tanaka, S.; Enoki, T.; Imoto, H.; Ooyama, Y.; Ohshita, J.; Kato, T.; Naka, K. Highly Efficient Singlet Oxygen Generation and High Oxidation Resistance Enhanced by Arsole-polymer-based Photosensitizer: Application as a Recyclable Photooxidation Catalyst. Macromolecules. 2020, 53, 2006–2013.
  • Tanielian, C.; Schweitzer, C.; Seghrouchni, R.; Esch, M.; Mechin, R. Polyoxometalate sensitization in mechanistic studies of photochemical reactions: The decatungstate anion as a reference sensitizer for photoinduced free radical oxygenations of organic compounds. Photochem. Photobiol. Sci. 2003, 2, 297–305.
  • Tanielian, C.; Mechin, R.; Seghrouchni, R.; Schweitzer, C. Mechanistic and Kinetic Aspects of Photosensitization in the Presence of Oxygen† §. Photochem. Photobiol. 2000, 71, 12–19.
  • Schweitzer, C.; Schmidt, R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chem. Rev. 2003, 103, 1685–1758.
  • Liu, L.; McAllister, B.; Ye, H.; Hu, P. Identifying an O2 Supply Pathway in CO Oxidation on Au/TiO2 (110): A Density Functional Theory Study on the Intrinsic Role of Water. J. Am. Chem. Soc. 2006, 128, 4017–4022.
  • Tian, Y.; Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632–7637.
  • Zheng, Z.; Jia, J.; Zhong, Z. Revisiting the CO Oxidation Reaction on Various Au/TiO2 Catalysts: Roles of the Surface OH Groups and the Reaction Mechanism. J. Nanosci. Nanotechnol. 2014, 14, 6885–6893.
  • Huang, H.; Ye, X.; Huang, H.; Zhang, L.; Leung, D. Y. C. Mechanistic Study on Formaldehyde Removal over Pd/TiO2 Catalysts: Oxygen Transfer and Role of Water Vapor. Chem. Eng. J. 2013, 230, 73–79.
  • Lai, S. C.; Kleijn, S. E.; Öztürk, F. T.; Van Rees Vellinga, V. C.; Koning, J.; Rodriguez, P.; Koper, M. T. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal. Today. 2010, 154, 92–104.
  • Dononelli, W.; Tomaschun, G.; Klüner, T.; Moskaleva, L. V. Understanding Oxygen Activation on Nanoporous Gold. ACS Catal. 2019, 9, 5204–5216.
  • Moskaleva, L. V.; Röhe, S.; Wittstock, A.; Zielasek, V.; Klüner, T.; Neyman, K. M.; Bäumer, M. Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Phys. Chem. Chem. Phys. 2011, 13, 4529–4539.
  • Zheng, Z.; Teo, J.; Chen, X.; Liu, H.; Yuan, Y.; Waclawik, E. R.; Zhong, Z.; Zhu, H. Correlation of the Catalytic Activity for Oxidation Taking Place on Various TiO2 Surfaces with Surface OH Groups and Surface Oxygen Vacancies. Chem. Eur. J. 2010, 16, 1202–1211.
  • Kung, M. C.; Davis, R. J.; Kung, H. H. Understanding Au-Catalyzed Low-Temperature CO Oxidation. J. Phy. Chem C. 2007, 111, 11767–11775.
  • Henao, J. D.; Caputo, T.; Yang, J. H.; Kung, M. C.; Kung, H. H. In Situ Transient FTIR and XANES Studies of the Evolution of Surface Species in CO Oxidation on Au/TiO2. J. Phys. Chem. B. 2006, 110, 8689–8700.
  • Qian, K.; Zhang, W.; Sun, H.; Fang, J.; He, B.; Ma, Y.; Jiang, Z.; Wei, S.; Yang, J.; Huang, W. Hydroxyls-induced Oxygen Activation on “Inert” Au Nanoparticles for Low-temperature CO Oxidation. J. Catal. 2011, 277, 95–103.
  • Sun, X.; Lin, J.; Guan, H.; Li, L.; Sun, L.; Wang, Y.; Miao, S.; Su, Y.; Wang, X. Complete Oxidation of Formaldehyde over TiO2 Supported Subnanometer Rh Catalyst at Ambient Temperature. Appl. Catal. B. 2018, 226, 575–584.
  • Grillo, F.; Natile, M. M.; Glisenti, A. Low Temperature Oxidation of Carbon Monoxide: The Influence of Water and Oxygen on the Reactivity of a Co3O4 Powder Surface. Appl. Catal. B. 2004, 48, 267–274.
  • Hong, X.; Sun, Y.; Zhu, T.; Liu, Z. Pt–Au/CeO2 Catalysts for the Simultaneous Removal of Carbon Monoxide and Formaldehyde. Catal. Sci. Technol. 2016, 6, 3606–3615.
  • Allouche, A.;. Quantum Modeling of Water and Oxygen Adsorption on Beryllium Surface. J. Phy. Chem C. 2012, 116, 4662–4670.
  • Henderson, M. A.; Epling, W. S.; Perkins, C. L.; Peden, C. H.; Diebold, U. Interaction of molecular oxygen with the vacuum-annealed TiO2 (110) surface: molecular and dissociative channels. J. Phys. Chem. B. 1999, 103, 5328–5337.
  • He, W.; Jia, H.; Cai, J.; Han, X.; Zheng, Z.; Wamer, W. G.; Yin, -J.-J. Production of Reactive Oxygen Species and Electrons from Photoexcited ZnO and ZnS Nanoparticles: A Comparative Study for Unraveling Their Distinct Photocatalytic Activities. J. Phy. Chem C. 2016, 120, 3187–3195.
  • Mezhenny, S.; Maksymovych, P.; Thompson, T.; Diwald, O.; Stahl, D.; Walck, S.; Yates Jr, J. STM Studies of Defect Production on the TiO2 (110)-(1× 1) and TiO2 (110)-(1× 2) Surfaces Induced by UV Irradiation. Chem. Phys. Lett. 2003, 369, 152–158.
  • Wang, R.; Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Studies of Surface Wettability Conversion on TiO2 Single-crystal Surfaces. J. Phys. Chem. B. 1999, 103, 2188–2194.
  • Tan, S.; Ji, Y.; Zhao, Y.; Zhao, A.; Wang, B.; Yang, J.; Hou, J. Molecular Oxygen Adsorption Behaviors on the Rutile TiO2 (110)-1×1 Surface: An in Situ Study with Low-temperature Scanning Tunneling Microscopy. J. Am. Chem. Soc. 2011, 133, 2002–2009.
  • Aschauer, U.; Chen, J.; Selloni, A. Peroxide and Superoxide States of Adsorbed O2 on Anatase TiO2 (101) with Subsurface Defects. Phys. Chem. Chem. Phys. 2010, 12, 12956–12960.
  • Li, H.; Shi, J.; Zhao, K.; Zhang, L. Sustainable Molecular Oxygen Activation with Oxygen Vacancies on the {001} Facets of BiOCl Nanosheets under Solar Light. Nanoscale. 2014, 6, 14168–14173.
  • Ferrari, A. M.; Pacchioni, G. Surface Reactivity of MgO Oxygen Vacancies: Electrostatic Mechanisms in the Formation of O 2− and CO− Species. J. Chem. Phy. 1997, 107, 2066–2078.
  • Wang, Z.-T.; Du, Y.; Dohnálek, Z.; Lyubinetsky, I. Direct Observation of Site-specific Molecular Chemisorption of O2 on TiO2 (110). J. Phys. Chem. Lett. 2010, 1, 3524–3529.
  • Dholabhai, P. P.; Yu, H.-G. Electronic Structure and Quantum Dynamics of Photoinitiated Dissociation of O2 on Rutile TiO2 Nanocluster. J. Chem. Phy. 2013, 138, 194705.
  • Nolan, M. Healing of Oxygen Vacancies on Reduced Surfaces of Gold-doped Ceria. J. Chem. Phy. 2009, 130, 144702.
  • Choi, Y.; Abernathy, H.; Chen, H. T.; Lin, M.; Liu, M. Characterization of O2–CeO2 Interactions Using in Situ Raman Spectroscopy and First‐Principle Calculations. ChemPhysChem. 2006, 7, 1957–1963.
  • Zhao, Q.; Fu, L.; Jiang, D.; Ouyang, J.; Hu, Y.; Yang, H.; Xi, Y. Nanoclay-modulated oxygen vacancies of metal oxide. Commun. Chem. 2019, 2, 11.
  • Liu, F.; Shen, J.; Xu, D.; Zhou, W.; Zhang, S.; Wan, L. Oxygen Vacancies Enhanced HCHO Oxidation on a Novel NaInO2 Supported Pt Catalyst at Room Temperature. Chem. Eng. J. 2018, 334, 2283–2292.
  • Wang, Y.; Widmann, D.; Behm, R. J. Influence of TiO2 Bulk Defects on CO Adsorption and CO Oxidation on Au/TiO2: Electronic Metal–support Interactions (Emsis) in Supported Au Catalysts. ACS Catal. 2017, 7, 2339–2345.
  • Laguna, O.; Dominguez, M.; Romero-Sarria, F.; Odriozola, J.; Centeno, M. Role of oxygen vacancies in gold oxidation catalysis. In Heterogeneous Gold Catalysts and Catalysis; Ma, Z., Dai, S., Eds.; The Royal Society of Chemistry, Cambridge, 2014; pp 489–511.
  • Zhang, C.; Michaelides, A.; King, D. A.; Jenkins, S. J. Anchoring Sites for Initial Au Nucleation on CeO2 {111}: O Vacancy versus Ce Vacancy. J. Phy. Chem C. 2009, 113, 6411–6417.
  • Plata, J. J.; Márquez, A. M.; Sanz, J. F.; Avellaneda, R. S.; Romero-Sarria, F.; Domínguez, M. I.; Centeno, M. A.; Odriozola, J. A. Gold Nanoparticles on Yttrium Modified Titania: Support Properties and Catalytic Activity. Top. Catal. 2011, 54, 219–228.
  • Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017, 7, 6493–6513.
  • Liu, X.; Zhou, K.; Wang, L.; Wang, B.; Li, Y. Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.
  • Sedmak, G.; Hočevar, S.; Levec, J. Transient Kinetic Model of CO Oxidation over a Nanostructured Cu0. 1Ce0.9O2− Y Catalyst. J. Catal. 2004, 222, 87–99.
  • He, M.; Ji, J.; Liu, B.; Huang, H. Reduced TiO2 with Tunable Oxygen Vacancies for Catalytic Oxidation of Formaldehyde at Room Temperature. Appl. Surf. Sci. 2019, 473, 934–942.
  • Chen, S.; Li, L.; Hu, W.; Huang, X.; Li, Q.; Xu, Y.; Zuo, Y.; Li, G. Anchoring high-concentration oxygen vacancies at interfaces of CeO2–x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces. 2015, 7, 22999–23007.
  • Kotobuki, M.; Leppelt, R.; Hansgen, D.; Widmann, D.; Behm, R. Reactive Oxygen on a Au/TiO2 Supported Catalyst. J. Catal. 2009, 264, 67–76.
  • Deng, J.; Song, W.; Chen, L.; Wang, L.; Jing, M.; Ren, Y.; Zhao, Z.; Liu, J. The Effect of Oxygen Vacancies and Water on HCHO Catalytic Oxidation over Co3O4 Catalyst: A Combination of Density Functional Theory and Microkinetic Study. Chem. Eng. J. 2019, 355, 540–550.
  • Pala, R. G. S.; Metiu, H. Modification of the Oxidative Power of ZnO(101̄0) Surface by Substituting Some Surface Zn Atoms with Other Metals. J. Phy. Chem C. 2007, 111, 8617–8622.
  • Chrétien, S.; Metiu, H. Density Functional Study of the CO Oxidation on a Doped Rutile TiO2 (110): Effect of Ionic Au in Catalysis. Catal. Lett. 2006, 107, 143–147.
  • Shapovalov, V.; Metiu, H. Catalysis by Doped Oxides: CO Oxidation by AuxCe1−xO2. J. Catal. 2007, 245, 205–214.
  • Hu, Z.; Li, B.; Sun, X.; Metiu, H. Chemistry of Doped Oxides: The Activation of Surface Oxygen and the Chemical Compensation Effect. J. Phy. Chem C. 2011, 115, 3065–3074.
  • Nolan, M.; Verdugo, V. S.; Metiu, H. Vacancy formation and CO adsorption on gold-doped ceria surfaces. Surf. Sci. 2008, 602, 2734–2742.
  • Boronat, M.; Corma, A. Generation of Defects on Oxide Supports by Doping with Metals and Their Role in Oxygen Activation. Catal. Today. 2011, 169, 52–59.
  • Camellone, M. F.; Fabris, S. Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts: Activity of Substitutional Au3+/Au+ Cations and Deactivation of Supported Au+ Adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.
  • Chen, H.-T. First-principles Study of CO Adsorption and Oxidation on Ru-doped CeO2 (111) Surface. J. Phy. Chem C. 2012, 116, 6239–6246.
  • Chen, H.-T.; Chang, J.-G. Computational Investigation of CO Adsorption and Oxidation on Iron-modified Cerium Oxide. J. Phy. Chem C. 2011, 115, 14745–14753.
  • Pala, R. G. S.; Tang, W.; Sushchikh, M. M.; Park, J.-N.; Forman, A. J.; Wu, G.; Kleiman-Shwarsctein, A.; Zhang, J.; McFarland, E. W.; Metiu, H. CO Oxidation by Ti-and Al-doped ZnO: Oxygen Activation by Adsorption on the Dopant. J. Catal. 2009, 266, 50–58.
  • McFarland, E. W.; Metiu, H. Catalysis by Doped Oxides. Chem. Rev. 2013, 113, 4391–4427.
  • Cargnello, M.; Doan-Nguyen, V. V.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of Metal Nanocrystal Size Reveals Metal-support Interface Role for Ceria Catalysts. Science. 2013, 341, 771–773.
  • Fu, Q.; Li, W.-X.; Yao, Y.; Liu, H.; Su, H.-Y.; Ma, D.; Gu, X.-K.; Chen, L.; Wang, Z.; Zhang, H. Interface-confined Ferrous Centers for Catalytic Oxidation. Science. 2010, 328, 1141–1144.
  • Xu, Y.; Greeley, J.; Mavrikakis, M. Effect of subsurface oxygen on the reactivity of the Ag (111) surface. J. Am. Chem. Soc. 2005, 127, 12823–12827.
  • Farnesi Camellone, M.; Zhao, J.; Jin, L.; Wang, Y.; Muhler, M.; Marx, D. Molecular Understanding of Reactivity and Selectivity for Methanol Oxidation at the Au/TiO2 Interface. Angew. Chem. Int. Ed. 2013, 52, 5780–5784.
  • Luo, Z.; Castleman Jr, A.; Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 2016, 116, 14456–14492.
  • White, R. E.; Coon, M. J. Oxygen activation by cytochrome P-4501. Annu. Rev. Biochem. 1980, 49, 315–356.
  • Hamdane, D.; Zhang, H.; Hollenberg, P. Oxygen activation by cytochrome P450 monooxygenase. Photosynth. Res. 2008, 98, 657.
  • Lewis, D. F. V. Oxidative Stress: The Role of Cytochromes P450 in Oxygen Activation. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2002, 77, 1095–1100.
  • De Montellano, P. R. O. Oxygen Activation and Transfer, In: Cytochrome P-450; De Montellano, P.R.O., Eds., Springer, Boston, MA, 1986; pp 217–271.
  • Henrici‐Olivé, G.; Olive, S. Activation of Molecular Oxygen. Angew. Chem. Int. Ed. 1974, 13, 29–38.
  • Neumann, R. Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg. Chem. 2010, 49, 3594–3601.
  • Wang, J.; Li, J.; Jiang, C.; Zhou, P.; Zhang, P.; Yu, J. The Effect of Manganese Vacancy in Birnessite-type MnO2 on Room-temperature Oxidation of Formaldehyde in Air. Appl. Catal. B. 2017, 204, 147–155.
  • Ma, C.; Wang, D.; Xue, W.; Dou, B.; Wang, H.; Hao, Z. Investigation of formaldehyde oxidation over Co3O4− CeO2 and Au/Co3O4− CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environ. Sci. Technol. 2011, 45, 3628–3634.
  • Fan, Z.; Zhang, Z.; Fang, W.; Yao, X.; Zou, G.; Shangguan, W. Low-temperature catalytic oxidation of formaldehyde over Co3O4 catalysts prepared using various precipitants. Chin. J. Catal. 2016, 37, 947–954.
  • Wei, S.; Fu, X.-P.; Wang, -W.-W.; Jin, Z.; Song, Q.-S.; Jia, C.-J. Au/TiO2 Catalysts for CO Oxidation: Effect of Gold State to Reactivity. J. Phy. Chem C. 2018, 122, 4928–4936.
  • Woodham, A. P.; Meijer, G.; Fielicke, A. Charge Separation Promoted Activation of Molecular Oxygen by Neutral Gold Clusters. J. Am. Chem. Soc. 2013, 135, 1727–1730.
  • Mammen, N.; De Gironcoli, S.; Narasimhan, S. Substrate doping: A strategy for enhancing reactivity on gold nanocatalysts by tuning sp bands. J. Chem. Phy. 2015, 143, 144307.
  • Huang, Y.; Long, B.; Tang, M.; Rui, Z.; Balogun, M.-S.; Tong, Y.; Ji, H. Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B. 2016, 181, 779–787.
  • Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H. Dopant-induced Electron Localization Drives CO2 Reduction to C2 Hydrocarbons. Nat. Chem. 2018, 10, 974.
  • Chen, T.; Ellis, I.; Hooper, T.; Liberti, E.; Ye, L.; Lo, T. W. B.; O’Leary, C.; Sheader, A. A.; Martinez, G. T.; Jones, L. Interstitial Boron Atoms in Palladium Lattice of Industrial Type of Nano-catalyst: Properties and Structural Modifications. J. Am. Chem. Soc. 2019, 141, 19616-19624.
  • Huang, H.; Xu, Y.; Feng, Q.; Leung, D. Y. C. Low Temperature Catalytic Oxidation of Volatile Organic Compounds: A Review. Catal. Sci. Technol. 2015, 5, 2649–2669.
  • Liu, X.; Madix, R. J.; Friend, C. M. Unraveling Molecular Transformations on Surfaces: A Critical Comparison of Oxidation Reactions on Coinage Metals. Chem. Soc. Rev. 2008, 37, 2243–2261.
  • Huang, H.; Leung, D. Y. C. Complete Oxidation of Formaldehyde at Room Temperature Using TiO2 Supported Metallic Pd Nanoparticles. ACS Catal. 2011, 1, 348–354.
  • Pacchioni, G. Electronic Interactions and Charge Transfers of Metal Atoms and Clusters on Oxide Surfaces. Phys. Chem. Chem. Phys. 2013, 15, 1737–1757.
  • Schwach, P.; Willinger, M. G.; Trunschke, A.; Schlögl, R. Methane Coupling over Magnesium Oxide: How Doping Can Work. Angew. Chem. Int. Ed. 2013, 52, 11381–11384.
  • Grabow, L. C.; Hvolbæk, B.; Nørskov, J. K. Understanding Trends in Catalytic Activity: The Effect of Adsorbate–adsorbate Interactions for CO Oxidation over Transition Metals. Top. Catal. 2010, 53, 298–310.
  • Liu, X.; Wang, A.; Zhang, T.; Su, D.-S.; Mou, C.-Y. Au–Cu Alloy Nanoparticles Supported on Silica Gel as Catalyst for CO Oxidation: Effects of Au/Cu Ratios. Catal. Today. 2011, 160, 103–108.
  • Qiao, B.; Liang, J.-X.; Wang, A.; Xu, C.-Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable Single-atom Gold Catalysts with Strong Covalent Metal-support Interaction (CMSI). Nano Res. 2015, 8, 2913–2924.
  • Shao, B.; Zhang, J.; Huang, J.; Qiao, B.; Su, Y.; Miao, S.; Zhou, Y.; Li, D.; Huang, W.; Shen, W. Size‐Dependency of Gold Nanoparticles on TiO2 for CO Oxidation. Small Methods. 2018, 2, 1800273.
  • Dutov, V. V.; Mamontov, G. V.; Zaikovskii, V. I.; Liotta, L.; Vodyankina, O. V. Low-temperature CO Oxidation over Ag/SiO2 Catalysts: Effect of OH/Ag Ratio. Appl. Catal. B. 2018, 221, 598–609.
  • Akita, T.; Maeda, Y. CO Oxidation Properties and Scanning Transmission Electron Microscopy Observation of Au/SrTiO 3 Catalysts. Catal. Lett. 2018, 148, 3035–3041.
  • Najafishirtari, S.; Brescia, R.; Guardia, P.; Marras, S.; Manna, L.; Colombo, M. Nanoscale Transformations of Alumina-supported AuCu Ordered Phase Nanocrystals and Their Activity in CO Oxidation. ACS Catal. 2015, 5, 2154–2163.
  • Binder, A. J.; Toops, T. J.; Unocic, R. R.; Parks, J. E.; Dai, S. Low‐temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition. Angew. Chem. Int. Ed. 2015, 54, 13263–13267.
  • Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden, C. H.; Kiefer, B.; Allard, L. F. Low-temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. Nat. Commun. 2014, 5, 4885.
  • Si, W.; Wang, Y.; Peng, Y.; Li, J. Selective Dissolution of A‐Site Cations in ABO3 Perovskites: A New Path to High‐Performance Catalysts. Angew. Chem. Int. Ed. 2015, 54, 7954–7957.
  • Tabakova, T.; Kolentsova, E.; Dimitrov, D.; Ivanov, K.; Manzoli, M.; Venezia, A.; Karakirova, Y.; Petrova, P.; Nihtianova, D.; Avdeev, G. CO and VOCs catalytic oxidation over alumina supported Cu–Mn catalysts: Effect of Au or Ag deposition. Top. Catal. 2017, 60, 110–122.
  • Luo, J.; Liu, Y.; Niu, Y.; Jiang, Q.; Huang, R.; Zhang, B.; Su, D. Insight into the Chemical Adsorption Properties of CO Molecules Supported on Au or Cu and Hybridized Au–CuO Nanoparticles. Nanoscale. 2017, 9, 15033–15043.
  • Yoshida, T.; Murayama, T.; Sakaguchi, N.; Okumura, M.; Ishida, T.; Haruta, M. Carbon Monoxide Oxidation by Polyoxometalate‐Supported Gold Nanoparticulate Catalysts: Activity, Stability, and Temperature‐Dependent Activation Properties. Angew. Chem. 2018, 130, 1539–1543.
  • Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K. CO Oxidation by Pd Supported on CeO2 (100) and CeO2 (111) Facets. Appl. Catal. B. 2019, 243, 36–46.
  • Wang, L.; Pu, C.; Xu, L.; Cai, Y.; Guo, Y.; Guo, Y.; Lu, G. Effect of supports over Pd/Fe2O3 on CO oxidation at low temperature. Fuel Process. Technol. 2017, 160, 152–157.
  • Jeong, H.; Bae, J.; Han, J. W.; Lee, H. Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 2017, 7, 7097–7105.
  • Zhang, X.-M.; Tian, P.; Tu, W.; Zhang, Z.; Xu, J.; Han, Y.-F. Tuning the Dynamic Interfacial Structure of Copper–ceria Catalysts by Indium Oxide during CO Oxidation. ACS Catal. 2018, 8, 5261–5275.
  • Liu, Z.; Wu, Z.; Peng, X.; Binder, A.; Chai, S.; Dai, S. Origin of Active Oxygen in a Ternary CuOx/Co3O4–CeO2 Catalyst for CO Oxidation. J. Phy. Chem C. 2014, 118, 27870–27877.
  • Mo, S.; Li, S.; Ren, Q.; Zhang, M.; Sun, Y.; Wang, B.; Feng, Z.; Zhang, Q.; Chen, Y.; Ye, D. Vertically-aligned Co3O4 Arrays on Ni Foam as Monolithic Structured Catalysts for CO Oxidation: Effects of Morphological Transformation. Nanoscale. 2018, 10, 7746–7758.
  • Liu, M.-H.; Chen, Y.-W.; Lin, T.-S.; Mou, C.-Y. Defective mesocrystal ZnO-supported gold catalysts: Facilitating CO oxidation via vacancy defects in ZnO. ACS Catal. 2018, 8, 6862–6869.
  • Guan, H.; Lin, J.; Qiao, B.; Yang, X.; Li, L.; Miao, S.; Liu, J.; Wang, A.; Wang, X.; Zhang, T. Catalytically Active Rh Sub‐Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures. Angew. Chem. Int. Ed. 2016, 55, 2820–2824.
  • Ide, M. S.; Davis, R. J. The Important Role of Hydroxyl on Oxidation Catalysis by Gold Nanoparticles. Acc. Chem. Res. 2014, 47, 825–833.
  • Davis, R. J.;. All that Glitters Is Not Au0. Science. 2003, 301, 926–927.
  • Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J. Reactivity of the Gold/water Interface during Selective Oxidation Catalysis. Science. 2010, 330, 74–78.
  • Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The Critical Role of Water at the Gold-titania Interface in Catalytic CO Oxidation. Science. 2014, 345, 1599–1602.
  • Gunawan, P.; Xu, R.; Zhong, Z. Heterogeneous Gold Catalysts for Selective Oxidation Reactions. In Heterogeneous Gold Catalysts and Catalysis; Zhen, M.; Sheng, D., Eds., Royal Society of Chemistry, Cambridge, 2014; pp 288–400.
  • Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold Catalysts Prepared by Coprecipitation for Low-temperature Oxidation of Hydrogen and of Carbon Monoxide. J. Catal. 1989, 115, 301–309.
  • Bond, G. C.; Thompson, D. T. Gold-catalysed Oxidation of Carbon Monoxide. Gold Bull. 2000, 33, 41–50.
  • Guzman, J.; Gates, B. C. Catalysis by Supported Gold: Correlation between Catalytic Activity for CO Oxidation and Oxidation States of Gold. J. Am. Chem. Soc. 2004, 126, 2672–2673.
  • Liu, Z.-P.; Gong, X.-Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Catalytic Role of Metal Oxides in Gold-Based Catalysts: A First Principles Study of CO Oxidation on T I O 2 Supported Au. Phys. Rev. Lett. 2003, 91, 266102.
  • Lopez, N.; Nørskov, J. K. Catalytic CO Oxidation by A Gold Nanoparticle: A Density Functional Study. J. Am. Chem. Soc. 2002, 124, 11262–11263.
  • Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. Cattech. 2002, 6, 102–115.
  • Costello, C.; Guzman, J.; Yang, J.; Wang, Y.; Kung, M.; Gates, B.; Kung, H. H. Activation of Au/γ-Al2O3 Catalysts for CO Oxidation: Characterization by X-ray Absorption near Edge Structure and Temperature Programmed Reduction. J. Phys. Chem. B. 2004, 108, 12529–12536.
  • Winkler, C.; Carew, A. J.; Haq, S.; Raval, R. Carbon Monoxide on γ-alumina Single Crystal Surfaces with Gold Nanoparticles. Langmuir. 2003, 19, 717–721.
  • Weiher, N.; Beesley, A. M.; Tsapatsaris, N.; Delannoy, L.; Louis, C.; Van Bokhoven, J. A.; Schroeder, S. L. M. Activation of Oxygen by Metallic Gold in Au/TiO2 Catalysts. J. Am. Chem. Soc. 2007, 129, 2240–2241.
  • Fujitani, T.; Nakamura, I. Mechanism and Active Sites of the Oxidation of CO over Au/TiO2. Angew. Chem. Int. Ed. 2011, 50, 10144–10147.
  • Leung, D. Y.; Fu, X.; Ye, D.; Huang, H. Effect of Oxygen Mobility in the Lattice of Au/TiO2 on Formaldehyde Oxidation. Kinet. Catal. 2012, 53, 239–246.
  • Chuang, K. T.; Zhou, B.; Tong, S. Kinetics and mechanism of catalytic oxidation of formaldehyde over hydrophobic catalysts. Ind. Eng. Chem. Res. 1994, 33, 1680–1686.
  • Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.; Ichikawa, S.; Haruta, M. Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation. J. Catal. 2001, 202, 256–267.
  • Calla, J. T.; Davis, R. J. Oxygen-exchange Reactions during CO Oxidation over Titania-and Alumina-supported Au Nanoparticles. J. Catal. 2006, 241, 407–416.
  • Okumura, M.; Coronado, J. M.; Soria, J.; Haruta, M.; Conesa, J. C. EPR Study of CO and O2 Interaction with Supported Au Catalysts. J. Catal. 2001, 203, 168–174.
  • Carrettin, S.; Hao, Y.; Aguilar‐Guerrero, V.; Gates, B. C.; Trasobares, S.; Calvino, J. J.; Corma, A. Increasing the Number of Oxygen Vacancies on TiO2 by Doping with Iron Increases the Activity of Supported Gold for CO Oxidation. Chem. Eur. J. 2007, 13, 7771–7779.
  • Green, I. X.; Tang, W.; Neurock, M.; Yates, J. T. Spectroscopic Observation of Dual Catalytic Sites during Oxidation of CO on a Au/TiO2 Catalyst. Science. 2011, 333, 736–739.
  • Wang, X.; Han, X.; Huang, Y.; Sun, J.; Xu, S.; Bao, X. 17O Solid-state NMR Study on the Size Dependence of Oxygen Activation over Silver Catalysts. J. Phy. Chem C. 2012, 116, 25846–25851.
  • Huang, Z.; Gu, X.; Cao, Q.; Hu, P.; Hao, J.; Li, J.; Tang, X. Catalytically Active Single‐Atom Sites Fabricated from Silver Particles. Angew. Chem. Int. Ed. 2012, 51, 4198–4203.
  • Boronat, M.; Corma, A. Oxygen activation on gold nanoparticles: separating the influence of particle size, particle shape and support interaction. Dalton Trans. 2010, 39, 8538–8546.
  • Roldán, A.; Ricart, J. M.; Illas, F. Origin of the Size Dependence of Au Nanoparticles toward Molecular Oxygen Dissociation. Theor. Chem. Acc. 2011, 128, 675–681.
  • Woodham, A. P.; Fielicke, A. Superoxide Formation on Isolated Cationic Gold Clusters. Angew. Chem. Int. Ed. 2014, 53, 6554–6557.
  • Torres, M. B.; Fernández, E. M.; Balbas, L. C. Theoretical Study of Oxygen Adsorption on Pure Aun+1+ and Doped MAun+ Cationic Gold Clusters for M= Ti, Fe and N= 3− 7. J. Phy. Chem A. 2008, 112, 6678–6689.
  • Zhao, Y.; Khetrapal, N. S.; Li, H.; Gao, Y.; Zeng, X. C. Interaction between O2 and neutral/charged Aun (n=1–3) clusters: A comparative study between density-functional theory and coupled cluster calculations. Chem. Phys. Lett. 2014, 592, 127–131.
  • Huang, W.; Zhai, H.-J.; Wang, L.-S. Probing the Interactions of O2 with Small Gold Cluster Anions (Au N−, N= 1− 7): Chemisorption Vs Physisorption. J. Am. Chem. Soc. 2010, 132, 4344–4351.
  • Pal, R.; Wang, L.-M.; Pei, Y.; Wang, L.-S.; Zeng, X. C. Unraveling the Mechanisms of O2 Activation by Size-selected Gold Clusters: Transition from Superoxo to Peroxo Chemisorption. J. Am. Chem. Soc. 2012, 134, 9438–9445.
  • Mills, G.; Gordon, M. S.; Metiu, H. The Adsorption of Molecular Oxygen on Neutral and Negative Aun Clusters (N=2–5). Chem. Phys. Lett. 2002, 359, 493–499.
  • Roldán, A.; González, S.; Ricart, J. M.; Illas, F. Critical size for O2 dissociation by Au nanoparticles. ChemPhysChem. 2009, 10, 348–351.
  • Woodham, A. P.; Meijer, G.; Fielicke, A. Activation of Molecular Oxygen by Anionic Gold Clusters. Angew. Chem. Int. Ed. 2012, 51, 4444–4447.
  • Chang, C.-R.; Huang, Z.-Q.; Li, J. Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts. Nano Res. 2015, 8, 3737–3748.
  • Kou, T.; Li, D.; Zhang, C.; Zhang, Z.; Yang, H. Unsupported Nanoporous Ag Catalysts Towards CO Oxidation. J. Mol. Catal. A: Chem. 2014, 382, 55–63.
  • De Carvalho, M. C. A.; Passos, F. B.; Schmal, M. Study of the active phase of silver catalysts for ethylene epoxidation. J. Catal. 2007, 248, 124–129.
  • Jones, T. E.; Wyrwich, R.; Böcklein, S.; Carbonio, E. A.; Greiner, M. T.; Klyushin, A. Y.; Moritz, W.; Locatelli, A.; Menteş, T. O.; Niño, M. A. The selective species in ethylene epoxidation on silver. ACS Catal. 2018, 8, 3844–3852.
  • Khatib, S. J.; Oyama, S. Direct Oxidation of Propylene to Propylene Oxide with Molecular Oxygen: A Review. Catal. Rev. 2015, 57, 306–344.
  • Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science. 2010, 328, 224–228.
  • Udaya Bhaskara Rao, T.; Pradeep, T. Luminescent Ag7 and Ag8 Clusters by Interfacial Synthesis. Angew. Chem. Int. Ed. 2010, 49, 3925–3929.
  • Sachtler, W.; Backx, C.; Van Santen, R. On the Mechanism of Ethylene Epoxidation. Catal. Rev. 1981, 23, 127–149.
  • Grant, R. B.; Lambert, R. M. Mechanism of the Silver-catalysed Heterogeneous Epoxidation of Ethylene. J. Chem. Soc., Chem. Commun. 1983, 662–663.
  • Clarkson, R.; Cirillo Jr, A. The Formation and Reactivity of Oxygen as O2− on a Supported Silver Surface. J. Catal. 1974, 33, 392–401.
  • Backx, C.; De Groot, C.; Biloen, P. Adsorption of Oxygen on Ag (110) Studied by High Resolution ELS and TPD. Surf. Sci. 1981, 104, 300–317.
  • Bukhtiyarov, V. I.; Hävecker, M.; Kaichev, V. V.; Knop-Gericke, A.; Mayer, R. W.; Schlögl, R. X-ray Absorption and Photoemission Studies of the Active Oxygen for Ethylene Epoxidation over Silver. Catal. Lett. 2001, 74, 121–125.
  • Goikoetxea, I.; Beltrán, J.; Meyer, J.; Juaristi, J. I.; Alducin, M.; Reuter, K. Non-adiabatic Effects during the Dissociative Adsorption of O2 at Ag (111)? A First-principles Divide and Conquer Study. New J. Phy. 2012, 14, 013050.
  • Lei, X.; Mbamalu, G.; Qin, C. CO Oxidation by Molecular and Atomic Oxygen on Ag (100): A Density Functional Theory Study. J. Phy. Chem C. 2017, 121, 2635–2642.
  • Rose, M.; Borg, A.; Mitsui, T.; Ogletree, D.; Salmeron, M. Subsurface Impurities in Pd (111) Studied by Scanning Tunneling Microscopy. J. Chem. Phy. 2001, 115, 10927–10934.
  • Schmidt, M.; Masson, A.; Cheng, H. P.; Bréchignac, C. Physisorption and Chemisorption on Silver Clusters. ChemPhysChem. 2015, 16, 855–865.
  • Pichugina, D.; Polynskaya, Y.; Kuz’Menko, N. Spin and Structural Features of Oxygen Dissociation on Tetrahedral Ag 20 and Ag 19 Au Clusters. Phys. Chem. Chem. Phys. 2016, 18, 18033–18044.
  • Socaciu, L. D.; Hagen, J.; Le Roux, J.; Popolan, D.; Bernhardt, T. M.; Wöste, L.; Vajda, Š. Strongly cluster size dependent reaction behavior of CO with O2 on free silver cluster anions. J. Chem. Phy. 2004, 120, 2078–2081.
  • Schmidt, M.; Cahuzac, P.; Bréchignac, C.; Cheng, H.-P. The stability of free and oxidized silver clusters. J. Chem. Phy. 2003, 118, 10956–10962.
  • Hagen, J.; Socaciu, L. D.; Le Roux, J.; Popolan, D.; Bernhardt, T. M.; Wöste, L.; Mitrić, R.; Noack, H.; Bonačić-Koutecký, V. Cooperative Effects in the Activation of Molecular Oxygen by Anionic Silver Clusters. J. Am. Chem. Soc. 2004, 126, 3442–3443.
  • Bernhardt, T. M.; Hagen, J.; Lang, S. M.; Popolan, D. M.; Socaciu-Siebert, L. D.; Wöste, L. Binding Energies of O2 and CO to Small Gold, Silver, and Binary Silver− Gold Cluster Anions from Temperature Dependent Reaction Kinetics Measurements. J. Phy. Chem A. 2009, 113, 2724–2733.
  • Luo, Z.; Gamboa, G. U.; Smith, J. C.; Reber, A. C.; Reveles, J. U.; Khanna, S. N.; Castleman Jr, A. Spin Accommodation and Reactivity of Silver Clusters with Oxygen: The Enhanced Stability of Ag13–. J. Am. Chem. Soc. 2012, 134, 18973–18978.
  • Klacar, S.; Hellman, A.; Panas, I.; Grönbeck, H. Oxidation of Small Silver Clusters: A Density Functional Theory Study. J. Phy. Chem C. 2010, 114, 12610–12617.
  • Boronat, M.; Pulido, A.; Concepción, P.; Corma, A. Propene Epoxidation with O2 or H2–O2 Mixtures over Silver Catalysts: Theoretical Insights into the Role of the Particle Size. Phys. Chem. Chem. Phys. 2014, 16, 26600–26612.
  • Kanoun, M. B.; Cavallo, L. Quantifying the impact of relativity and of dispersion interactions on the activation of molecular oxygen promoted by noble metal nanoparticles. J. Phy. Chem C. 2014, 118, 13707–13714.
  • Cheng, L.; Yin, C.; Mehmood, F.; Liu, B.; Greeley, J.; Lee, S.; Lee, B.; Seifert, S. N.; Winans, R. E.; Teschner, D. Reaction Mechanism for Direct Propylene Epoxidation by Alumina-supported Silver Aggregates: The Role of the Particle/support Interface. ACS Catal. 2013, 4, 32–39.
  • Molina, L. M.; Lee, S.; Sell, K.; Barcaro, G.; Fortunelli, A.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; et al. Size-dependent Selectivity and Activity of Silver Nanoclusters in the Partial Oxidation of Propylene to Propylene Oxide and Acrolein: A Joint Experimental and Theoretical Study. Catal. Today. 2011, 160, 116–130.
  • Acres, G. Platinum Catalysts for the Control of Air Pollution. Platinum Met. Rev. 1970, 14, 2–10.
  • Steininger, H.; Lehwald, S.; Ibach, H. Adsorption of Oxygen on Pt (111). Surf. Sci. 1982, 123, 1–17.
  • Matsushima, T. Dissociation of Oxygen Admolecules on Rh (111), Pt (111) and Pd (111) Surfaces at Low Temperatures. Surf. Sci. 1985, 157, 297–318.
  • Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skála, T.; Bruix, A.; Illas, F.; Prince, K. C. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011, 10, 310.
  • Jennings, P. C.; Aleksandrov, H. A.; Neyman, K. M.; Johnston, R. L. A DFT Study of Oxygen Dissociation on Platinum Based Nanoparticles. Nanoscale. 2014, 6, 1153–1165.
  • Gilroy, K. D.; Ruditskiy, A.; Peng, H.-C.; Qin, D.; Xia, Y. Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.
  • Na, H.; Zhu, T.; Liu, Z. Effect of Preparation Method on the Performance of Pt–Au/TiO2 Catalysts for the Catalytic CO-oxidation of HCHO and CO. Catal. Sci. Technol. 2014, 4, 2051–2057.
  • Filez, M.; Redekop, E. A.; Dendooven, J.; Ramachandran, R. K.; Solano, E.; Olsbye, U.; Weckhuysen, B. M.; Galvita, V. V.; Poelman, H.; Detavernier, C. Formation and Functioning of Bimetallic Nanocatalysts: The Power of X‐ray Probes. Angew. Chem. Int. Ed. 2019, 58, 13220-13230.
  • Zhang, R.; Wang, Y.; Wang, B.; Ling, L. Probing into the effects of cluster size and Pd ensemble as active center on the activity of H2 dissociation over the noble metal Pd-doped Cu bimetallic clusters. Mol. Catal. 2019, 475, 110457.
  • Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag-Cu Nanodimers. J. Am. Chem. Soc. 2019, 141, 2490-2499.
  • Dimitratos, N.; Lopez-Sanchez, J. A.; Hutchings, G. J. Selective Liquid Phase Oxidation with Supported Metal Nanoparticles. Chem. Sci. 2012, 3, 20–44.
  • Fajín, J. L.; Cordeiro, M. N. D.; Gomes, J. R. DFT Study on the Reaction of O2 Dissociation Catalyzed by Gold Surfaces Doped with Transition Metal Atoms. Appl. Catal. A. 2013, 458, 90–102.
  • Ham, H. C.; Stephens, J. A.; Hwang, G. S.; Han, J.; Nam, S. W.; Lim, T. H. Pd Ensemble Effects on Oxygen Hydrogenation in AuPd Alloys: A Combined Density Functional Theory and Monte Carlo Study. Catal. Today. 2011, 165, 138–144.
  • Joshi, K.; Krishnamurty, S. Tailoring the Structure and Electronic Properties of Platinum and Gold–platinum Nanocatalysts Towards Enhanced O 2 Activation. New J. Chem. 2016, 40, 1336–1346.
  • Xu, Y.; Ruban, A. V.; Mavrikakis, M. Adsorption and dissociation of O2 on Pt−Co and Pt−Fe alloys. J. Am. Chem. Soc. 2004, 126, 4717–4725.
  • Wong, R. J.; Tsounis, C.; Scott, J.; Low, G. K.-C.; Amal, R. Promoting Catalytic Oxygen Activation by Localized Surface Plasmon Resonance: Effect of Visible Light Pre-treatment and Bimetallic Interactions. ChemCatChem. 2018, 10, 287–295.
  • Staykov, A.; Derekar, D.; Yamamura, K. Oxygen Dissociation on Palladium and Gold Core/shell Nanoparticles. Int. J. Quantum Chem. 2016, 116, 1486–1492.
  • Wang, L.-C.; Friend, C.; Fushimi, R.; Madix, R. J. Active Site Densities, Oxygen Activation and Adsorbed Reactive Oxygen in Alcohol Activation on npAu Catalysts. Faraday Discuss. 2016, 188, 57–67.
  • Fajín, J. L.; Cordeiro, M. N. D.; Gomes, J. R. On the Theoretical Understanding of the Unexpected O 2 Activation by Nanoporous Gold. Chem. Commun. 2011, 47, 8403–8405.
  • Nilius, N.; Sterrer, M.; Heyde, M.; Freund, H.-J. Atomic Scale Characterization of Defects on Oxide Surfaces. In Defects at Oxide Surfaces; Jupille, J., Thornton, G., Eds.; Springer International Publishing: Cham, 2015; pp 29–80.
  • Hibbitts, D.; Iglesia, E. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces. Acc. Chem. Res. 2015, 48, 1254–1262.
  • Sun, D.; Gu, X.-K.; Ouyang, R.; Su, H.-Y.; Fu, Q.; Bao, X.; Li, W.-X. Theoretical Study of the Role of a Metal–Cation Ensemble at the Oxide–Metal Boundary on CO Oxidation. J. Phy. Chem C. 2012, 116, 7491–7498.
  • Yu, Y.; Takei, T.; Ohashi, H.; He, H.; Zhang, X.; Haruta, M. Pretreatments of Co3O4 at moderate temperature for CO oxidation at− 80° C. J. Catal. 2009, 267, 121–128.
  • Li, G.; Zhang, C.; Wang, Z.; Huang, H.; Peng, H.; Li, X. Fabrication of Mesoporous Co3O4 Oxides by Acid Treatment and Their Catalytic Performances for Toluene Oxidation. Appl. Catal. A. 2018, 550, 67–76.
  • Li, H.; Huang, T.; Lu, Y.; Cui, L.; Wang, Z.; Zhang, C.; Lee, S.; Huang, Y.; Cao, J.; Ho, W. Unraveling the Mechanisms of Room-temperature Catalytic Degradation of Indoor Formaldehyde and Its Biocompatibility on Colloidal TiO2-supported MnOx–CeO2. Environ. Sci. Nano. 2018, 5, 1130–1139.
  • Ren, Q.; Mo, S.; Peng, R.; Feng, Z.; Zhang, M.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Controllable Synthesis of 3D Hierarchical Co3O4 Nanocatalysts with Various Morphologies for the Catalytic Oxidation of Toluene. J. Mater. Chem. A. 2018, 6, 498–509.
  • Yang, Z.; Yu, X.; Lu, Z.; Li, S.; Hermansson, K. Oxygen Vacancy Pairs on CeO2(110): A DFT+U Study. Phys. Lett. A. 2009, 373, 2786–2792.
  • Wang, J.; Yunus, R.; Li, J.; Li, P.; Zhang, P.; Kim, J. In Situ Synthesis of Manganese Oxides on Polyester Fiber for Formaldehyde Decomposition at Room Temperature. Appl. Surf. Sci. 2015, 357, 787–794.
  • Wang, J.; Zhang, P.; Li, J.; Jiang, C.; Yunus, R.; Kim, J. Room-temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water. Environ. Sci. Technol. 2015, 49, 12372–12379.
  • Wang, J.; Zhang, G.; Zhang, P. Layered Birnessite-type MnO 2 with Surface Pits for Enhanced Catalytic Formaldehyde Oxidation Activity. J. Mater. Chem. A. 2017, 5, 5719–5725.
  • Wang, X.; Rui, Z.; Zeng, Y.; Ji, H.; Du, Z.; Rao, Q. Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/Anatase TiO2 (101) and formaldehyde: A density functional theory study. Catal. Today. 2017, 297, 151–158.
  • Guan, S.; Li, W.; Ma, J.; Lei, Y.; Zhu, Y.; Huang, Q.; Dou, X. A Review of the Preparation and Applications of MnO2 Composites in Formaldehyde Oxidation. J. Ind. Eng. Chem. 2018, 66, 126–140.
  • Miao, L.; Wang, J.; Zhang, P. Review on Manganese Dioxide for Catalytic Oxidation of Airborne Formaldehyde. Appl. Surf. Sci. 2019, 466, 441–453.
  • Pan, H.; Jian, Y.; Chen, C.; He, C.; Hao, Z.; Shen, Z.; Liu, H. Sphere-Shaped Mn3O4 Catalyst with Remarkable Low-Temperature Activity for Methyl–Ethyl–Ketone Combustion. Environ. Sci. Technol. 2017, 51, 6288–6297.
  • Li, X.; Zhou, L.; Gao, J.; Miao, H.; Zhang, H.; Xu, J. Synthesis of Mn3O4 Nanoparticles and Their Catalytic Applications in Hydrocarbon Oxidation. Powder Technol. 2009, 190, 324–326.
  • Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H. Catalytic Oxidation of Formaldehyde over Manganese Oxides with Different Crystal Structures. Catal. Sci. Technol. 2015, 5, 2305–2313.
  • Wang, M.; Zhang, L.; Huang, W.; Xiu, T.; Zhuang, C.; Shi, J. The Catalytic Oxidation Removal of Low-concentration HCHO at High Space Velocity by Partially Crystallized Mesoporous MnOx. Chem. Eng. J. 2017, 320, 667–676.
  • Quiroz, J.; Giraudon, J.-M.; Gervasini, A.; Dujardin, C.; Lancelot, C.; Trentesaux, M.; Lamonier, J.-F. O. Total Oxidation of Formaldehyde over MnO x-CeO2 Catalysts: The Effect of Acid Treatment. ACS Catal. 2015, 5, 2260–2269.
  • Huang, Y.; Ye, K.; Li, H.; Fan, W.; Zhao, F.; Zhang, Y.; Ji, H. A Highly Durable Catalyst Based on CoxMn3–xO4 Nanosheets for Low-temperature Formaldehyde Oxidation. Nano Res. 2016, 9, 3881–3892.
  • Bai, B.; Qiao, Q.; Arandiyan, H.; Li, J.; Hao, J. Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde. Environ. Sci. Technol. 2016, 50, 2635–2640.
  • Wang, J.; Li, J.; Zhang, P.; Zhang, G. Understanding the “Seesaw Effect” of Interlayered K+ with Different Structure in Manganese Oxides for the Enhanced Formaldehyde Oxidation. Appl. Catal. B. 2018, 224, 863–870.
  • Fang, R.; Feng, Q.; Huang, H.; Ji, J.; He, M.; Zhan, Y.; Liu, B.; Leung, D. Y. Effect of K+ Ions on Efficient Room-temperature Degradation of Formaldehyde over MnO2 Catalysts. Catal. Today. 2019, 327, 154–160.
  • Xu, F.; Huang, Z.; Hu, P.; Chen, Y.; Zheng, L.; Gao, J.; Tang, X. The Promotion Effect of Isolated Potassium Atoms with Hybridized Orbitals in Catalytic Oxidation. Chem. Commun. 2015, 51, 9888–9891.
  • Petitto, S. C.; Marsh, E. M.; Carson, G. A.; Langell, M. A. Cobalt Oxide Surface Chemistry: The Interaction of CoO (100), Co3O4 (110) and Co3O4 (111) with Oxygen and Water. J. Mol. Catal. A: Chem. 2008, 281, 49–58.
  • Lukashuk, L.; Yigit, N.; Rameshan, R.; Kolar, E.; Teschner, D.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; Föttinger, K.; Rupprechter, G. N. Operando Insights into CO Oxidation on Cobalt Oxide Catalysts by NAP-XPS, FTIR, and XRD. ACS Catal. 2018, 8, 8630–8641.
  • Liotta, L. F.; Wu, H.; Pantaleo, G.; Venezia, A. M. Co3O4 Nanocrystals and Co3O4–MOx Binary Oxides for CO, CH4 and VOC Oxidation at Low Temperatures: A Review. Catal. Sci. Technol. 2013, 3, 3085–3102.
  • Solsona, B.; Davies, T. E.; Garcia, T.; Vázquez, I.; Dejoz, A.; Taylor, S. H. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Appl. Catal. B. 2008, 84, 176–184.
  • De Rivas, B.; López-Fonseca, R.; Jiménez-González, C.; Gutiérrez-Ortiz, J. I. Synthesis, Characterisation and Catalytic Performance of Nanocrystalline Co3O4 for Gas-phase Chlorinated VOC Abatement. J. Catal. 2011, 281, 88–97.
  • Kimmel, G. A.; Petrik, N. G. Tetraoxygen on Reduced TiO2 (110): Oxygen Adsorption and Reactions with Bridging Oxygen Vacancies. Phys. Rev. Lett. 2008, 100, 196102.
  • Scheiber, P.; Riss, A.; Schmid, M.; Varga, P.; Diebold, U. Observation and destruction of an elusive adsorbate with STM: O2/TiO2 (110). Phys. Rev. Lett. 2010, 105, 216101.
  • Yu, J.; Li, X.; Xu, Z.; Xiao, W. NaOH-Modified Ceramic Honeycomb with Enhanced Formaldehyde Adsorption and Removal Performance. Environ. Sci. Technol. 2013, 47, 9928–9933.
  • Xie, X.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. Low-temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature. 2009, 458, 746.
  • Zhang, Q.; Liu, X.; Fan, W.; Wang, Y. Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream. Appl. Catal. B. 2011, 102, 207–214.
  • Tang, X.; Chen, J.; Li, Y.; Li, Y.; Xu, Y.; Shen, W. Complete Oxidation of Formaldehyde over Ag/MnOx–CeO2 Catalysts. Chem. Eng. J. 2006, 118, 119–125.
  • Campbell, C. T.; Peden, C. H. F. Oxygen Vacancies and Catalysis on Ceria Surfaces. Science. 2005, 309, 713.
  • Migani, A.; Vayssilov, G. N.; Bromley, S. T.; Illas, F.; Neyman, K. M. Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. J. Mater. Chem. 2010, 20, 10535–10546.
  • Scanlon, D. O.; Morgan, B. J.; Watson, G. W. The Origin of the Enhanced Oxygen Storage Capacity of Ce1−x(Pd/Pt)xO2. Phys. Chem. Chem. Phys. 2011, 13, 4279–4284.
  • Zhang, C.; Michaelides, A.; Jenkins, S. J. Theory of Gold on Ceria. Phys. Chem. Chem. Phys. 2011, 13, 22–33.
  • Kozlov, S. M.; Neyman, K. M. O Vacancies on Steps on the CeO2(111) Surface. Phys. Chem. Chem. Phys. 2014, 16, 7823–7829.
  • Wang, D.; Kang, Y.; Doan-Nguyen, V.; Chen, J.; Küngas, R.; Wieder, N. L.; Bakhmutsky, K.; Gorte, R. J.; Murray, C. B. Synthesis and Oxygen Storage Capacity of Two-Dimensional Ceria Nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 4378–4381.
  • Kim, H. Y.; Lee, H. M.; Henkelman, G. CO Oxidation Mechanism on CeO2-Supported Au Nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560–1570.
  • Yang, C.; Yu, X.; Heißler, S.; Weidler, P. G.; Nefedov, A.; Wang, Y.; Wöll, C.; Kropp, T.; Paier, J.; Sauer, J. O2 Activation on Ceria Catalysts—The Importance of Substrate Crystallographic Orientation. Angew. Chem. Int. Ed. 2017, 56, 16399–16404.
  • Singhania, N.; Anumol, E. A.; Ravishankar, N.; Madras, G. Influence of CeO2 Morphology on the Catalytic Activity of CeO2–Pt Hybrids for CO Oxidation. Dalton Trans. 2013, 42, 15343–15354.
  • Piumetti, M.; Bensaid, S.; Andana, T.; Russo, N.; Pirone, R.; Fino, D. Cerium-copper Oxides Prepared by Solution Combustion Synthesis for Total Oxidation Reactions: From Powder Catalysts to Structured Reactors. Appl. Catal. B. 2017, 205, 455–468.
  • Wu, Z.; Li, M.; Howe, J.; Meyer, H. M.; Overbury, S. H. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir. 2010, 26, 16595–16606.
  • Choi, Y. M.; Abernathy, H.; Chen, H.-T.; Lin, M. C.; Liu, M. Characterization of O2–CeO2 Interactions Using in Situ Raman Spectroscopy and First-Principle Calculations. ChemPhysChem. 2006, 7, 1957–1963.
  • Yan, Z.; Xu, Z.; Yu, J.; Jaroniec, M. Enhanced Formaldehyde Oxidation on CeO2/AlOOH-supported Pt Catalyst at Room Temperature. Appl. Catal. B. 2016, 199, 458–465.
  • Hu, F.; Chen, J.; Peng, Y.; Song, H.; Li, K.; Li, J. Novel Nanowire Self-assembled Hierarchical CeO2 Microspheres for Low Temperature Toluene Catalytic Combustion. Chem. Eng. J. 2018, 331, 425–434.
  • Trovarelli, A.; Llorca, J. Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis? ACS Catal. 2017, 7, 4716–4735.
  • Lykaki, M.; Pachatouridou, E.; Carabineiro, S. A. C.; Iliopoulou, E.; Andriopoulou, C.; Kallithrakas-Kontos, N.; Boghosian, S.; Konsolakis, M. Ceria Nanoparticles Shape Effects on the Structural Defects and Surface Chemistry: Implications in CO Oxidation by Cu/CeO2 Catalysts. Appl. Catal. B. 2018, 230, 18–28.
  • Righi, G.; Magri, R.; Selloni, A. H2 Dissociation on Noble Metal Single Atom Catalysts Adsorbed on and Doped into CeO2 (111). J. Phy. Chem C. 2019, 123, 9875–9883.
  • Song, W.; Jansen, A. P. J.; Hensen, E. J. M. A Computational Study of the Influence of the Ceria Surface Termination on the Mechanism of CO Oxidation of Isolated Rh Atoms. Faraday Discuss. 2013, 162, 281–292.
  • Mao, M.; Lv, H.; Li, Y.; Yang, Y.; Zeng, M.; Li, N.; Zhao, X. Metal Support Interaction in Pt Nanoparticles Partially Confined in the Mesopores of Microsized Mesoporous CeO2 for Highly Efficient Purification of Volatile Organic Compounds. ACS Catal. 2016, 6, 418–427.
  • Stubenrauch, J.; Vohs, J. M. Interaction of CO with Rh Supported on Stoichiometric and Reduced CeO2(111) andCeO2(100) Surfaces. J. Catal. 1996, 159, 50–57.
  • Huang, M.; Fabris, S. Role of Surface Peroxo and Superoxo Species in the Low-temperature Oxygen Buffering of Ceria: Density Functional Theory Calculations. Phys. Rev B. 2007, 75, 081404.
  • Buchalska, M.; Kobielusz, M.; Matuszek, A.; Pacia, M.; Wojtyła, S.; Macyk, W. On Oxygen Activation at Rutile- and Anatase-TiO2. ACS Catal. 2015, 5, 7424–7431.
  • Li, H.; Guo, Y.; Robertson, J. Calculation of TiO2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional. J. Phy. Chem C. 2015, 119, 18160–18166.
  • Kurtz, R. L.; Stock-Bauer, R.; Msdey, T. E.; Román, E.; De Segovia, J. Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf. Sci. 1989, 218, 178–200.
  • Zhang, Z.; Jeng, S.-P.; Henrich, V. E. Cation-ligand Hybridization for Stoichiometric and Reduced TiO2 (110) Surfaces Determined by Resonant Photoemission. Phys. Rev B. 1991, 43, 12004–12011.
  • Li, Y.-F.; Selloni, A. Theoretical Study of Interfacial Electron Transfer from Reduced Anatase TiO2 (101) to Adsorbed O2. J. Am. Chem. Soc. 2013, 135, 9195–9199.
  • Lira, E.; Wendt, S.; Huo, P.; Hansen, J. Ø.; Streber, R.; Porsgaard, S.; Wei, Y.; Bechstein, R.; Lægsgaard, E.; Besenbacher, F. The Importance of Bulk Ti3+ Defects in the Oxygen Chemistry on Titania Surfaces. J. Am. Chem. Soc. 2011, 133, 6529–6532.
  • Muhich, C. L.; Zhou, Y.; Holder, A. M.; Weimer, A. W.; Musgrave, C. B. Effect of Surface Deposited Pt on the Photoactivity of TiO2. J. Phy. Chem C. 2012, 116, 10138–10149.
  • Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale. 2013, 5, 3601–3614.
  • Du, Y.; Deskins, N. A.; Zhang, Z.; Dohnálek, Z.; Dupuis, M.; Lyubinetsky, I. Two Pathways for Water Interaction with Oxygen Adatoms on TiO2 (110). Phys. Rev. Lett. 2009, 102, 096102.
  • Xu, H.; Tong, S. Y. Interaction of O2 with reduced rutile TiO2 (110) surface. Surf. Sci. 2013, 610, 33–41.
  • Yim, C. M.; Pang, C. L.; Thornton, G. Oxygen Vacancy Origin of the Surface Band-Gap State of TiO2 (110). Phys. Rev. Lett. 2010, 104, 036806.
  • Gong, J.; Mullins, C. B. Surface Science Investigations of Oxidative Chemistry on Gold. Acc. Chem. Res. 2009, 42, 1063–1073.
  • Stiehl, J. D.; Kim, T. S.; McClure, S. M.; Mullins, C. B. Reaction of CO with Molecularly Chemisorbed Oxygen on TiO2-supported Gold Nanoclusters. J. Am. Chem. Soc. 2004, 126, 13574–13575.
  • Stiehl, J. D.; Kim, T. S.; McClure, S. M.; Mullins, C. B. Evidence for molecularly chemisorbed oxygen on TiO2 supported gold nanoclusters and Au (111). J. Am. Chem. Soc. 2004, 126, 1606–1607.
  • Lira, E.; Huo, P.; Hansen, J. Ø.; Rieboldt, F.; Bechstein, R.; Wei, Y.; Streber, R.; Porsgaard, S.; Li, Z.; Lægsgaard, E.; et al. Effects of the Crystal Reduction State on the Interaction of Oxygen with Rutile TiO2(110). Catal. Today. 2012, 182, 25–38.
  • Lira, E.; Hansen, J. Ø.; Huo, P.; Bechstein, R.; Galliker, P.; Lægsgaard, E.; Hammer, B.; Wendt, S.; Besenbacher, F. Dissociative and molecular oxygen chemisorption channels on reduced rutile TiO2(110): An STM and TPD study. Surf. Sci. 2010, 604, 1945–1960.
  • Aschauer, U.; Selloni, A. Influence of subsurface Ti interstitials on the reactivity of anatase (101); SPIE, California, 2010.
  • Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z.; Hansen, J. Ø.; Matthiesen, J.; Blekinge-Rasmussen, A.; Lægsgaard, E.; Hammer, B.; et al. The Role of Interstitial Sites in the Ti 3d Defect State in the Band Gap of Titania. Science. 2008, 320, 1755.
  • Widmann, D.; Behm, R. J. Active Oxygen on a Au/TiO2 Catalyst: Formation, Stability, and CO Oxidation Activity. Angew. Chem. Int. Ed. 2011, 50, 10241–10245.
  • Maeda, Y.; Iizuka, Y.; Kohyama, M. Generation of Oxygen Vacancies at a Au/TiO2 Perimeter Interface during CO Oxidation Detected by in Situ Electrical Conductance Measurement. J. Am. Chem. Soc. 2013, 135, 906–909.
  • Widmann, D.; Krautsieder, A.; Walter, P.; Brückner, A.; Behm, R. J. R. How Temperature Affects the Mechanism of CO Oxidation on Au/TiO2: A Combined EPR and TAP Reactor Study of the Reactive Removal of TiO2 Surface Lattice Oxygen in Au/TiO2 by CO. ACS Catal. 2016, 6, 5005–5011.
  • Duan, Z.; Henkelman, G. CO Oxidation at the Au/TiO2 Boundary: The Role of the Au/Ti5c Site. ACS Catal. 2015, 5, 1589–1595.
  • Saqlain, M. A.; Antunes, F. P. N.; Hussain, A.; Siddiq, M.; Leitão, A. A. Adsorption of Oxygen and CO Oxidation on Au/anatase (001) Catalysts. A DFT+ U Study. New J. Chem. 2017, 41, 2073–2080.
  • Kim, H. Y.; Henkelman, G. CO Oxidation at the Interface between Doped CeO2 and Supported Au Nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2194–2199.
  • Ma, X.; Xin, H. Orbitalwise Coordination Number for Predicting Adsorption Properties of Metal Nanocatalysts. Phys. Rev. Lett. 2017, 118, 036101.
  • Calle-Vallejo, F.; Loffreda, D.; Koper, M. T.; Sautet, P. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat. Chem. 2015, 7, 403.
  • Freund, H.-J. Oxygen Activation on Oxide Surfaces: A Perspective at the Atomic Level. Catal. Today. 2014, 238, 2–9.
  • Cen, W.; Liu, Y.; Wu, Z.; Wang, H.; Weng, X. A Theoretic Insight into the Catalytic Activity Promotion of CeO 2 Surfaces by Mn Doping. Phys. Chem. Chem. Phys. 2012, 14, 5769–5777.
  • Qi, G.; Yang, R. T. Performance and Kinetics Study for Low-temperature SCR of NO with NH3 over MnOx–CeO2 Catalyst. J. Catal. 2003, 217, 434–441.
  • Qi, G.; Yang, R. T.; Chang, R. MnOx-CeO2 Mixed Oxides Prepared by Co-precipitation for Selective Catalytic Reduction of NO with NH3 at Low Temperatures. Appl. Catal. B. 2004, 51, 93–106.
  • Tang, X.; Li, Y.; Huang, X.; Xu, Y.; Zhu, H.; Wang, J.; Shen, W. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature. Appl. Catal. B. 2006, 62, 265–273.
  • Quiroz, J.; Giraudon, J.-M.; Gervasini, A.; Dujardin, C.; Lancelot, C.; Trentesaux, M.; Lamonier, J.-F. Total Oxidation of Formaldehyde over MnOx-CeO2 Catalysts: The Effect of Acid Treatment. ACS Catal. 2015, 5, 2260–2269.
  • Silva, A. M.; Marques, R. R.; Quinta-Ferreira, R. M. Catalysts Based in Cerium Oxide for Wet Oxidation of Acrylic Acid in the Prevention of Environmental Risks. Appl. Catal. B. 2004, 47, 269–279.
  • Zhang, Z.; Zhu, Y.; Asakura, H.; Zhang, B.; Zhang, J.; Zhou, M.; Han, Y.; Tanaka, T.; Wang, A.; Zhang, T.; et al. Thermally Stable Single Atom Pt/m-Al2O3 for Selective Hydrogenation and CO Oxidation. Nat. Commun. 2017, 8, 16100.
  • Liu, J.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.; Therrien, A. J.; Williams, C. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Tackling CO Poisoning with Single-atom Alloy Catalysts. J. Am. Chem. Soc. 2016, 138, 6396–6399.
  • Liu, J. Catalysis by supported single metal atoms. ACS Catal. 2016, 7, 34–59.
  • Huang, W.; Zhang, S.; Tang, Y.; Li, Y.; Nguyen, L.; Li, Y.; Shan, J.; Xiao, D.; Gagne, R.; Frenkel, A. I. Low‐Temperature Transformation of Methane to Methanol on Pd1O4 Single Sites Anchored on the Internal Surface of Microporous Silicate. Angew. Chem. Int. Ed. 2016, 55, 13441–13445.
  • Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom Catalysis of CO Oxidation Using Pt 1/FeO X. Nat. Chem. 2011, 3, 634.
  • Ghosh, T. K.; Nair, N. N. Rh1/γ‐Al2O3 Single‐Atom Catalysis of O2 Activation and CO Oxidation: Mechanism, Effects of Hydration, Oxidation State, and Cluster Size. ChemCatChem. 2013, 5, 1811–1821.
  • Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J.; De, S.; Yan, N. Stabilizing a Platinum1 Single‐atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. Angew. Chem. Int. Ed. 2016, 55, 8319–8323.
  • Zhou, X.; Shen, Q.; Yuan, K.; Yang, W.; Chen, Q.; Geng, Z.; Zhang, J.; Shao, X.; Chen, W.; Xu, G. Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 2018, 140, 554–557.
  • Wang, H.; Liu, J.-X.; Allard, L. F.; Lee, S.; Liu, J.; Li, H.; Wang, J.; Wang, J.; Oh, S. H.; Li, W.; et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 2019, 10, 3808.
  • Therrien, A. J.; Hensley, A. J. R.; Marcinkowski, M. D.; Zhang, R.; Lucci, F. R.; Coughlin, B.; Schilling, A. C.; McEwen, J.-S.; Sykes, E. C. H. An Atomic-scale View of Single-site Pt Catalysis for Low-temperature CO Oxidation. Nat. Catal. 2018, 1, 192–198.
  • Hay, A. S. Oxidative coupling of acetylenes. III. J. Org. Chem. 1962, 27, 3320–3321.
  • Geletii, Y. V.; Shilov, A. Catalytic-Oxidation of Alkanes by Molecular oxidation-Oxidation of Methane in the Presence of Platinum Salts and Heteropoly Acids, MaiK Nauka/Interperiodica C/O Plenum/Consultants Bureau 233 Spring St, New …, 1983, pp. 413–416.
  • Shilov, A.; Shteinman, A. Activation of Saturated Hydrocarbons by Metal Complexes in Solution. Coord. Chem. Rev. 1977, 24, 97–143.
  • Hu, S.; Xiao, W.; Yang, W.; Yang, J.; Fang, Y.; Xiong, J.; Luo, Z.; Deng, H.; Guo, Y.; Zhang, L. Molecular O2 Activation over Cu (I)-mediated C≡ N Bond for Low-Temperature CO Oxidation. ACS Appl. Mater. Interfaces. 2018, 10, 17167–17174.
  • Tovrog, B. S.; Kitko, D. J.; Drago, R. S. Nature of the Bound Oxygen in a Series of Cobalt Dioxygen Adducts. J. Am. Chem. Soc. 1976, 98, 5144–5153.
  • Feller, M.; Ben-Ari, E.; Diskin-Posner, Y.; Carmieli, R.; Weiner, L.; Milstein, D. O2 Activation by Metal–Ligand Cooperation with IrI PNP Pincer Complexes. J. Am. Chem. Soc. 2015, 137, 4634–4637.
  • Mirica, L. M.; Klinman, J. P. The Nature of O2 Activation by the Ethylene-forming Enzyme 1-aminocyclopropane-1-carboxylic Acid Oxidase. Proc. Natl. Acad. Sci. 2008, 105, 1814–1819.
  • Corcos, A. R.; Villanueva, O.; Walroth, R. C.; Sharma, S. K.; Bacsa, J.; Lancaster, K. M.; MacBeth, C. E.; Berry, J. F. Oxygen Activation by Co(II) and a Redox Non-Innocent Ligand: Spectroscopic Characterization of a Radical–Co(II)–Superoxide Complex with Divergent Catalytic Reactivity. J. Am. Chem. Soc. 2016, 138, 1796–1799.
  • Gordon, J. B.; Vilbert, A. C.; DiMucci, I. M.; MacMillan, S. N.; Lancaster, K. M.; Moënne-Loccoz, P.; Goldberg, D. P. Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates. J. Am. Chem. Soc. 2019, 141, 17533–17547.
  • Wang, L.; Gennari, M.; Cantú Reinhard, F. G.; Padamati, S. K.; Philouze, C.; Flot, D.; Demeshko, S.; Browne, W. R.; Meyer, F.; De Visser, S. P.; et al. O2 Activation by Non-Heme Thiolate-Based Dinuclear Fe Complexes. Inorg. Chem. 2020, 59, 3249–3259.
  • Hatcher, L. Q.; Karlin, K. D. Oxidant Types in Copper–dioxygen Chemistry: The Ligand Coordination Defines the Cu n-O 2 Structure and Subsequent Reactivity. JBIC J Biol Inorganic Chem. 2004, 9, 669–683.
  • Wang, M.; Lu, J.; Li, L.; Li, H.; Liu, H.; Wang, F. Oxidative C (OH) C Bond Cleavage of Secondary Alcohols to Acids over a Copper Catalyst with Molecular Oxygen as the Oxidant. J. Catal. 2017, 348, 160–167.
  • Bhagi-Damodaran, A.; Michael, M. A.; Zhu, Q.; Reed, J.; Sandoval, B. A.; Mirts, E. N.; Chakraborty, S.; Moënne-Loccoz, P.; Zhang, Y.; Lu, Y. Why Copper Is Preferred over Iron for Oxygen Activation and Reduction in Haem-copper Oxidases. Nat. Chem. 2017, 9, 257.
  • Wu, P.; Fan, F.; Song, J.; Peng, W.; Liu, J.; Li, C.; Cao, Z.; Wang, B. Theory Demonstrated a “Coupled” Mechanism for O2 Activation and Substrate Hydroxylation by Binuclear Copper Monooxygenases. J. Am. Chem. Soc. 2019, 141, 19776–19789.
  • Scheuermann, M. L.; Goldberg, K. I. Reactions of Pd and Pt Complexes with Molecular Oxygen. Chem. Eur. J. 2014, 20, 14556–14568.
  • Liu, W.-G.; Sberegaeva, A. V.; Nielsen, R. J.; Goddard III, W. A.; Vedernikov, A. N. Mechanism of O2 Activation and Methanol Production by (Di (2-pyridyl) Methanesulfonate) PtIIMe (OH n)(2–n)–Complex from Theory with Validation from Experiment. J. Am. Chem. Soc. 2014, 136, 2335–2341.
  • Dupé, A.; Judmaier, M. E.; Belaj, F.; Zangger, K.; Mösch-Zanetti, N. C. Activation of molecular oxygen by a molybdenum complex for catalytic oxidation. Dalton Trans. 2015, 44, 20514–20522.
  • Zhang, H.; Hatzis, G. P.; Moore, C. E.; Dickie, D. A.; Bezpalko, M. W.; Foxman, B. M.; Thomas, C. M. O2 Activation by a Heterobimetallic Zr/Co Complex. J. Am. Chem. Soc. 2019, 141, 9516–9520.
  • Ritleng, V.; Chetcuti, M. J. Hydrocarbyl Ligand Transformations on Heterobimetallic Complexes. Chem. Rev. 2007, 107, 797–858.
  • Jayarathne, U.; Parmelee, S. R.; Mankad, N. P. Small Molecule Activation Chemistry of Cu–Fe Heterobimetallic Complexes toward CS2 and N2O. Inorg. Chem. 2014, 53, 7730–7737.
  • Moore, J. T.; Chatterjee, S.; Tarrago, M.; Clouston, L. J.; Sproules, S.; Bill, E.; Bernales, V.; Gagliardi, L.; Ye, S.; Lancaster, K. M. Enhanced Fe-Centered Redox Flexibility in Fe–Ti Heterobimetallic Complexes. Inorg. Chem. 2019, 58, 6199–6214.
  • Drago, R. S. The Activation of Molecular Oxygen by Transition Metal Complexes, Stud. Surf. Sci. Catal. Elsevier. 1991, 66, 83–91.
  • Charles III, R. M.; Brewster, T. P. H2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coord. Chem. Rev. 2021, 433, 213765.
  • Chung, W.-C.; Mei, D.-H.; Tu, X.; Chang, M.-B. Removal of VOCs from gas streams via plasma and catalysis. Catal. Rev. 2019, 61, 270–331.
  • He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568.
  • Teong, S. P.; Li, X.; Zhang, Y. Hydrogen Peroxide as an Oxidant in Biomass-to-chemical Processes of Industrial Interest. Green Chem. 2019, 21, 5753–5780.
  • Besson, M. L.; Gallezot, P.; Pinel, C. Conversion of Biomass into Chemicals over Metal Catalysts. Chem. Rev. 2013, 114, 1827–1870.
  • Xie, Y.; Wu, J.; Jing, G.; Zhang, H.; Zeng, S.; Tian, X.; Zou, X.; Wen, J.; Su, H.; Zhong, C.-J. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B. 2018, 239, 665–676.
  • Carley, A. F.; Morgan, D. J.; Song, N.; Roberts, M. W.; Taylor, S. H.; Bartley, J. K.; Willock, D. J.; Howard, K. L.; Hutchings, G. J. CO bond cleavage on supported nano-gold during low temperature oxidation. Phys. Chem. Chem. Phys. 2011, 13, 2528–2538.
  • Quinet, E.; Piccolo, L.; Morfin, F.; Avenier, P.; Diehl, F.; Caps, V.; Rousset, J.-L. On the Mechanism of Hydrogen-promoted Gold-catalyzed CO Oxidation. J. Catal. 2009, 268, 384–389.
  • Hussain, A.; Gracia, J.; Niemantsverdriet, J.; Nieuwenhuys, B. The beneficial effect of hydrogen on CO oxidation over Au catalysts. A computational study. Molecules. 2011, 16, 9582–9599.
  • Zhang, Y.; Li, Z.-Y.; Zhao, Y.-X.; Li, H.-F.; Ding, X.-L.; Zhang, H.-Y.; He, S.-G. H2 Oxidation Mediated by Au1-Doped Vanadium Oxide Cluster Cation AuV2O5+: A Comparative Study with AuCe2O4+. J. Phy. Chem A. 2017, 121, 4069–4075.
  • Whittaker, T.; Kumar, K. B. S.; Peterson, C.; Pollock, M. N.; Grabow, L. C.; Chandler, B. D. H2 Oxidation over Supported Au Nanoparticle Catalysts: Evidence for Heterolytic H2 Activation at the Metal–Support Interface. J. Am. Chem. Soc. 2018, 140, 16469–16487.
  • Edwards, J. K.; Ntainjua N, E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Direct Synthesis of H2O2 from H2 and O2 over Gold, Palladium, and Gold–Palladium Catalysts Supported on Acid-Pretreated TiO2. Angew. Chem. Int. Ed. 2009, 48, 8512–8515.
  • Wu, H.; Ma, S.; Song, W.; Hensen, E. J. M. Density Functional Theory Study of the Mechanism of Formaldehyde Oxidation on Mn-Doped Ceria. J. Phy. Chem C. 2016, 120, 13071–13077.
  • Wang, H.; Tang, R.; Li, J.; Sun, Y.; Wang, Z.; Kim, K.-H.; Dong, F. Selective Breakage of CH Bonds in the Key Oxidation Intermediates of Gaseous Formaldehyde on Self-doped CaSn (OH) 6 Cubes for Safe and Efficient Photocatalysis. Appl. Catal. B. Environ. 2020, 277, 119214.
  • Michel, C.; Auneau, F.; Delbecq, F.; Sautet, P. C–H versus O–H Bond Dissociation for Alcohols on A Rh (111) Surface: A Strong Assistance from Hydrogen Bonded Neighbors. ACS Catal. 2011, 1, 1430–1440.
  • Sheng, T.; Ye, J.-Y.; Lin, W.-F.; Sun, S.-G. An Insight into Methanol Oxidation Mechanisms on RuO 2 (100) under an Aqueous Environment by DFT Calculations. Phys. Chem. Chem. Phys. 2017, 19, 7476–7480.
  • Su, W.; Wang, S.; Ying, P.; Feng, Z.; Li, C. A Molecular Insight into Propylene Epoxidation on Cu/SiO2 Catalysts Using O2 as Oxidant. J. Catal. 2009, 268, 165–174.
  • Huang, J.; Haruta, M. Gas-phase propene epoxidation over coinage metal catalysts. Res. Chem. Intermed. 2012, 38, 1–24.
  • Li, X.; Zhang, Y. Metal Catalyst‐Free Oxidative C− C Bond Cleavage of a Lignin Model Compound by H2O2 in Formic Acid. ChemSusChem. 2020, 13, 1740–1745.
  • Wang, M.; Ma, J.; Liu, H.; Luo, N.; Zhao, Z.; Wang, F. Sustainable productions of organic acids and their derivatives from biomass via selective oxidative cleavage of C–C bond. ACS Catal. 2018, 8, 2129–2165.
  • Liu, C.; Wu, S.; Zhang, H.; Xiao, R. Catalytic Oxidation of Lignin to Valuable Biomass-based Platform Chemicals: A Review. Fuel Process. Technol. 2019, 191, 181–201.
  • Amaniampong, P. N.; Trinh, Q. T.; Li, K.; Mushrif, S. H.; Hao, Y.; Yang, Y. Porous Structured CuO-CeO2 Nanospheres for the Direct Oxidation of Cellobiose and Glucose to Gluconic Acid. Catal. Today. 2018, 306, 172–182.
  • Amaniampong, P. N.; Trinh, Q. T.; Wang, B.; Borgna, A.; Yang, Y.; Mushrif, S. H. Biomass Oxidation: Formyl C H Bond Activation by the Surface Lattice Oxygen of Regenerative CuO Nanoleaves. Angew. Chem. 2015, 127, 9056–9061.
  • Ren, J.; Song, K.-H.; Li, Z.; Wang, Q.; Li, J.; Wang, Y.; Li, D.; Kim, C. K. Activation of Formyl CH and Hydroxyl OH Bonds in HMF by the CuO (1 1 1) and Co3O4 (1 1 0) Surfaces: A DFT Study. Appl. Surf. Sci. 2018, 456, 174–183.
  • Trinh, Q. T.; Chethana, B. K.; Mushrif, S. H. Adsorption and Reactivity of Cellulosic Aldoses on Transition Metals. J. Phy. Chem C. 2015, 119, 17137–17145.
  • Freund, H.-J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO Oxidation as a Prototypical Reaction for Heterogeneous Processes. Angew. Chem. Int. Ed. 2011, 50, 10064–10094.
  • Jia, C.-J.; Liu, Y.; Bongard, H.; Schüth, F. Very Low Temperature CO Oxidation over Colloidally Deposited Gold Nanoparticles on Mg(OH)2 and MgO. J. Am. Chem. Soc. 2010, 132, 1520–1522.
  • Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192.
  • Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem. Rev. 2019, 120, 464–525.
  • Liu, H.; Kozlov, A. I.; Kozlova, A. P.; Shido, T.; Asakura, K.; Iwasawa, Y. Active Oxygen Species and Mechanism for Low-temperature CO Oxidation Reaction on a TiO2-supported Au Catalyst Prepared from Au (Pph3)(no3) and As-precipitated Titanium Hydroxide. J. Catal. 1999, 185, 252–264.
  • Comotti, M.; Li, W.-C.; Spliethoff, B.; Support, S. F. Effect in High Activity Gold Catalysts for CO Oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.
  • Wang, Y.; Widmann, D.; Lehnert, F.; Gu, D.; Schueth, F.; Behm, R. J. Avoiding Self‐Poisoning: A Key Feature for the High Activity of Au/Mg (OH) 2 Catalysts in Continuous Low‐Temperature CO Oxidation. Angew. Chem. Int. Ed. 2017, 56, 9597–9602.
  • Gamboa-Rosales, N.; Ayastuy, J.; Boukha, Z.; Bion, N.; Duprez, D.; Pérez-Omil, J.; Del Rio, E.; Gutiérrez-Ortiz, M. Ceria-supported Au–CuO and Au–Co3O4 Catalysts for CO Oxidation: An 18O/16O Isotopic Exchange Study. Appl. Catal. B. Environ. 2015, 168, 87–97.
  • Yao, Y.; Gu, L.; Jiang, W.; Sun, H.; Su, Q.; Zhao, J.; Ji, W.; Au, C. Enhanced low temperature CO oxidation by pretreatment: specialty of the Au–Co3O4 oxide interfacial structures. Catal. Sci. Technol. 2016, 6, 2349–2360.
  • Wang, J.; Tan, H.; Yu, S.; Zhou, K. Morphological effects of gold clusters on the reactivity of ceria surface oxygen. ACS Catal. 2015, 5, 2873–2881.
  • Lee, S.; Fan, C.; Wu, T.; Anderson, S. L. CO Oxidation on Au n/TiO2 Catalysts Produced by Size-selected Cluster Deposition. J. Am. Chem. Soc. 2004, 126, 5682–5683.
  • Zhao, S.; Chen, F.; Duan, S.; Shao, B.; Li, T.; Tang, H.; Lin, Q.; Zhang, J.; Li, L.; Huang, J. Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat. Commun. 2019, 10, 1–9.
  • Lian, H.; Jia, M.; Pan, W.; Li, Y.; Zhang, W.; Jiang, D. Gold-base Catalysts Supported on Carbonate for Low-temperature CO Oxidation. Catal. Commun. 2005, 6, 47–51.
  • Dien, L. X.; Ishida, T.; Taketoshi, A.; Truong, D. Q.; Chinh, H. D.; Honma, T.; Murayama, T.; Haruta, M. Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size. Appl. Catal. B. Environ. 2019, 241, 539–547.
  • Schubert, M. M.; Hackenberg, S.; Van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO Oxidation over Supported Gold catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction. J. Catal. 2001, 197, 113–122.
  • Zhang, Y.; Zhang, J.; Zhang, B.; Si, R.; Han, B.; Hong, F.; Niu, Y.; Sun, L.; Li, L.; Qiao, B. Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat. Commun. 2020, 11, 1–10.
  • Michalak, W. D.; Krier, J. M.; Alayoglu, S.; Shin, J.-Y.; An, K.; Komvopoulos, K.; Liu, Z.; Somorjai, G. A. CO Oxidation on PtSn Nanoparticle Catalysts Occurs at the Interface of Pt and Sn Oxide Domains Formed under Reaction Conditions. J. Catal. 2014, 312, 17–25.
  • Allian, A. D.; Takanabe, K.; Fujdala, K. L.; Hao, X.; Truex, T. J.; Cai, J.; Buda, C.; Neurock, M.; Iglesia, E. Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters. J. Am. Chem. Soc. 2011, 133, 4498–4517.
  • Li, S.; Liu, G.; Lian, H.; Jia, M.; Zhao, G.; Jiang, D.; Zhang, W. Low-temperature CO Oxidation over Supported Pt Catalysts Prepared by Colloid-deposition Method. Catal. Commun. 2008, 9, 1045–1049.
  • Ma, L.; Chen, X.; Li, J.; Chang, H.; Schwank, J. W. Electronic Metal-Support Interactions in Pt/FeOx Nanospheres for CO Oxidation. Catal. Today. 2020, 355, 539-546.
  • Ro, I.; Aragao, I. B.; Chada, J. P.; Liu, Y.; Rivera-Dones, K. R.; Ball, M. R.; Zanchet, D.; Dumesic, J. A.; Huber, G. W. The Role of Pt-FexOy Interfacial Sites for CO Oxidation. J. Catal. 2018, 358, 19–26.
  • Zhang, N.; Li, L.; Wu, R.; Song, L.; Zheng, L.; Zhang, G.; He, H. Activity enhancement of Pt/MnO x catalyst by novel β-MnO 2 for low-temperature CO oxidation: study of the CO–O 2 competitive adsorption and active oxygen species. Catal. Sci. Technol. 2019, 9, 347–354.
  • Herreros, J.; Gill, S.; Lefort, I.; Tsolakis, A.; Millington, P.; Moss, E. Enhancing the Low Temperature Oxidation Performance over a Pt and a Pt–Pd Diesel Oxidation Catalyst. Appl. Catal. B. 2014, 147, 835–841.
  • Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H.; Zhu, Y.; Xia, Y. Shape‐controlled Synthesis of Pd Nanocrystals in Aqueous Solutions. Adv. Funct. Mater. 2009, 19, 189–200.
  • An, K.; Alayoglu, S.; Musselwhite, N.; Plamthottam, S.; Melaet, G. R. M.; Lindeman, A. E.; Somorjai, G. A. Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles. J. Am. Chem. Soc. 2013, 135, 16689–16696.
  • Chen, S.; Si, R.; Taylor, E.; Janzen, J.; Chen, J. Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation. J. Phy. Chem C. 2012, 116, 12969–12976.
  • Spezzati, G.; Su, Y.; Hofmann, J. P.; Benavidez, A. D.; DeLaRiva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. Atomically dispersed Pd–O species on CeO2 (111) as highly active sites for low-temperature CO oxidation. ACS Catal. 2017, 7, 6887–6891.
  • Xia, G.; Yin, Y.; Willis, W.; Wang, J.; Suib, S. Efficient stable catalysts for low temperature carbon monoxide oxidation. J. Catal. 1999, 185, 91–105.
  • Zhang, X.; Zhenping, Q.; Fangli, Y.; Yi, W. Progress in Carbon Monoxide Oxidation over Nanosized Ag Catalysts. Chin. J. Catal. 2013, 34, 1277–1290.
  • Li, L.; Yang, Q.; Zhang, C.; Yan, J.; Peng, Y.; Li, J. Hollow-Structural Ag/Co3O4 Nanocatalyst for CO Oxidation: Interfacial Synergistic Effect. ACS Appl. Nano Mater. 2019, 2, 3480–3489.
  • Cao, X.; Chen, M.; Ma, J.; Yin, B.; Xing, X. CO Oxidation by the Atomic Oxygen on Silver Clusters: Structurally Dependent Mechanisms Generating Free or Chemically Bonded CO 2. Phys. Chem. Chem. Phys. 2017, 19, 196–203.
  • Lou, Y.; Ma, J.; Cao, X.; Wang, L.; Dai, Q.; Zhao, Z.; Cai, Y.; Zhan, W.; Guo, Y.; Hu, P. Promoting effects of In2O3 on Co3O4 for CO oxidation: tuning O2 activation and CO adsorption strength simultaneously. ACS Catal. 2014, 4, 4143–4152.
  • Khasu, M.; Nyathi, T.; Morgan, D. J.; Hutchings, G. J.; Claeys, M.; Fischer, N. CO 3 O 4 Morphology in the Preferential Oxidation of CO. Catal. Sci. Technol. 2017, 7, 4806–4817.
  • Zou, H.; Chen, S.; Liu, Z.; Lin, W. Selective CO Oxidation over CuO–CeO2 Catalysts Doped with Transition Metal Oxides. Powder Technol. 2011, 207, 238–244.
  • Thormählen, P.; Skoglundh, M.; Fridell, E.; Andersson, B. Low-temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts. J. Catal. 1999, 188, 300–310.
  • Cunningham, D.; Kobayashi, T.; Kamijo, N.; Haruta, M. Influence of dry operating conditions: observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts. Catal. Lett. 1994, 25, 257–264.
  • Jansson, J. Low-temperature CO Oxidation over Co3O4/Al2O3. J. Catal. 2000, 194, 55–60.
  • Jansson, J.; Palmqvist, A. E.; Fridell, E.; Skoglundh, M.; Österlund, L.; Thormählen, P.; Langer, V. On the Catalytic Activity of Co3O4 in Low-temperature CO Oxidation. J. Catal. 2002, 211, 387–397.
  • Yang, T.; Fukuda, R.; Hosokawa, S.; Tanaka, T.; Sakaki, S.; Ehara, M.; Theoretical, A. Investigation on CO Oxidation by Single‐Atom Catalysts M1/γ‐Al2O3 (M= Pd, Fe, CO, and Ni). ChemCatChem. 2017, 9, 1222–1229.
  • Li, F.; Li, Y.; Zeng, X. C.; Chen, Z. Exploration of High-performance Single-atom Catalysts on Support M1/FeO X for CO Oxidation via Computational Study. ACS Catal. 2014, 5, 544–552.
  • Hao, Y.; Mihaylov, M.; Ivanova, E.; Hadjiivanov, K.; Knözinger, H.; Gates, B. CO Oxidation Catalyzed by Gold Supported on MgO: Spectroscopic Identification of Carbonate-like Species Bonded to Gold during Catalyst Deactivation. J. Catal. 2009, 261, 137–149.
  • Xu, H.; Xu, C.-Q.; Cheng, D.; Li, J. Identification of activity trends for CO oxidation on supported transition-metal single-atom catalysts. Catal. Sci. Technol. 2017, 7, 5860–5871.
  • Liu, Z.-P.; Hu, P.; Alavi, A. Catalytic Role of Gold in Gold-based Catalysts: A Density Functional Theory Study on the CO Oxidation on Gold. J. Am. Chem. Soc. 2002, 124, 14770–14779.
  • Davran-Candan, T.; Demir, M.; Yildirim, R. Analysis of reaction mechanisms and kinetics of preferential CO oxidation over Au/γ-Al 2 O 3. React. Kinet., Mech. Catal. 2011, 104, 389–398.
  • Lachkov, P. T.; Chin, Y.-H. C. Catalytic Consequences of Reactive Intermediates during CO Oxidation on Ag Clusters. ACS Catal. 2018, 8, 11987–11998.
  • Molina, L. M.; Hammer, B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys. Rev B. 2004, 69, 155424.
  • Somodi, F.; Borbath, I.; Hegedűs, M.; Tompos, A.; Sajo, I. E.; Szegedi, A.; Rojas, S.; Fierro, J. L. G.; Margitfalvi, J. L. Modified Preparation Method for Highly Active Au/SiO2 Catalysts Used in CO Oxidation. Appl. Catal. A. 2008, 347, 216–222.
  • Barth, J. V.; Zambelli, T. Oxidation of CO by molecular oxygen on a Ag (110) surface studied by scanning tunneling microscopy. Surf. Sci. 2002, 513, 359–366.
  • Burghaus, U.; Conrad, H. Evidence for the Oxidation of CO by Molecular Oxygen Adsorbed on Ag (110). Surf. Sci. 1996, 364, 109–121.
  • Burghaus, U.; Conrad, H. Oxidation of CO by Molecular Oxygen Adsorbed on Ag (110). Surf. Sci. 1996, 352, 253–257.
  • Kettemann, F.; Witte, S.; Birnbaum, A.; Paul, B.; Clavel, G.; Pinna, N.; Rademann, K.; Kraehnert, R.; Polte, J. R. Unifying concepts in room-temperature CO oxidation with gold catalysts. ACS Catal. 2017, 7, 8247–8254.
  • Widmann, D.; Behm, R. J. Dynamic Surface Composition in a Mars-van Krevelen Type Reaction: CO Oxidation on Au/TiO2. J. Catal. 2018, 357, 263–273.
  • Noei, H.; Birkner, A.; Merz, K.; Muhler, M.; Wang, Y. Probing the Mechanism of Low-temperature CO Oxidation on Au/ZnO Catalysts by Vibrational Spectroscopy. J. Phy. Chem C. 2012, 116, 11181–11188.
  • Kim, T. S.; Gong, J.; Ojifinni, R. A.; White, J. M.; Mullins, C. B. Water Activated by Atomic Oxygen on Au(111) to Oxidize CO at Low Temperatures. J. Am. Chem. Soc. 2006, 128, 6282–6283.
  • Xu, C.; Xu, X.; Su, J.; Ding, Y. Research on Unsupported Nanoporous Gold Catalyst for CO Oxidation. J. Catal. 2007, 252, 243–248.
  • Che-Galicia, G.; Ruíz-Santoyo, V.; Zanella, R.; Mendoza-González, N.; Ruiz-López, I.; Sampieri, A. Kinetic Mechanism of CO Oxidation on Gold Catalyst Supported on TiSBA-15 Previously Treated in a Hydrogen Atmosphere. Chem. Eng. J. 2021, 405, 126644.
  • Valden, M.; Pak, S.; Lai, X.; Goodman, D. Structure Sensitivity of CO Oxidation over Model Au/TiO2 2 Catalysts. Catal. Lett. 1998, 56, 7–10.
  • Aguilar-Guerrero, V.; Gates, B. C. Kinetics of CO Oxidation Catalyzed by Highly Dispersed CeO2-supported Gold. J. Catal. 2008, 260, 351–357.
  • Zhdanov, V. P. Kinetic Models of CO Oxidation on Gold Nanoparticles. Surf. Sci. 2014, 630, 286–293.
  • Harold, M. P.; Garske, M. E. Kinetics and Multiple Rate States of CO Oxidation on Pt I. Model Development and Multiplicity Analysis. J. Catal. 1991, 127, 524–552.
  • Wang, L.-C.; Huang, X.-S.; Liu, Q.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N.; Zhuang, J.-H. Gold nanoparticles deposited on manganese (III) oxide as novel efficient catalyst for low temperature CO oxidation. J. Catal. 2008, 259, 66–74.
  • Ojeda, M.; Zhan, B.-Z.; Iglesia, E. Mechanistic Interpretation of CO Oxidation Turnover Rates on Supported Au Clusters. J. Catal. 2012, 285, 92–102.
  • Calla, J. T.; Davis, R. J. Influence of Dihydrogen and Water Vapor on the Kinetics of CO Oxidation over Au/Al2O3. Ind. Eng. Chem. Res. 2005, 44, 5403–5410.
  • Li, N.; Chen, Q.-Y.; Luo, L.-F.; Huang, W.-X.; Luo, M.-F.; Hu, G.-S.; Lu, J.-Q. Kinetic Study and the Effect of Particle Size on Low Temperature CO Oxidation over Pt/TiO2 Catalysts. Appl. Catal. B. 2013, 142, 523–532.
  • Bourane, A.; Bianchi, D. Oxidation of CO on a Pt/Al2O3 Catalyst: From the Surface Elementary Steps to Light-off Tests: I. Kinetic Study of the Oxidation of the Linear CO Species. J. Catal. 2001, 202, 34–44.
  • Gracia, F.; Bollmann, L.; Wolf, E.; Miller, J.; Kropf, A. In Situ FTIR, EXAFS, and Activity Studies of the Effect of Crystallite Size on Silica-supported Pt Oxidation Catalysts. J. Catal. 2003, 220, 382–391.
  • Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru–Pt Core–shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen. Nat. Mater. 2008, 7, 333.
  • Kandoi, S.; Gokhale, A.; Grabow, L.; Dumesic, J.; Mavrikakis, M. Why Au and Cu are More Selective than Pt for Preferential Oxidation of CO at Low Temperature. Catal. Lett. 2004, 93, 93–100.
  • Lou, Y.; Liu, J. A highly active Pt–Fe/γ-Al2O3 catalyst for preferential oxidation of CO in excess of H2 with a wide operation temperature window. Chem. Commun. 2017, 53, 9020–9023.
  • Li, X.; Fang, S. S. S.; Teo, J.; Foo, Y. L.; Borgna, A.; Lin, M.; Zhong, Z. Activation and Deactivation of Au–Cu/SBA-15 Catalyst for Preferential Oxidation of CO in H2-rich Gas. ACS Catal. 2012, 2, 360–369.
  • Reina, T. R.; Megías-Sayago, C.; Florez, A. P.; Ivanova, S.; Centeno, M. Á.; Odriozola, J. A. H2 Oxidation as Criterion for PrOx Catalyst Selection: Examples Based on Au–CoOx-supported Systems. J. Catal. 2015, 326, 161–171.
  • Whittaker, T.; Kumar, K. S.; Peterson, C.; Pollock, M. N.; Grabow, L. C.; Chandler, B. D. H2 Oxidation over Supported Au Nanoparticle Catalysts: Evidence for Heterolytic H2 Activation at the Metal–Support Interface. J. Am. Chem. Soc. 2018, 140, 16469–16487.
  • Carltonbird, M.; Eaimsumang, S.; Pongstabodee, S.; Boonyuen, S.; Smith, S. M.; Luengnaruemitchai, A. Effect of the Exposed Ceria Morphology on the Catalytic Activity of Gold/ceria Catalysts for the Preferential Oxidation of Carbon Monoxide. Chem. Eng. J. 2018, 344, 545–555.
  • Beck, A.; Yang, A. C.; Leland, A. R.; Riscoe, A. R.; Lopez, F. A.; Goodman, E. D.; Cargnello, M. Understanding the Preferential Oxidation of Carbon Monoxide (Prox) Using Size‐controlled Au Nanocrystal Catalyst. AlChE. J. 2018, 64, 3159–3167.
  • Liu, K.; Wang, A.; Zhang, T. Recent Advances in Preferential Oxidation of CO Reaction over Platinum Group Metal Catalysts. ACS Catal. 2012, 2, 1165–1178.
  • Lakshmanan, P.; Park, J. E.; Park, E. D. Recent advances in preferential oxidation of CO in H2 over gold catalysts. Catal. Surv. Asia. 2014, 18, 75–88.
  • Cameron, D.; Holliday, R.; Thompson, D. Gold’s Future Role in Fuel Cell Systems. J. Power Sources. 2003, 118, 298–303.
  • Saavedra, J.; Whittaker, T.; Chen, Z.; Pursell, C. J.; Rioux, R. M.; Chandler, B. D. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H 2. Nat. Chem. 2016, 8, 584.
  • Gamarra, D.; Belver, C.; Fernández-García, M.; Martínez-Arias, A. Selective CO Oxidation in Excess H2 over Copper− Ceria Catalysts: Identification of Active Entities/species. J. Am. Chem. Soc. 2007, 129, 12064–12065.
  • Wang, H.; Zhu, H.; Qin, Z.; Liang, F.; Wang, G.; Wang, J. Deactivation of a Au/CeO2–Co3O4 Catalyst during CO Preferential Oxidation in H2-rich Stream. J. Catal. 2009, 264, 154–162.
  • Leal, G. B.; Ciotti, L.; Watacabe, B. N.; Da Silva, D. C. L.; Antoniassi, R. M.; Silva, J. C. M.; Linardi, M.; Giudici, R.; Vaz, J. M.; Spinacé, E. V. Preparation of Au/TiO2 by a Facile Method at Room Temperature for the CO Preferential Oxidation Reaction. Catal. Commun. 2018, 116, 38–42.
  • Qiao, B.; Liu, J.; Wang, Y.-G.; Lin, Q.; Liu, X.; Wang, A.; Li, J.; Zhang, T.; Liu, J. Highly Efficient Catalysis of Preferential Oxidation of CO in H2-rich Stream by Gold Single-atom Catalysts. ACS Catal. 2015, 5, 6249–6254.
  • Hernández, J. A.; Gómez, S. A.; Zepeda, T.; Fierro-González, J. C.; Fuentes, G. A. Insight into the Deactivation of Au/CeO2 Catalysts Studied by in Situ Spectroscopy during the CO-PROX Reaction. ACS Catal. 2015, 5, 4003–4012.
  • Lee, D.-S.; Chen, Y.-W. Au/CuO–CeO2 Catalyst for Preferential Oxidation of CO in Hydrogen-rich Stream: Effect of CuO Content. Int. J. Hydrogen Energy. 2016, 41, 3605–3612.
  • Sandoval, A.; Louis, C.; Zanella, R. Improved Activity and Stability in CO Oxidation of Bimetallic Au–Cu/TiO2 Catalysts Prepared by Deposition–precipitation with Urea. Appl. Catal. B. 2013, 140, 363–377.
  • Bauer, J. C.; Mullins, D.; Li, M.; Wu, Z.; Payzant, E. A.; Overbury, S. H.; Dai, S. Synthesis of Silica Supported AuCu Nanoparticle Catalysts and the Effects of Pretreatment Conditions for the CO Oxidation Reaction. Phys. Chem. Chem. Phys. 2011, 13, 2571–2581.
  • Wang, A.; Liu, X. Y.; Mou, C.-Y.; Zhang, T. Understanding the Synergistic Effects of Gold Bimetallic Catalysts. J. Catal. 2013, 308, 258–271.
  • Hornés, A.; Hungría, A.; Bera, P.; Cámara, A. L.; Fernández-García, M.; Martínez-Arias, A.; Barrio, L.; Estrella, M.; Zhou, G.; Fonseca, J. Inverse CeO2/CuO Catalyst as an Alternative to Classical Direct Configurations for Preferential Oxidation of CO in Hydrogen-rich Stream. J. Am. Chem. Soc. 2009, 132, 34–35.
  • Gamarra, D.; Martínez-Arias, A. Preferential Oxidation of CO in Rich H2 over CuO/CeO2: Operando-DRIFTS Analysis of Deactivating Effect of CO2 and H2O. J. Catal. 2009, 263, 189–195.
  • Bao, T.; Zhao, Z.; Dai, Y.; Lin, X.; Jin, R.; Wang, G.; Muhammad, T. Supported Co3O4-CeO2 catalysts on modified activated carbon for CO preferential oxidation in H2-rich gases. Appl. Catal. B. 2012, 119, 62–73.
  • Arango-Diaz, A.; Cecilia, J.; Marrero-Jerez, J.; Nuñez, P.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E. Freeze-dried Co3O4–CeO2 Catalysts for the Preferential Oxidation of CO with the Presence of CO2 and H2O in the Feed. Ceram. Int. 2016, 42, 7462–7474.
  • Moretti, E.; Lenarda, M.; Riello, P.; Storaro, L.; Talon, A.; Frattini, R.; Reyes-Carmona, A.; Jiménez-López, A.; Rodríguez-Castellón, E. Influence of Synthesis Parameters on the Performance of CeO2–CuO and CeO2–ZrO2–CuO Systems in the Catalytic Oxidation of CO in Excess of Hydrogen. Appl. Catal. B. 2013, 129, 556–565.
  • Wang, -W.-W.; Du, -P.-P.; Zou, S.-H.; He, H.-Y.; Wang, R.-X.; Jin, Z.; Shi, S.; Huang, -Y.-Y.; Si, R.; Song, Q.-S. Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal. 2015, 5, 2088–2099.
  • Kotobuki, M.; Watanabe, A.; Uchida, H.; Yamashita, H.; Watanabe, M. High Catalytic Performance of Pt-Fe Alloy Nanoparticles Supported in Mordenite Pores for Preferential CO Oxidation in H2-rich Gas. Appl. Catal. A. 2006, 307, 275–283.
  • Zhang, H.; Liu, X.; Zhang, N.; Zheng, J.; Zheng, Y.; Li, Y.; Zhong, C.-J.; Chen, B. H. Construction of Ultrafine and Stable PtFe Nano-alloy with Ultra-low Pt Loading for Complete Removal of CO in PROX at Room Temperature. Appl. Catal. B. 2016, 180, 237–245.
  • Hong, X.; Sun, Y.; Zhu, T.; Liu, Z. Promoting Effect of TiO2 on the Catalytic Performance of Pt-Au/TiO2 (X)-ceo2 for the CO-oxidation of CO and H2 at Room Temperature. Appl. Surf. Sci. 2017, 396, 226–234.
  • Zhang, A.; Zhang, L.; Jing, G.; Zhang, H.; Wang, S.; Su, H.; Zeng, S. Promotion of Au3+ reduction on catalytic performance over the Au/CuOCeO2 catalysts for preferential CO oxidation. Int. J. Hydrogen Energy. 2018, 43, 10322–10333.
  • Sun, X.; Su, H.; Lin, Q.; Han, C.; Zheng, Y.; Sun, L.; Qi, C. Au/Cu–Fe–La–Al2O3: A Highly Active, Selective and Stable Catalysts for Preferential Oxidation of Carbon Monooxide. Appl. Catal. A. Gen. 2016, 527, 19–29.
  • Aragao, I.; Bueno, J.; Zanchet, D. Platinum clusters deposited on maghemite applied to preferential oxidation of CO under hydrogen rich conditions (PROX-CO). Appl. Catal. A. 2018, 568, 86–94.
  • Potemkin, D.; Filatov, E. Y.; Zadesenets, A.; Sobyanin, V. CO Preferential Oxidation on Pt0. 5Co0.5 And Pt-CoOx Model Catalysts: Catalytic Performance and Operando XRD Studies. Catal. Commun. 2017, 100, 232–236.
  • Qiao, B.; Wang, A.; Li, L.; Lin, Q.; Wei, H.; Liu, J.; Zhang, T. Ferric Oxide-supported Pt Subnano Clusters for Preferential Oxidation of CO in H2-rich Gas at Room Temperature. ACS Catal. 2014, 4, 2113–2117.
  • Ding, J.; Li, L.; Li, H.; Chen, S.; Fang, S.; Feng, T.; Li, G. Optimum Preferential Oxidation Performance of CeO2–CuO x–RGO Composites through Interfacial Regulation. ACS Appl. Mater. Interfaces. 2018, 10, 7935–7945.
  • Elmhamdi, A.; Castañeda, R.; Kubacka, A.; Pascual, L.; Nahdi, K.; Martínez-Arias, A. Characterization and catalytic properties of CuO/CeO2/MgAl2O4 for preferential oxidation of CO in H2-rich streams. Appl. Catal. B. 2016, 188, 292–304.
  • Nguyen, L.; Zhang, S.; Yoon, S. J.; Tao, F. Preferential Oxidation of CO in H2 on Pure Co3O4− X and Pt/Co3O4− X. ChemCatChem. 2015, 7, 2346–2353.
  • Schumacher, B.; Denkwitz, Y.; Plzak, V.; Kinne, M.; Behm, R. Kinetics, Mechanism, and the Influence of H2 on the CO Oxidation Reaction on a Au/TiO2 Catalyst. J. Catal. 2004, 224, 449–462.
  • Kipnis, M.; Volnina, E. New approaches to preferential CO oxidation over noble metals. Appl. Catal. B. 2010, 98, 193–203.
  • Liotta, L.; Di Carlo, G.; Pantaleo, G.; Venezia, A. Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect. Catal. Today. 2010, 158, 56–62.
  • Nilekar, A. U.; Alayoglu, S.; Eichhorn, B.; Mavrikakis, M. Preferential CO Oxidation in Hydrogen: Reactivity of Core− Shell Nanoparticles. J. Am. Chem. Soc. 2010, 132, 7418–7428.
  • Cao, S.; Zhao, Y.; Lee, S.; Yang, S.; Liu, J.; Giannakakis, G.; Li, M.; Ouyang, M.; Wang, D.; Sykes, E. C. H. High-loading Single Pt Atom Sites [Pt-o (OH) X] Catalyze the CO PROX Reaction with High Activity and Selectivity at Mild Conditions. Sci. Adv. 2020, 6, eaba3809.
  • Yu, W.-Y.; Lee, W.-S.; Yang, C.-P.; Wan, B.-Z. Low-temperature preferential oxidation of CO in a hydrogen rich stream (PROX) over Au/TiO2: Thermodynamic study and effect of gold-colloid pH adjustment time on catalytic activity. J. Chin. Inst. Chem. Eng. 2007, 38, 151–160.
  • Caputo, T.; Lisi, L.; Pirone, R.; Russo, G. Kinetics of the Preferential Oxidation of CO over CuO/CeO2 Catalysts in H2-rich Gases. Ind. Eng. Chem. Res. 2007, 46, 6793–6800.
  • Eropak, B. M.; Aksoylu, A. E. A reliable power-law type kinetic expression for PROX over Pt-Sn/AC under fully realistic conditions. Catal. Commun. 2017, 95, 67–71.
  • Kahlich, M.; Gasteiger, H.; Behm, R. Kinetics of the Selective Low-temperature Oxidation of CO in H2-rich Gas over Au/α-Fe2O3. J. Catal. 1999, 182, 430–440.
  • Schubert, M.; Kahlich, M.; Gasteiger, H.; Behm, R. Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: an in-situ DRIFTS study. J. Power Sources. 1999, 84, 175–182.
  • Liao, X.; Liu, Y.; Chu, W.; Sall, S.; Petit, C.; Pitchon, V.; Caps, V. Promoting Effect of AuCu Alloying on Au-Cu/CeO2-catalyzed CO Oxidation: A Combined Kinetic and in Situ DRIFTS Study. J. Catal. 2020, 382, 329–338.
  • Kahlich, M.; Gasteiger, H.; Behm, R. Kinetics of the Selective CO Oxidation in H2-rich Gas on Pt/Al2O3. J. Catal. 1997, 171, 93–105.
  • Xu, J.; Xu, X.-C.; Ouyang, L.; Yang, X.-J.; Mao, W.; Su, J.; Han, Y.-F. Mechanistic Study of Preferential CO Oxidation on a Pt/NaY Zeolite Catalyst. J. Catal. 2012, 287, 114–123.
  • Han, Y. F.; Kahlich, M. J.; Kinne, M.; Behm, R. J. Kinetic study of selective CO oxidation in H2-rich gas on a Ru/γ-Al2O3 catalyst. Phys. Chem. Chem. Phys. 2002, 4, 389–397.
  • Kim, D. H.; Lim, M. S. Kinetics of Selective CO Oxidation in Hydrogen-rich Mixtures on Pt/alumina Catalysts. Appl. Catal. A. 2002, 224, 27–38.
  • Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 2012, 13, 240–247.
  • Flaherty, D. W. Direct Synthesis of H2O2 from H2 and O2 on Pd Catalysts: Current Understanding, Outstanding Questions, and Research Needs. ACS Catal. 2018, 8, 1520–1527.
  • Edwards, J. K.; Ntainjua, N. E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Direct Synthesis of H2O2 from H2 and O2 over Gold, Palladium, and Gold–palladium Catalysts Supported on Acid‐pretreated TiO2. Angew. Chem. Int. Ed. 2009, 48, 8512–8515.
  • Lewis, R. J.; Hutchings, G. J. Recent Advances in the Direct Synthesis of H2O2. ChemCatChem. 2019, 11, 298–308.
  • Edwards, J. K.; Freakley, S. J.; Lewis, R. J.; Pritchard, J. C.; Hutchings, G. J. Advances in the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen. Catal. Today. 2015, 248, 3–9.
  • Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; De León, C. P.; Walsh, F. C. Electrochemical Synthesis of Hydrogen Peroxide from Water and Oxygen. Nat. Rev. Chem. 2019, 3, 442–458.
  • Ranganathan, S.; Sieber, V. Recent Advances in the Direct Synthesis of Hydrogen Peroxide Using Chemical catalysis—A Review. Catalysts. 2018, 8, 379.
  • Cheng, Y.; Wang, L.; Lü, S.; Wang, Y.; Mi, Z. Gas− Liquid− Liquid Three-Phase Reactive Extraction for the Hydrogen Peroxide Preparation by Anthraquinone Process. Ind. Eng. Chem. Res. 2008, 47, 7414–7418.
  • Edwards, J. K.; Hutchings, G. J. Palladium and Gold–palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angew. Chem. Int. Ed. 2008, 47, 9192–9198.
  • Henkel, H.; Weber, W. Manufacture of Hydrogen Peroxid, Google Patents, 1914.
  • Kolehmainen, E.; Turunen, I. Direct Synthesis of Hydrogen Peroxide in Microreactors. Russ. J. Gen. Chem. 2012, 82, 2100–2107.
  • Samanta, C.; Choudhary, V. R. Direct formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 in aqueous acidic reaction medium over halide-containing Pd/SiO2 catalytic system. Catal. Commun. 2007, 8, 2222–2228.
  • Choudhary, V.; Samanta, C.; Choudhary, T. Direct Oxidation of H2 to H2O2 over Pd-based Catalysts: Influence of Oxidation State, Support and Metal Additives. Appl. Catal. A. Gen. 2006, 308, 128–133.
  • Samanta, C.; Choudhary, V. R. Direct oxidation of H2 to H2O2 over Pd/CeO2 catalyst under ambient conditions: Influence of halide ions. Chem. Eng. J. 2008, 136, 126–132.
  • Edwards, J. K.; Solsona, B.; Landon, P.; Carley, A. F.; Herzing, A.; Watanabe, M.; Kiely, C. J.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts. J. Mater. Chem. 2005, 15, 4595–4600.
  • Solsona, B. E.; Edwards, J. K.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au− Pd catalysts. Chem. Mater. 2006, 18, 2689–2695.
  • Edwards, J. K.; Thomas, A.; Solsona, B. E.; Landon, P.; Carley, A. F.; Hutchings, G. J. Comparison of Supports for the Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Au–Pd Catalysts. Catal. Today. 2007, 122, 397–402.
  • Li, G.; Edwards, J.; Carley, A. F.; Hutchings, G. J. Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Zeolite-supported Au-Pd Catalysts. Catal. Today. 2007, 122, 361–364.
  • Nomura, Y.; Ishihara, T.; Hata, Y.; Kitawaki, K.; Kaneko, K.; Matsumoto, H. Nanocolloidal Pd‐Au as Catalyst for the Direct Synthesis of Hydrogen Peroxide from H2 and O2. ChemSusChem. 2008, 1, 619–621.
  • Han, Y.-F.; Zhong, Z.; Ramesh, K.; Chen, F.; Chen, L.; White, T.; Tay, Q.; Yaakub, S. N.; Wang, Z. Au Promotional Effects on the Synthesis of H2O2 Directly from H2 and O2 on Supported Pd−Au Alloy Catalysts. J. Phy. Chem C. 2007, 111, 8410–8413.
  • Edwards, J. K.; Thomas, A.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Au–Pd Supported Nanocrystals as Catalysts for the Direct Synthesis of Hydrogen Peroxide from H 2 and O 2. Green Chem. 2008, 10, 388–394.
  • Edwards, J. K.; Solsona, B.; Ntainjua, E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Switching off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science. 2009, 323, 1037–1041.
  • Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science. 2016, 351, 965–968.
  • Dissanayake, D. P.; Lunsford, J. H. The Direct Formation of H2O2 from H2 and O2 over Colloidal Palladium. J. Catal. 2003, 214, 113–120.
  • Lunsford, J. H. The Direct Formation of H2O2 from H2 and O2 over Palladium Catalysts. J. Catal. 2003, 216, 455–460.
  • Piccolo, L.; Daly, H.; Valcarcel, A.; Meunier, F. C. Promotional Effect of H2 on CO Oxidation over Au/TiO2 Studied by Operando Infrared Spectroscopy. Appl. Catal. B. 2009, 86, 190–195.
  • Green, I. X.; Tang, W.; Neurock, M.; Yates Jr, J. T. Low‐temperature catalytic H2 oxidation over Au nanoparticle/TiO2 dual perimeter sites. Angew. Chem. Int. Ed. 2011, 50, 10186–10189.
  • Biasi, P.; Gemo, N.; Hernández Carucci, J. R.; Eränen, K.; Canu, P.; Salmi, T. O. Kinetics and Mechanism of H2O2 Direct Synthesis over a Pd/C Catalyst in a Batch Reactor. Ind. Eng. Chem. Res. 2012, 51, 8903–8912.
  • Shi, L.; Goldbach, A.; Zeng, G.; Xu, H. Direct H2O2 Synthesis over Pd Membranes at Elevated Temperatures. J. Membr. Sci. 2010, 348, 160–166.
  • Deguchi, T.; Yamano, H.; Iwamoto, M. Kinetic and Mechanistic Studies on Direct H2O2 Synthesis from H2 and O2 Catalyzed by Pd in the Presence of H+ and Br− in Water: A Comprehensive Paper. Catal. Today. 2015, 248, 80–90.
  • Paunovic, V.; Schouten, J. C.; Nijhuis, T. A. Direct Synthesis of Hydrogen Peroxide Using Concentrated H2 and O2 Mixtures in a Wall-coated Microchannel–kinetic Study. Appl. Catal. A. 2015, 505, 249–259.
  • Gemo, N.; Biasi, P.; Canu, P.; Salmi, T. O. Mass transfer and kinetics of H2O2 direct synthesis in a batch slurry reactor. Chem. Eng. J. 2012, 207, 539–551.
  • Deguchi, T.; Yamano, H.; Takenouchi, S.; Iwamoto, M. Catalysts for direct H 2 O 2 synthesis taking advantage of the high H 2 activating ability of Pt: kinetic characteristics of Pt catalysts and new additives for improving H 2 O 2 selectivity. Catal. Sci. Technol. 2016, 6, 4232–4242.
  • Krishnan, V. V.; Dokoutchaev, A. G.; Thompson, M. E. Direct Production of Hydrogen Peroxide with Palladium Supported on Phosphate Viologen Phosphonate Catalysts. J. Catal. 2000, 196, 366–374.
  • Voloshin, Y.; Halder, R.; Lawal, A. Kinetics of Hydrogen Peroxide Synthesis by Direct Combination of H2 and O2 in a Microreactor. Catal. Today. 2007, 125, 40–47.
  • Voloshin, Y.; Lawal, A. Overall Kinetics of Hydrogen Peroxide Formation by Direct Combination of H2 and O2 in a Microreactor. Chem. Eng. Sci. 2010, 65, 1028–1036.
  • Deguchi, T.; Iwamoto, M. Kinetics and simulation including mass-transfer processes of direct H2O2 synthesis from H2 and O2 over Pd/C catalyst in water containing H+ and Br− ions. Ind. Eng. Chem. Res. 2011, 50, 4351–4358.
  • Ji, J.; Lu, X.; Chen, C.; He, M.; Huang, H. Potassium-modulated δ-MnO2 as Robust Catalysts for Formaldehyde Oxidation at Room Temperature. Appl. Catal. B. Environ. 2020, 260, 118210.
  • An, N.; Yu, Q.; Liu, G.; Li, S.; Jia, M.; Zhang, W. Complete Oxidation of Formaldehyde at Ambient Temperature over Supported Pt/Fe2O3 Catalysts Prepared by Colloid-deposition Method. J. Hazard. Mater. 2011, 186, 1392–1397.
  • Yu, X.; He, J.; Wang, D.; Hu, Y.; Tian, H.; He, Z. Facile Controlled Synthesis of Pt/MnO2 Nanostructured Catalysts and Their Catalytic Performance for Oxidative Decomposition of Formaldehyde. J. Phy. Chem C. 2011, 116, 851–860.
  • Chen, H.; Zhang, R.; Wang, Z.; Wei, Y. Effective Catalytic Abatement of Indoor Formaldehyde at Room Temperature over TS-1 Supported Platinum with Relatively Low Content. Catal. Today. 2020, 355, 547-554.
  • Li, H.-F.; Zhang, N.; Chen, P.; Luo, M.-F.; Lu, J.-Q. High Surface Area Au/CeO2 Catalysts for Low Temperature Formaldehyde Oxidation. Appl. Catal. B. 2011, 110, 279–285.
  • Chen, J.; Jiang, M.; Xu, W.; Chen, J.; Hong, Z.; Jia, H. Incorporating Mn Cation as Anchor to Atomically Disperse Pt on TiO2 for Low-temperature Removal of Formaldehyde. Appl. Catal. B. Environ. 2019, 259, 118013.
  • Liu, P.; Wei, G.; He, H.; Liang, X.; Chen, H.; Xi, Y.; Zhu, J. The Catalytic Oxidation of Formaldehyde over Palygorskite-supported Copper and Manganese Oxides: Catalytic Deactivation and Regeneration. Appl. Surf. Sci. 2019, 464, 287–293.
  • Fan, Z.; Fang, W.; Zhang, Z.; Chen, M.; Shangguan, W. Highly Active Rod-like Co3O4 Catalyst for the Formaldehyde Oxidation Reaction. Catal. Commun. 2018, 103, 10–14.
  • Qu, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. 3D Gold‐Modified Cerium and Cobalt Oxide Catalyst on a Graphene Aerogel for Highly Efficient Catalytic Formaldehyde Oxidation. Small. 2019, 15, 1804415.
  • Chen, X.; Chen, M.; He, G.; Wang, F.; Xu, G.; Li, Y.; Zhang, C.; He, H. Specific Role of Potassium in Promoting Ag/Al2O3 for Catalytic Oxidation of Formaldehyde at Low Temperature. J. Phy. Chem C. 2018, 122, 27331–27339.
  • Li, Y.; Chen, X.; Wang, C.; Zhang, C.; He, H. Sodium enhances Ir/TiO2 activity for catalytic oxidation of formaldehyde at ambient temperature. ACS Catal. 2018, 8, 11377–11385.
  • Li, Y.; Zhang, C.; He, H.; Zhang, J.; Chen, M. Influence of Alkali Metals on Pd/TiO2 Catalysts for Catalytic Oxidation of Formaldehyde at Room Temperature. Catal. Sci. Technol. 2016, 6, 2289–2295.
  • Li, Y.; Zhang, C.; Ma, J.; Chen, M.; Deng, H.; He, H. High Temperature Reduction Dramatically Promotes Pd/TiO2 Catalyst for Ambient Formaldehyde Oxidation. Appl. Catal. B. 2017, 217, 560–569.
  • Wang, L.; Yue, H.; Hua, Z.; Wang, H.; Li, X.; Li, L. Highly active Pt/NaxTiO2 catalyst for low temperature formaldehyde decomposition. Appl. Catal. B. 2017, 219, 301–313.
  • Schade, E.; Wisser, F. M.; Franke, M.; Weiz, A.; Werheid, M.; Martin, J. R.; Kaskel, S.; Grothe, J. Platinum Deposited on Carbon Supports for the Complete Detoxification of Formaldehyde at Room Temperature under Humid Conditions. ChemNanoMat. 2018, 4, 1000–1006.
  • Wang, Q.; Zhang, C.; Shi, L.; Zeng, G.; Zhang, H.; Li, S.; Wu, P.; Zhang, Y.; Fan, Y.; Liu, G. Ultralow Pt Catalyst for Formaldehyde Removal: The Determinant Role of Support. iScience. 2018, 9, 487–501.
  • Gao, J.; Huang, Z.; Chen, Y.; Wan, J.; Gu, X.; Ma, Z.; Chen, J.; Tang, X. Activating Inert Alkali‐Metal Ions by Electron Transfer from Manganese Oxide for Formaldehyde Abatement. Chem. Eur. J. 2018, 24, 681–689.
  • Liu, F.; Cao, R.; Rong, S.; Zhang, P. Tungsten Doped Manganese Dioxide for Efficient Removal of Gaseous Formaldehyde at Ambient Temperatures. Mater. Des. 2018, 149, 165–172.
  • Lu, S.; Li, K.; Huang, F.; Chen, C.; Sun, B. Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination. Appl. Surf. Sci. 2017, 400, 277–282.
  • Wang, H.; Huang, Z.; Jiang, Z.; Jiang, Z.; Zhang, Y.; Zhang, Z.; Shangguan, W. Trifunctional C@ MnO Catalyst for Enhanced Stable Simultaneously Catalytic Removal of Formaldehyde and Ozone. ACS Catal. 2018, 8, 3164–3180.
  • Fang, R.; Huang, H.; Ji, J.; He, M.; Feng, Q.; Zhan, Y.; Leung, D. Y. Efficient MnO X Supported on Coconut Shell Activated Carbon for Catalytic Oxidation of Indoor Formaldehyde at Room Temperature. Chem. Eng. J. 2018, 334, 2050–2057.
  • Chen, -B.-B.; Zhu, X.-B.; Wang, Y.-D.; Yu, L.-M.; Lu, J.-Q.; Shi, C. Nano-sized gold particles dispersed on HZSM-5 and SiO2 substrates for catalytic oxidation of HCHO. Catal. Today. 2017, 281, 512–519.
  • Zhang, Q.; Sun, S.; Wang, T.; Liu, F.; Yang, J. H.; Cheng, A. Fe promoted structured Pt/Fex/a-AlOOH catalyst for room temperature oxidation of low concentration HCHO. Chem. Eng. Process. 2018, 132, 169–174.
  • Nie, L.; Yu, J.; Li, X.; Cheng, B.; Liu, G.; Jaroniec, M. Enhanced Performance of NaOH-Modified Pt/TiO2 toward Room Temperature Selective Oxidation of Formaldehyde. Environ. Sci. Technol. 2013, 47, 2777–2783.
  • Zhang, C.; Liu, F.; Zhai, Y.; Ariga, H.; Yi, N.; Liu, Y.; Asakura, K.; Flytzani‐Stephanopoulos, M.; He, H. Alkali‐metal‐promoted Pt/TiO2 Opens a More Efficient Pathway to Formaldehyde Oxidation at Ambient Temperatures. Angew. Chem. Int. Ed. 2012, 51, 9628–9632.
  • Colussi, S.; Boaro, M.; De Rogatis, L.; Pappacena, A.; De Leitenburg, C.; Llorca, J.; Trovarelli, A. Room Temperature Oxidation of Formaldehyde on Pt-based Catalysts: A Comparison between Ceria and Other Supports (Tio2, Al2O3 and ZrO2). Catal. Today. 2015, 253, 163–171.
  • Huang, M.; Li, Y.; Li, M.; Zhao, J.; Zhu, Y.; Wang, C.; Sharma, V. K. Active Site-Directed Tandem Catalysis on Single Platinum Nanoparticles for Efficient and Stable Oxidation of Formaldehyde at Room Temperature. Environ. Sci. Technol. 2019, 53, 3610–3619.
  • Zhang, C.; He, H.; Tanaka, K.-I. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl. Catal. B. 2006, 65, 37–43.
  • Zhang, C.; He, H.; Tanaka, K.-I. Perfect Catalytic Oxidation of Formaldehyde over a Pt/TiO2 Catalyst at Room Temperature. Catal. Commun. 2005, 6, 211–214.
  • Rong, S.; Zhang, P.; Liu, F.; Yang, Y. Engineering Crystal Facet of α-MnO2 Nanowire for Highly Efficient Catalytic Oxidation of Carcinogenic Airborne Formaldehyde. ACS Catal. 2018, 8, 3435–3446.
  • Chen, J.; Yan, D.; Xu, Z.; Chen, X.; Chen, X.; Xu, W.; Jia, H.; Chen, J. A Novel Redox Precipitation to Synthesize Au-doped α-MnO2 with High Dispersion toward Low-temperature Oxidation of Formaldehyde. Environ. Sci. Technol. 2018, 52, 4728–4737.
  • Ye, J.; Zhu, X.; Cheng, B.; Yu, J.; Jiang, C. Few-layered graphene-like boron nitride: a highly efficient adsorbent for indoor formaldehyde removal. Environ. Sci. Technol. Lett. 2016, 4, 20–25.
  • Zhang, C.; He, H. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal. Today. 2007, 126, 345–350.
  • Sun, D.; Wageh, S.; Al-Ghamdi, A. A.; Le, Y.; Yu, J.; Jiang, C. Pt/C@ MnO2 Composite Hierarchical Hollow Microspheres for Catalytic Formaldehyde Decomposition at Room Temperature. Appl. Surf. Sci. 2019, 466, 301–308.
  • Yunbing, H.; In-situ, H. J. DRIFTS Study on Catalytic Oxidation of Formaldehyde over Pt/TiO2 under Mild Conditions. Chin. J. Catal. 2010, 31, 171–175.
  • Qi, L.; Ho, W.; Wang, J.; Zhang, P.; Yu, J. Enhanced Catalytic Activity of Hierarchically Macro-/mesoporous Pt/TiO2 toward Room-temperature Decomposition of Formaldehyde. Catal. Sci. Technol. 2015, 5, 2366–2377.
  • Lin, M.; Yu, X.; Yang, X.; Li, K.; Ge, M.; Li, J. Highly Active and Stable Interface Derived from Pt Supported on Ni/Fe Layered Double Oxides for HCHO Oxidation. Catal. Sci. Technol. 2017, 7, 1573–1580.
  • Ding, J.; Yang, Y.; Liu, J.; Wang, Z. Catalytic Reaction Mechanism of Formaldehyde Oxidation by Oxygen Species over Pt/TiO2 Catalyst. Chemosphere. 2020, 248, 125980.
  • Wang, J.; Li, D.; Li, P.; Zhang, P.; Xu, Q.; Yu, J. Layered Manganese Oxides for Formaldehyde-oxidation at Room Temperature: The Effect of Interlayer Cations. RSC Adv. 2015, 5, 100434–100442.
  • Zhang, C.; Li, Y.; Wang, Y.; He, H. Sodium-promoted Pd/TiO2 for Catalytic Oxidation of Formaldehyde at Ambient Temperature. Environ. Sci. Technol. 2014, 48, 5816–5822.
  • Xu, Q.; Lei, W.; Li, X.; Qi, X.; Yu, J.; Liu, G.; Wang, J.; Zhang, P. Efficient Removal of Formaldehyde by Nanosized Gold on Well-defined CeO2 Nanorods at Room Temperature. Environ. Sci. Technol. 2014, 48, 9702–9708.
  • Ye, J.; Yu, Y.; Fan, J.; Cheng, B.; Yu, J.; Wing-Kei, H. Room-temperature formaldehyde catalytic decomposition. Environ. Sci. Nano. 2020, 7, 3655-3709.
  • Sun, D.; Le, Y.; Jiang, C.; Cheng, B. Ultrathin Bi2WO6 Nanosheet Decorated with Pt Nanoparticles for Efficient Formaldehyde Removal at Room Temperature. Appl. Surf. Sci. 2018, 441, 429–437.
  • Wang, Y.; Ye, J.; Jiang, C.; Le, Y.; Cheng, B.; Yu, J. Hierarchical NiMn2O4/rGO Composite Nanosheets Decorated with Pt for Low-temperature Formaldehyde Oxidation. Environ. Sci. Nano. 2020, 7, 198–209.
  • Xu, F.; Le, Y.; Cheng, B.; Jiang, C. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature. Appl. Surf. Sci. 2017, 426, 333–341.
  • Duan, Y.; Song, S.; Cheng, B.; Yu, J.; Jiang, C. Effects of Hierarchical Structure on the Performance of Tin Oxide-supported Platinum Catalyst for Room-temperature Formaldehyde Oxidation. Chin. J. Catal. 2017, 38, 199–206.
  • Qi, L.; Cheng, B.; Yu, J.; Ho, W. High-surface Area Mesoporous Pt/TiO2 Hollow Chains for Efficient Formaldehyde Decomposition at Ambient Temperature. J. Hazard. Mater. 2016, 301, 522–530.
  • Chen, B.; Zhu, X.; Wang, Y.; Yu, L.; Shi, C. Gold Stabilized on Various Oxide Supports Catalyzing Formaldehyde Oxidation at Room Temperature. Chin. J. Catal. 2016, 37, 1729–1737.
  • Zhang, L.; Chen, L.; Li, Y.; Peng, Y.; Chen, F.; Wang, L.; Zhang, C.; Meng, X.; He, H.; Xiao, F.-S. Complete Oxidation of Formaldehyde at Room Temperature over an Al-rich Beta Zeolite Supported Platinum Catalyst. Appl. Catal. B. 2017, 219, 200–208.
  • Bu, Y.; Chen, Y.; Jiang, G.; Hou, X.; Li, S.; Zhang, Z. Understanding of Au-CeO2 interface and its role in catalytic oxidation of formaldehyde. Appl. Catal. B. Environ. 2020, 260, 118138.
  • Hu, Z.; Wang, Z.; Guo, Y.; Wang, L.; Guo, Y.; Zhang, J.; Zhan, W. Total Oxidation of Propane over a Ru/CeO2 Catalyst at Low Temperature. Environ. Sci. Technol. 2018, 52, 9531–9541.
  • Cui, X.; Li, H.; Wang, Y.; Hu, Y.; Hua, L.; Li, H.; Han, X.; Liu, Q.; Yang, F.; He, L. Room-temperature Methane Conversion by Graphene-confined Single Iron Atoms. Chem. 2018, 4, 1902–1910.
  • Trent, D. L.; Propylene oxide. Kirk‐Othmer Encyclopedia of Chemical Technology 2000.
  • Ghosh, S.; Acharyya, S. S.; Tiwari, R.; Sarkar, B.; Singha, R. K.; Pendem, C.; Sasaki, T.; Bal, R. Selective Oxidation of Propylene to Propylene Oxide over Silver-supported Tungsten Oxide Nanostructure with Molecular Oxygen. ACS Catal. 2014, 4, 2169–2174.
  • Charisteidis, I. D.; Triantafyllidis, K. S. Propylene Epoxidation by Molecular Oxygen Using Supported Silver Catalysts: Effect of Support Type, Preparation Method and Promotion with Alkali Chloride And/or Steam. Catal. Today. 2020, 355-654-664.
  • Song, -Y.-Y.; Wang, G.-C. Theoretical Study of Propylene Epoxidation over Cu2O (111) Surface: Activity of O2–, O–, and O2–Species. J. Phy. Chem C. 2018, 122, 21500–21513.
  • Dai, Y.; Chen, Z.; Guo, Y.; Lu, G.; Zhao, Y.; Wang, H.; Hu, P. Significant Enhancement of the Selectivity of Propylene Epoxidation for Propylene Oxide: A Molecular Oxygen Mechanism. Phys. Chem. Chem. Phys. 2017, 19, 25129–25139.
  • Hu, Z.-M.; Nakai, H.; Nakatsuji, H. Oxidation Mechanism of Propylene on an Ag Surface: Dipped Adcluster Model Study. Surf. Sci. 1998, 401, 371–391.
  • Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Low‐Basicity Oxygen Atoms: A Key in the Search for Propylene Epoxidation Catalysts. Angew. Chem. Int. Ed. 2007, 46, 2055–2058.
  • Luo, M.; Lu, J.; Li, C. Epoxidation of propylene over Ag-CuCl catalysts using air as the oxidant. Catal. Lett. 2003, 86, 43–49.
  • Ojeda, M.; Iglesia, E. Catalytic epoxidation of propene with H2O–O2 reactants on Au/TiO2. Chem. Commun. 2009, 352–354.
  • Miyaji, T.; Wu, P.; Tatsumi, T. Selective oxidation of propylene to propylene oxide over Ti–MCM-41 supporting metal nitrate. Catal. Today. 2001, 71, 169–176.
  • Cowell, J. J.; Santra, A. K.; Lambert, R. M. Ultraselective epoxidation of butadiene on Cu {111} and the effects of Cs promotion. J. Am. Chem. Soc. 2000, 122, 2381–2382.
  • Ji, J.; Lu, Z.; Lei, Y.; Turner, C. H. Mechanistic Insights into the Direct Propylene Epoxidation Using Au Nanoparticles Dispersed on TiO2/SiO2. Chem. Eng. Sci. 2018, 191, 169–182.
  • Ji, J.; Lu, Z.; Lei, Y.; Turner, C. H. Theoretical studies on the direct propylene epoxidation using gold-based catalysts: A mini-review. Catalysts. 2018, 8, 421.
  • Hayashi, T.; Tanaka, K.; Haruta, M. Selective Vapor-phase Epoxidation of Propylene over Au/TiO2catalysts in the Presence of Oxygen and Hydrogen. J. Catal. 1998, 178, 566–575.
  • Lee, S.; Molina, L. M.; López, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J. Selective Propene Epoxidation on Immobilized Au6–10 Clusters: The Effect of Hydrogen and Water on Activity and Selectivity. Angew. Chem. Int. Ed. 2009, 48, 1467–1471.
  • Huang, J.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters. Angew. Chem. Int. Ed. 2009, 48, 7862–7866.
  • Qi, C.; Huang, J.; Bao, S.; Su, H.; Akita, T.; Haruta, M. Switching of Reactions between Hydrogenation and Epoxidation of Propene over Au/Ti-based Oxides in the Presence of H2 and O2. J. Catal. 2011, 281, 12–20.
  • Huang, J.; Lima, E.; Akita, T.; Guzmán, A.; Qi, C.; Takei, T.; Haruta, M. Propene epoxidation with O2 and H2: Identification of the most active gold clusters. J. Catal. 2011, 278, 8–15.
  • Carter, E. A.; Goddard III, W. A. The Surface Atomic Oxyradical Mechanism for Ag-catalyzed Olefin Epoxidation. J. Catal. 1988, 112, 80–92.
  • Lu, J.; Luo, M.; Lei, H.; Bao, X.; Li, C. Epoxidation of Propylene on NaCl-modified VCe1-x Cux Oxide Catalysts with Direct Molecular Oxygen as the Oxidant. J. Catal. 2002, 211, 552–555.
  • Long, W.; Zhai, Q.; He, J.; Zhang, Q.; Deng, W.; Wang, Y. Significant synergistic effect between supported ruthenium and copper oxides for propylene epoxidation by oxygen. ChemPlusChem. 2012, 77, 27–30.
  • Lambert, R. M.; Williams, F. J.; Cropley, R. L.; Palermo, A. Heterogeneous Alkene Epoxidation: Past, Present and Future. J. Mol. Catal. A: Chem. 2005, 228, 27–33.
  • Pulido, A.; Concepción, P.; Boronat, M.; Corma, A. Aerobic epoxidation of propene over silver (111) and (100) facet catalysts. J. Catal. 2012, 292, 138–147.
  • Linic, S.; Barteau, M. A. Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments. J. Catal. 2003, 214, 200–212.
  • Vaughan, O. P.; Kyriakou, G.; Macleod, N.; Tikhov, M.; Lambert, R. M. Copper as a Selective Catalyst for the Epoxidation of Propene. J. Catal. 2005, 236, 401–404.
  • Zhu, W.; Zhang, Q.; Wang, Y. Cu (I)-catalyzed Epoxidation of Propylene by Molecular Oxygen. J. Phy. Chem C. 2008, 112, 7731–7734.
  • Wang, Y.; Chu, H.; Zhu, W.; Zhang, Q. Copper-based Efficient Catalysts for Propylene Epoxidation by Molecular Oxygen. Catal. Today. 2008, 131, 496–504.
  • Miller, A.; Zohour, B.; Seubsai, A.; Noon, D.; Senkan, S. SnO2–CuO–NaCl/SiO2 Catalysts for Propylene Epoxidation. Ind. Eng. Chem. Res. 2013, 52, 9551–9555.
  • Kahn, M.; Seubsai, A.; Onal, I.; Senkan, S. High throughput synthesis and screening of new catalytic materials for the direct epoxidation of propylene. Combinatorial Chem. High Throughput Screening. 2010, 13, 67–74.
  • Seubsai, A.; Kahn, M.; Senkan, S. New Catalytic Materials for the Direct Epoxidation of Propylene by Molecular Oxygen. ChemCatChem. 2011, 3, 174–179.
  • Yang, L.; He, J.; Zhang, Q.; Wang, Y. Copper-catalyzed Propylene Epoxidation by Oxygen: Significant Promoting Effect of Vanadium on Unsupported Copper Catalyst. J. Catal. 2010, 276, 76–84.
  • Sivadinarayana, C.; Choudhary, T. V.; Daemen, L. L.; Eckert, J.; Goodman, D. W. The nature of the surface species formed on Au/TiO2 during the reaction of H2 and O2: An inelastic neutron scattering study. J. Am. Chem. Soc. 2004, 126, 38–39.
  • Chang, C.-R.; Wang, Y.-G.; Li, J. Theoretical Investigations of the Catalytic Role of Water in Propene Epoxidation on Gold Nanoclusters: A Hydroperoxyl-mediated Pathway. Nano Res. 2011, 4, 131–142.
  • Liu, J.-C.; Tang, Y.; Chang, C.-R.; Wang, Y.-G.; Li, J. Mechanistic Insights into Propene Epoxidation with O2–H2O Mixture on Au7/α-Al2O3: A Hydroproxyl Pathway from Ab Initio Molecular Dynamics Simulations. ACS Catal. 2016, 6, 2525–2535.
  • Moskaleva, L. V.;. Theoretical mechanistic insights into propylene epoxidation on Au-based catalysts: Surface O versus OOH as oxidizing agents. Catal. Today. 2016, 278, 45–55.
  • Chen, X.-Y.; Chen, S.-L.; Jia, A.-P.; Lu, J.-Q.; Huang, W.-X. Gas Phase Propylene Epoxidation over Au Supported on Titanosilicates with Different Ti Chemical Environments. Appl. Surf. Sci. 2017, 393, 11–22.
  • Ferrandez, D. M. P.; Fernandez, I. H.; Teley, M. P.; De Croon, M. H.; Schouten, J. C.; Nijhuis, T. A. Kinetic study of the selective oxidation of propene with O2 over Au–Ti catalysts in the presence of water. J. Catal. 2015, 330, 396–405.
  • Bravo-Suárez, J. J.; Lu, J.; Dallos, C. G.; Fujitani, T.; Oyama, S. T. Kinetic Study of Propylene Epoxidation with H2 and O2 over a Gold/mesoporous Titanosilicate Catalyst. J. Phy. Chem C. 2007, 111, 17427–17436.
  • Taylor, B.; Lauterbach, J.; Blau, G. E.; Delgass, W. N. Reaction kinetic analysis of the gas-phase epoxidation of propylene over Au/TS-1. J. Catal. 2006, 242, 142–152.
  • Nijhuis, T. A.; Chen, J.; Kriescher, S. M. A.; Schouten, J. C. The Direct Epoxidation of Propene in the Explosive Regime in a Microreactor—A Study into the Reaction Kinetics. Ind. Eng. Chem. Res. 2010, 49, 10479–10485.
  • He, J.; Zhai, Q.; Zhang, Q.; Deng, W.; Wang, Y. Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification. J. Catal. 2013, 299, 53–66.
  • Wang, G.; Cao, Y.; Zhang, Z.; Xu, J.; Lu, M.; Qian, G.; Duan, X.; Yuan, W.; Zhou, X. Surface Engineering and Kinetics Behaviors of Au/Uncalcined TS-1 Catalysts for Propylene Epoxidation with H2 and O2. Ind. Eng. Chem. Res. 2019, 58, 17300–17307.
  • Lu, J.; Zhang, X.; Bravo-Suárez, J. J.; Tsubota, S.; Gaudet, J.; Oyama, S. T. Kinetics of Propylene Epoxidation Using H2 and O2 over a Gold/mesoporous Titanosilicate Catalyst. Catal. Today. 2007, 123, 189–197.
  • Wells Jr, D. H.; Delgass Jr, W. N.; Thomson, K. T. Evidence of Defect-promoted Reactivity for Epoxidation of Propylene in Titanosilicate (TS-1) Catalysts: A DFT Study. J. Am. Chem. Soc. 2004, 126, 2956–2962.
  • Jing, K.; Ma, W.; Ren, Y.; Xiong, J.; Guo, B.; Song, Y.; Liang, S.; Wu, L. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Appl. Catal. B. 2019, 243, 10–18.
  • Otake, K.-I.; Cui, Y.; Buru, C. T.; Li, Z.; Hupp, J. T.; Farha, O. K. Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal–Organic Frameworks: Selective Alcohol Oxidation and Structure–Activity Relationship. J. Am. Chem. Soc. 2018, 140, 8652–8656.
  • Wrasman, C. J.; Boubnov, A.; Riscoe, A. R.; Hoffman, A. S.; Bare, S. R.; Cargnello, M. Synthesis of Colloidal Pd/Au Dilute Alloy Nanocrystals and Their Potential for Selective Catalytic Oxidations. J. Am. Chem. Soc. 2018, 140, 12930–12939.
  • Nielsen, I. S.; Taarning, E.; Egeblad, K.; Madsen, R.; Christensen, C. H. Direct Aerobic Oxidation of Primary Alcohols to Methyl Esters Catalyzed by a Heterogeneous Gold Catalyst. Catal. Lett. 2007, 116, 35–40.
  • Mullen, G. M.; Zhang, L.; Evans Jr, E. J.; Yan, T.; Henkelman, G.; Mullins, C. B. Oxygen and hydroxyl species induce multiple reaction pathways for the partial oxidation of allyl alcohol on gold. J. Am. Chem. Soc. 2014, 136, 6489–6498.
  • Mullen, G. M.; Zhang, L.; Evans, E. J.; Yan, T.; Henkelman, G.; Mullins, C. B. Control of selectivity in allylic alcohol oxidation on gold surfaces: the role of oxygen adatoms and hydroxyl species. Phys. Chem. Chem. Phys. 2015, 17, 4730–4738.
  • Du, Y.; Wang, Q.; Liang, X.; Yang, P.; He, Y.; Feng, J.; Li, D. The Role of Various Oxygen Species in Mn-based Layered Double Hydroxide Catalysts in Selective Alcohol Oxidation. Catal. Sci. Technol. 2017, 7, 4361–4365.
  • Zhu, J.; Faria, J. L.; Figueiredo, J. L.; Thomas, A. Reaction Mechanism of Aerobic Oxidation of Alcohols Conducted on Activated‐Carbon‐Supported Cobalt Oxide Catalysts. Chem. Eur. J. 2011, 17, 7112–7117.
  • Zhu, J.; Kailasam, K.; Fischer, A.; Thomas, A. Supported Cobalt Oxide Nanoparticles as Catalyst for Aerobic Oxidation of Alcohols in Liquid Phase. ACS Catal. 2011, 1, 342–347.
  • Dimitratos, N.; Villa, A.; Wang, D.; Porta, F.; Su, D.; Prati, L. Pd and Pt Catalysts Modified by Alloying with Au in the Selective Oxidation of Alcohols. J. Catal. 2006, 244, 113–121.
  • Besson, M.; Gallezot, P. Selective Oxidation of Alcohols and Aldehydes on Metal Catalysts. Catal. Today. 2000, 57, 127–141.
  • Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev. 2004, 104, 3037–3058.
  • Deo, G.; Wachs, I. E. Reactivity of supported vanadium oxide catalysts: The partial oxidation of methanol. J. Catal. 1994, 146, 323–334.
  • Forzatti, P.; Tronconi, E.; Elmi, A. S.; Busca, G. Methanol oxidation over vanadia-based catalysts. Appl. Catal. A. 1997, 157, 387–408.
  • Zavahir, S.; Xiao, Q.; Sarina, S.; Zhao, J.; Bottle, S.; Wellard, M.; Jia, J.; Jing, L.; Huang, Y.; Blinco, J. P.; et al. Selective Oxidation of Aliphatic Alcohols using Molecular Oxygen at Ambient Temperature: Mixed-Valence Vanadium Oxide Photocatalysts. ACS Catal. 2016, 6, 3580–3588.
  • Kim, T.; Wachs, I. E. CH3OH Oxidation over Well-defined Supported V2O5/Al2O3 Catalysts: Influence of Vanadium Oxide Loading and Surface Vanadium–oxygen Functionalities. J. Catal. 2008, 255, 197–205.
  • Mutta, G. R.; Popuri, S. R.; Ruterana, P.; Buckman, J. Single Step Hydrothermal Synthesis of Mixed Valent V6O13 Nano-architectures: A Case Study of the Possible Applications in Electrochemical Energy Conversion. J. Alloys Compd. 2017, 706, 562–567.
  • Lackmann, A.; Mahr, C.; Schowalter, M.; Fitzek, L.; Weissmüller, J.; Rosenauer, A.; Wittstock, A. A Comparative Study of Alcohol Oxidation over Nanoporous Gold in Gas and Liquid Phase. J. Catal. 2017, 353, 99–106.
  • Oh, S.; Kim, Y. K.; Jung, C. H.; Doh, W. H.; Park, J. Y. Effect of the Metal–support Interaction on the Activity and Selectivity of Methanol Oxidation over Au Supported on Mesoporous Oxides. Chem. Commun. 2018, 54, 8174–8177.
  • Yi, W.; Yuan, W.; Meng, Y.; Zou, S.; Zhou, Y.; Hong, W.; Che, J.; Hao, M.; Ye, B.; Xiao, L. A rational solid-state synthesis of supported Au–Ni bimetallic nanoparticles with enhanced activity for gas-phase selective oxidation of alcohols. ACS Appl. Mater. Interfaces. 2017, 9, 31853–31860.
  • Alvarenga, G. M.; Gallo, I. B. C.; Villullas, H. M. Enhancement of Ethanol Oxidation on Pd Nanoparticles Supported on Carbon-antimony Tin Oxide Hybrids Unveils the Relevance of Electronic Effects. J. Catal. 2017, 348, 1–8.
  • Li, H.; Qin, F.; Yang, Z.; Cui, X.; Wang, J.; Zhang, L. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies. J. Am. Chem. Soc. 2017, 139, 3513–3521.
  • Hernández-Ramírez, E.; Wang, J.; Chen, L.; Valenzuela, M.; Dalai, A. Partial Oxidation of Methanol Catalyzed with Au/TiO2, Au/ZrO2 and Au/ZrO2-TiO2 Catalysts. Appl. Surf. Sci. 2017, 399, 77–85.
  • Hong, H.; Hu, L.; Li, M.; Zheng, J.; Sun, X.; Lu, X.; Cao, X.; Lu, J.; Gu, H. Preparation of Pt@ Fe2O3 Nanowires and Their Catalysis of Selective Oxidation of Olefins and Alcohols. Chem. Eur. J. 2011, 17, 8726–8730.
  • Singha, R. K.; Shukla, A.; Yadav, A.; Sain, S.; Pendem, C.; Konathala, L. S. K.; Bal, R. Synthesis Effects on Activity and Stability of Pt-CeO2 Catalysts for Partial Oxidation of Methane. Mol. Catal. 2017, 432, 131–143.
  • Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chem. Commun. 2017, 53, 10851–10869.
  • Li, T.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J.; Huang, J.; Sun, H.; Haruta, M. Maximizing the Number of Interfacial Sites in Single‐Atom Catalysts for the Highly Selective, Solvent‐Free Oxidation of Primary Alcohols. Angew. Chem. Int. Ed. 2018, 57, 7795–7799.
  • Yan, T.; Dai, W.; Wu, G.; Lang, S.; Hunger, M.; Guan, N.; Li, L. Mechanistic Insights into One-Step Catalytic Conversion of Ethanol to Butadiene over Bifunctional Zn–Y/Beta Zeolite. ACS Catal. 2018, 8, 2760–2773.
  • Burcham, L. J.; Wachs, I. E. The Origin of the Support Effect in Supported Metal Oxide Catalysts: In Situ Infrared and Kinetic Studies during Methanol Oxidation. Catal. Today. 1999, 49, 467–484.
  • Ilyas, M.; Sadiq, M. Kinetics of Heterogeneous Solvent‐free Liquid Phase Oxidation of Alcohol Using ZrO2 Catalyst with Molecular Oxygen. Chin. J. Chem. 2008, 26, 941–946.
  • Heyns, K.; Paulsen, H. Neuere Methoden der präparativen organischen Chemie II. 8. Selektive katalytische Oxydationen mit Edelmetall‐Katalysatoren. Angew. Chem. 1957, 69, 600–608.
  • Heynes, K.; Paulsen, H.; Ruediger, G.; Weyer, J. Configuration and Conformation Selectivity in Catalytic Oxidation with Oxygen on Platinum Catalysts. Chem. Forsch. 1969, 11, 285–374.
  • Mendes, F. M.; Schmal, M. The Cyclohexanol Dehydrogenation on RhCu/Al2O3 Catalysts: 2. Chemisorption and Reaction. Appl. Catal. A. Gen. 1997, 163, 153–164.
  • Van Den Tillaart, J.; Kuster, B.; Marin, G. Oxidative Dehydrogenation of Aqueous Ethanol on a Carbon Supported Platinum Catalyst. Appl. Catal. A. 1994, 120, 127–145.
  • Boronat, M.; Corma, A.; Illas, F.; Radilla, J.; Ródenas, T.; Sabater, M. J. Mechanism of Selective Alcohol Oxidation to Aldehydes on Gold Catalysts: Influence of Surface Roughness on Reactivity. J. Catal. 2011, 278, 50–58.
  • Dirkx, J.; Van Der Baan, H. The Oxidation of Glucose with Platinum on Carbon as Catalyst. J. Catal. 1981, 67, 1–13.
  • Moss, J. T.; Berkowitz, A. M.; Oehlschlaeger, M. A.; Biet, J.; Warth, V.; Glaude, P.-A.; Battin-Leclerc, F. An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol. J. Phy. Chem A. 2008, 112, 10843–10855.
  • Ide, M. S.; Davis, R. J. Perspectives on the Kinetics of Diol Oxidation over Supported Platinum Catalysts in Aqueous Solution. J. Catal. 2013, 308, 50–59.
  • Yamaguchi, K.; Mizuno, N. Scope, Kinetics, and Mechanistic Aspects of Aerobic Oxidations Catalyzed by Ruthenium Supported on Alumina. Chem. Eur. J. 2003, 9, 4353–4361.
  • Nicoletti, J. W.; Whitesides, G. M. Liquid-phase oxidation of 2-propanol to acetone by dioxygen using supported platinum catalysts. J. Phy. Chem. 1989, 93, 759–767.
  • Wang, H.; Sapi, A.; Thompson, C. M.; Liu, F.; Zherebetskyy, D.; Krier, J. M.; Carl, L. M.; Cai, X.; Wang, L.-W.; Somorjai, G. A. Dramatically Different Kinetics and Mechanism at Solid/liquid and Solid/gas Interfaces for Catalytic Isopropanol Oxidation over Size-controlled Platinum Nanoparticles. J. Am. Chem. Soc. 2014, 136, 10515–10520.
  • Liu, F.; Wang, H.; Sapi, A.; Tatsumi, H.; Zherebetskyy, D.; Han, H.-L.; Carl, L. M.; Somorjai, G. A. Molecular Orientations Change Reaction Kinetics and Mechanism: A Review on Catalytic Alcohol Oxidation in Gas Phase and Liquid Phase on Size-controlled Pt Nanoparticles. Catalysts. 2018, 8, 226.
  • Liu, J.; Du, Z.; Yang, Y.; Lu, T.; Lu, F.; Xu, J. Catalytic Oxidative Decarboxylation of Malic Acid into Dimethyl Malonate in Methanol with Dioxygen. ChemSusChem. 2012, 5, 2151–2154.
  • Preuster, P.; Albert, J. Biogenic Formic Acid as a Green Hydrogen Carrier. Energy Technol. 2018, 6, 501–509.
  • Lu, T.; Hou, Y.; Wu, W.; Niu, M.; Li, W.; Ren, S. Catalytic Oxidation of Cellulose to Formic Acid in V (V)-fe (III)-H2SO4 Aqueous Solution with O2. Fuel Process. Technol. 2018, 173, 197–204.
  • Albert, J.;. Selective Oxidation of Lignocellulosic Biomass to Formic Acid and High-grade Cellulose Using Tailor-made Polyoxometalate Catalysts. Faraday Discuss. 2017, 202, 99–109.
  • Asiedu, N. Y.; Neba, F. A.; Addo, A. Modeling the attainable regions for catalytic oxidation of renewable biomass to specialty chemicals: Waste biomass to carboxylic acids. S. Afr. J. Chem. Eng. 2019, 30, 1–14.
  • Ming, D.; Glasser, D.; Hildebrandt, D.; Glasser, B.; Metgzer, M. Attainable Region Theory: An Introduction to Choosing an Optimal Reactor; John Wiley & Sons, Hoboken, New Jersey, 2016.
  • Wölfel, R.; Taccardi, N.; Bösmann, A.; Wasserscheid, P. Selective Catalytic Conversion of Biobased Carbohydrates to Formic Acid Using Molecular Oxygen. Green Chem. 2011, 13, 2759–2763.
  • Albert, J.; Wasserscheid, P. Expanding the Scope of Biogenic Substrates for the Selective Production of Formic Acid from Water-insoluble and Wet Waste Biomass. Green Chem. 2015, 17, 5164–5171.
  • Zhang, J.; Sun, M.; Han, Y. Selective Oxidation of Glycerol to Formic Acid in Highly Concentrated Aqueous Solutions with Molecular Oxygen Using V-substituted Phosphomolybdic Acids. RSC Adv. 2014, 4, 35463–35466.
  • Reichert, J.; Brunner, B.; Jess, A.; Wasserscheid, P.; Albert, J. Biomass Oxidation to Formic Acid in Aqueous Media Using Polyoxometalate Catalysts–boosting FA Selectivity by In-situ Extraction. Energy Environ. Sci. 2015, 8, 2985–2990.
  • Song, Y.; Mobley, J. K.; Motagamwala, A. H.; Isaacs, M.; Dumesic, J. A.; Ralph, J.; Lee, A. F.; Wilson, K.; Crocker, M. Gold-catalyzed Conversion of Lignin to Low Molecular Weight Aromatics. Chem. Sci. 2018, 9, 8127–8133.
  • Gupta, K.; Rai, R. K.; Singh, S. K. Metal Catalysts for the Efficient Transformation of Biomass‐derived HMF and Furfural to Value Added Chemicals. ChemCatChem. 2018, 10, 2326–2349.
  • Karski, S.; Witońska, I.; Gołuchowska, J. Catalytic Properties of Pd–Tl/SiO2 Systems in the Reaction of Liquid Phase Oxidation of Aldoses. J. Mol. Catal. A: Chem. 2006, 245, 225–230.
  • Kuusisto, J.; Tokarev, A. V.; Murzina, E. V.; Roslund, M. U.; Mikkola, J.-P.; Murzin, D. Y.; Salmi, T. From Renewable Raw Materials to High Value-added Fine Chemicals—catalytic Hydrogenation and Oxidation of D-lactose. Catal. Today. 2007, 121, 92–99.
  • Mirescu, A.; Prüße, U. A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Appl. Catal. B. 2007, 70, 644–652.
  • Tokarev, A. V.; Murzina, E. V.; Seelam, P. K.; Kumar, N.; Murzin, D. Y. Influence of Surface Acidity in Lactose Oxidation over Supported Pd Catalysts. Micropor. Mesopor. Mater. 2008, 113, 122–131.
  • Bianchi, C. L.; Biella, S.; Gervasini, A.; Prati, L.; Rossi, M. Gold on Carbon: Influence of Support Properties on Catalyst Activity in Liquid-phase Oxidation. Catal. Lett. 2003, 85, 91–96.
  • Haldar, D.; Purkait, M. K. Lignocellulosic conversion into value-added products: A review. Process Biochem. 2020, 89, 110-133.
  • Jin, F.; Enomoto, H. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ. Sci. 2011, 4, 382–397.
  • Lu, T.; Hou, Y.; Wu, W.; Niu, M.; Ren, S.; Lin, Z.; Ramani, V. K. Catalytic Oxidation of Biomass to Oxygenated Chemicals with Exceptionally High Yields Using H5PVMo10O40. Fuel. 2018, 216, 572–578.
  • Luo, J.; Melissa, P.; Zhao, W.; Wang, Z.; Zhu, Y. Selective Lignin Oxidation Towards Vanillin in Phenol Media. ChemistrySelect. 2016, 1, 4596–4601.
  • Das, A.; Rahimi, A.; Ulbrich, A.; Alherech, M.; Motagamwala, A. H.; Bhalla, A.; Da Costa Sousa, L.; Balan, V.; Dumesic, J. A.; Hegg, E. L. Lignin Conversion to Low-molecular-weight Aromatics via an Aerobic Oxidation-hydrolysis Sequence: Comparison of Different Lignin Sources. ACS Sustain. Chem. Eng. 2018, 6, 3367–3374.
  • Vangeel, T.; Schutyser, W.; Renders, T.; Sels, B. F. Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions. Top. Curr. Chem. 2018, 376, 30.
  • Ren, T.; Qi, W.; Su, R.; He, Z. Promising Techniques for Depolymerization of Lignin into Value-added Chemicals. ChemCatChem. 2019, 11, 639–654.
  • Song, Y.;. Lignin Valorization via Reductive Depolymerization. In: Chemical Catalysts for Biomass Upgrading. Crocker, M.; Santillan-Jimenez, E., Eds., John Wiley and Sons, 2020, pp 395–437.
  • Anderson, E. M.; Katahira, R.; Reed, M.; Resch, M. G.; Karp, E. M.; Beckham, G. T.; Román-Leshkov, Y. Reductive Catalytic Fractionation of Corn Stover Lignin. ACS Sustain. Chem. Eng. 2016, 4, 6940–6950.
  • Zhang, K.; Li, H.; Xiao, L.-P.; Wang, B.; Sun, R.-C.; Song, G. Sequential Utilization of Bamboo Biomass through Reductive Catalytic Fractionation of Lignin. Bioresour. Technol. 2019, 285, 121335.
  • Park, J.; Cahyadi, H. S.; Mushtaq, U.; Verma, D.; Han, D.; Nam, K.-W.; Kwak, S. K.; Kim, J. Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catal. 2020, 10, 12487–12506.
  • Sousa, A. F.; Vilela, C.; Fonseca, A. C.; Matos, M.; Freire, C. S.; Gruter, G.-J. M.; Coelho, J. F.; Silvestre, A. J. Biobased Polyesters and Other Polymers from 2, 5-furandicarboxylic Acid: A Tribute to Furan Excellency. Polym. Chem. 2015, 6, 5961–5983.
  • Takagaki, A.; Takahashi, M.; Nishimura, S.; Ebitani, K. One-pot Synthesis of 2, 5-diformylfuran from Carbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-supported Ruthenium Catalysts. ACS Catal. 2011, 1, 1562–1565.
  • Neaţu, F.; Petrea, N.; Petre, R.; Somoghi, V.; Florea, M.; Parvulescu, V. Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts. Catal. Today. 2016, 278, 66–73.
  • Ma, J.; Du, Z.; Xu, J.; Chu, Q.; Pang, Y. Efficient Aerobic Oxidation of 5‐Hydroxymethylfurfural to 2, 5‐Diformylfuran, and Synthesis of a Fluorescent Material. ChemSusChem. 2011, 4, 51–54.
  • Liu, Y.; Ma, H.-Y.; Lei, D.; Lou, -L.-L.; Liu, S.; Zhou, W.; Wang, G.-C.; Yu, K. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catal. 2019, 9, 8306–8315.
  • Li, J.; Ding, D. J.; Deng, L.; Guo, Q. X.; Fu, Y. Catalytic Air Oxidation of Biomass‐Derived Carbohydrates to Formic Acid. ChemSusChem. 2012, 5, 1313–1318.
  • Albert, J.; Wölfel, R.; Bösmann, A.; Wasserscheid, P. Selective Oxidation of Complex, Water-insoluble Biomass to Formic Acid Using Additives as Reaction Accelerators. Energy Environ. Sci. 2012, 5, 7956–7962.
  • Nie, J.; Xie, J.; Liu, H. Efficient Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on Supported Ru Catalysts. J. Catal. 2013, 301, 83–91.
  • Gupta, K.; Rai, R. K.; Singh, S. K. Catalytic aerial oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over Ni–Pd nanoparticles supported on Mg(OH)2 nanoflakes for the synthesis of furan diesters. Inorg. Chem. Front. 2017, 4, 871–880.
  • Davis, S. E.; Houk, L. R.; Tamargo, E. C.; Datye, A. K.; Davis, R. J. Oxidation of 5-hydroxymethylfurfural over Supported Pt, Pd and Au Catalysts. Catal. Today. 2011, 160, 55–60.
  • Wan, X.; Zhou, C.; Chen, J.; Deng, W.; Zhang, Q.; Yang, Y.; Wang, Y. Base-free Aerobic Oxidation of 5-hydroxymethyl-furfural to 2, 5-furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-supported Au–Pd Alloy Nanoparticles. ACS Catal. 2014, 4, 2175–2185.
  • Taarning, E.; Nielsen, I. S.; Egeblad, K.; Madsen, R.; Christensen, C. H. Chemicals from Renewables: Aerobic Oxidation of Furfural and Hydroxymethylfurfural over Gold Catalysts. ChemSusChem. 2008, 1, 75–78.
  • Casanova, O.; Iborra, S.; Corma, A. Biomass into Chemicals: One Pot-base Free Oxidative Esterification of 5-hydroxymethyl-2-furfural into 2, 5-dimethylfuroate with Gold on Nanoparticulated Ceria. J. Catal. 2009, 265, 109–116.
  • Vuyyuru, K. R.; Strasser, P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal. Today. 2012, 195, 144–154.
  • Ma, B.; Wang, Y.; Guo, X.; Tong, X.; Liu, C.; Wang, Y.; Guo, X. Photocatalytic Synthesis of 2, 5-diformylfuran from 5-hydroxymethyfurfural or Fructose over Bimetallic Au-Ru Nanoparticles Supported on Reduced Graphene Oxides. Appl. Catal. A. 2018, 552, 70–76.
  • Ponce, S.; Trabold, M.; Drochner, A.; Albert, J.; Etzold, B. J. Insights into the Redox Kinetics of Vanadium Substituted Heteropoly Acids through Liquid Core Waveguide Membrane Microreactor Studies. Chem. Eng. J. 2019, 369, 443–450.
  • Reichert, J.; Albert, J. Detailed Kinetic Investigations on the Selective Oxidation of Biomass to Formic Acid (Oxfa Process) Using Model Substrates and Real Biomass. ACS Sustain. Chem. Eng. 2017, 5, 7383–7392.
  • Albert, J.; Lüders, D.; Bösmann, A.; Guldi, D. M.; Wasserscheid, P. Spectroscopic and electrochemical characterization of heteropoly acids for their optimized application in selective biomass oxidation to formic acid. Green Chem. 2014, 16, 226–237.
  • Voß, D.; Ponce, S.; Wesinger, S.; Etzold, B. J.; Albert, J. Combining Autoclave and LCWM Reactor Studies to Shed Light on the Kinetics of Glucose Oxidation Catalyzed by Doped Molybdenum-based Heteropoly Acids. RSC Adv. 2019, 9, 29347–29356.
  • Danielli Da Fonseca Ferreira, A.; Dorneles De Mello, M.; Da Silva, M. N. A. P. Catalytic Oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic Acid over Ru/Al2O3 in a Trickle-bed Reactor. Ind. Eng. Chem. Res. 2018, 58, 128–137.
  • Kumfer, B. J.; Martin, E.; Larson, S.; Felch, C. L. Low temperature wet air oxidation, Google Patents, 2019.
  • Zimmermann, F. J.;. New Waste Disposal Process. Chem. Eng. 1958, 65, 117–121.
  • Zou, L. Y.; Li, Y.; Hung, Y.-T. Wet Air Oxidation for Waste Treatment. In Advanced Physicochemical Treatment Technologies; Wang, L. K., Hung, Y.-T., Shammas, N. K., Eds.; Humana Press: Totowa, NJ, 2007; pp 575–610.
  • Jing, G.; Luan, M.; Chen, T. Progress of Catalytic Wet Air Oxidation Technology. Arab. J. Chem. 2016, 9, S1208–S1213.
  • Ma, C.; Wen, Y.; Yue, Q.; Li, A.; Fu, J.; Zhang, N.; Gai, H.; Zheng, J.; Chen, B. H. Oxygen-vacancy-promoted Catalytic Wet Air Oxidation of Phenol from MnO x–CeO 2. RSC Adv. 2017, 7, 27079–27088.
  • Bhargava, S. K.; Tardio, J.; Prasad, J.; Föger, K.; Akolekar, D. B.; Grocott, S. C. Wet Oxidation and Catalytic Wet Oxidation. Ind. Eng. Chem. Res. 2006, 45, 1221–1258.
  • Ovejero, G.; Rodríguez, A.; Vallet, A.; Willerich, S.; García, J. Application of Ni supported over mixed Mg–Al oxides to crystal violet wet air oxidation: The role of the reaction conditions and the catalyst. Appl. Catal. B. 2012, 111, 586–594.
  • Hua, L.; Ma, H.; Zhang, L. Degradation Process Analysis of the Azo Dyes by Catalytic Wet Air Oxidation with Catalyst CuO/γ-Al2O3. Chemosphere. 2013, 90, 143–149.
  • Kung, M. C.; Ye, J.; Kung, H. H. 110th Anniversary: A Perspective on Catalytic Oxidative Processes for Sustainable Water Remediation. Ind. Eng. Chem. Res. 2019, 58, 17325–17337.
  • Cybulski, A. Catalytic Wet Air Oxidation: Are Monolithic Catalysts and Reactors Feasible? Ind. Eng. Chem. Res. 2007, 46, 4007–4033.
  • Kumar, S.; Sharma, C. Synthesis, Characterization and Application of CuOCeO2 Nanocatalysts in Wet Air Oxidation of Industrial Wastewater. J. Environ. Chem. Eng. 2017, 5, 3914–3921.
  • Sun, M.; Zhang, Y.; Kong, S.-Y.; Zhai, L.-F.; Wang, S. Excellent performance of electro-assisted catalytic wet air oxidation of refractory organic pollutants. Water Res. 2019, 158, 313–321.
  • McKay, J. M.; Henrich, V. E. Surface Electronic Structure of NiO: Defect States, O2 and H2O Interactions. Phys. Rev B. 1985, 32, 6764.
  • Sun, Y.; Zhang, Y.; Quan, X. Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Sep. Purif. Technol. 2008, 62, 565–570.
  • Li, W.; Zhao, S.; Qi, B.; Du, Y.; Wang, X.; Huo, M. Fast catalytic degradation of organic dye with air and MoO3: Cenanofibers under room condition. Appl. Catal. B. 2009, 92, 333–340.
  • Wang, P.; Liang, Y. N.; Zhong, Z.; Hu, X. Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Sep. Purif. Technol. 2020, 233, 115960.
  • Zapico, R. R.; Marín, P.; Díez, F. V.; Ordóñez, S. Assessment of Phenol Wet Oxidation on CuO/γ-Al2O3 Catalysts: Competition between Heterogeneous and Leached-copper Homogeneous Reaction Paths. J. Environ. Chem. Eng. 2017, 5, 2570–2578.
  • Kim, K.-H.; Ihm, S.-K. Heterogeneous Catalytic Wet Air Oxidation of Refractory Organic Pollutants in Industrial Wastewaters: A Review. J. Hazard. Mater. 2011, 186, 16–34.
  • Yuan, M.; Wang, S.; Wang, X.; Zhao, L.; Hao, T. Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions. Appl. Surf. Sci. 2011, 257, 7913–7919.
  • Wang, J.; Dong, S.; Yu, C.; Han, X.; Guo, J.; Sun, J. An Efficient MoO3 Catalyst for In-practical Degradation of Dye Wastewater under Room Conditions. Catal. Commun. 2017, 92, 100–104.
  • Wang, J.; Fu, W.; He, X.; Yang, S.; Zhu, W. Catalytic Wet Air Oxidation of Phenol with Functionalized Carbon Materials as Catalysts: Reaction Mechanism and Pathway. J. Environ. Sci. 2014, 26, 1741–1749.
  • Cavani, F.; Trifiró, F. Classification of Industrial Catalysts and Catalysis for the Petrochemical Industry. Catal. Today. 1997, 34, 269–279.
  • Arena, F.; Italiano, C.; Raneri, A.; Saja, C. Mechanistic and kinetic insights into the wet air oxidation of phenol with oxygen (CWAO) by homogeneous and heterogeneous transition-metal catalysts. Appl. Catal. B. 2010, 99, 321–328.
  • Lai, C.; He, T.; Li, X.; Chen, F.; Yue, L.; Hou, Z. Catalytic Wet Air Oxidation of Phenols over Porous Plate Cu-based Catalysts. Appl. Clay Sci. 2019, 181, 105253.
  • Rathnayake, B.; Heponiemi, A.; Huovinen, M.; Ojala, S.; Pirilä, M.; Loikkanen, J.; Azalim, S.; Saouabe, M.; Brahmi, R.; Vähäkangas, K. Photocatalysis and Catalytic Wet Air Oxidation: Degradation and Toxicity of Bisphenol A Containing Wastewaters. Environ. Technol. 2019, 41, 3272-3283.
  • Fu, J.; Yang, K.; Ma, C.; Zhang, N.; Gai, H.; Zheng, J.; Chen, B. H. Bimetallic Ru–Cu as a Highly Active, Selective and Stable Catalyst for Catalytic Wet Oxidation of Aqueous Ammonia to Nitrogen. Appl. Catal. B. Environ. 2016, 184, 216–222.
  • Kurian, M.; Remya, V.; Kunjachan, C. Catalytic wet oxidation of chlorinated organics at mild conditions over iron doped nanoceria. Catal. Commun. 2017, 99, 75–78.
  • Mohite, R. G.; Garg, A. Performance of Heterogeneous Catalytic Wet Oxidation for the Removal of Phenolic Compounds: Catalyst Characterization and Effect of pH, Temperature, Metal Leaching and Non-oxidative Hydrothermal Reaction. J. Environ. Chem. Eng. 2017, 5, 468–478.
  • Hu, L.; Liu, X.; Wang, Q.; Zhou, Y. Highly Efficient Degradation of High-loaded Phenol over Ru–Cu/Al2O3 Catalyst at Mild Conditions. RSC Adv. 2017, 7, 21507–21517.
  • Yu, C.; Zhao, P.; Chen, G.; Hu, B. Al2O3 supported Ru catalysts prepared by thermolysis of Ru3(CO)12 for catalytic wet air oxidation. Appl. Surf. Sci. 2011, 257, 7727–7731.
  • Ovejero, G.; Rodríguez, A.; Vallet, A.; García, J. Catalytic wet air oxidation of a non-azo dye with Ni/MgAlO catalyst. Chem. Eng. J. 2013, 215, 168–173.
  • Lousteau, C.; Besson, M.; Descorme, C. Catalytic Wet Air Oxidation of Ammonia over Supported Noble Metals. Catal. Today. 2015, 241, 80–85.
  • Yang, S.; Besson, M.; Descorme, C. Catalytic Wet Air Oxidation of Succinic Acid over Ru and Pt Catalysts Supported on CexZr1− xO2 Mixed Oxides. Appl. Catal. B. 2015, 165, 1–9.
  • Rocha, M. L.; Del Ángel, G.; Torres-Torres, G.; Cervantes, A.; Vázquez, A.; Arrieta, A.; Beltramini, J. Effect of the Pt Oxidation State and Ce3+/Ce4+ Ratio on the Pt/TiO2-CeO2 Catalysts in the Phenol Degradation by Catalytic Wet Air Oxidation (CWAO). Catal. Today. 2015, 250, 145–154.
  • Zhang, Z.; Yang, R.; Gao, Y.; Zhao, Y.; Wang, J.; Huang, L.; Guo, J.; Zhou, T.; Lu, P.; Guo, Z. Novel Na2Mo4O13/α-MoO3 hybrid material as highly efficient CWAO catalyst for dye degradation at ambient conditions. Sci. Rep. 2014, 4, 1–9.
  • Gao, P.; Li, N.; Wang, A.; Wang, X.; Zhang, T. Perovskite LaMnO3 Hollow Nanospheres: The Synthesis and the Application in Catalytic Wet Air Oxidation of Phenol. Mater. Lett. 2013, 92, 173–176.
  • Delgado, J.; Chen, X.; Pérez-Omil, J.; Rodríguez-Izquierdo, J.; Cauqui, M. The Effect of Reaction Conditions on the Apparent Deactivation of Ce–Zr Mixed Oxides for the Catalytic Wet Oxidation of Phenol. Catal. Today. 2012, 180, 25–33.
  • Keav, S.; De Los Monteros, A. E.; Barbier Jr, J.; Duprez, D. Wet Air Oxidation of Phenol over Pt and Ru Catalysts Supported on Cerium-based Oxides: Resistance to Fouling and Kinetic Modelling. Appl. Catal. B. 2014, 150, 402–410.
  • Yang, S.; Besson, M.; Descorme, C. Catalytic Wet Air Oxidation of Formic Acid over Pt/CexZr1− xO2 Catalysts at Low Temperature and Atmospheric Pressure. Appl. Catal. B. 2010, 100, 282–288.
  • Zhang, Y.; Zhang, Z.; Zhou, T.; Lu, P.; Gao, Y.; Yu, F.; Umar, A.; Wang, Q. Synthesis and Characterization of Alkali Metal Molybdates with High Catalytic Activity for Dye Degradation. RSC Adv. 2016, 6, 54553–54563.
  • Guerra-Que, Z.; Torres-Torres, G.; Pérez-Vidal, H.; Cuauhtémoc-López, I.; De Los Monteros, A. E.; Beltramini, J. N.; Frías-Márquez, D. Silver Nanoparticles Supported on Zirconia–ceria for the Catalytic Wet Air Oxidation of Methyl Tert-butyl Ether. RSC Adv. 2017, 7, 3599–3610.
  • Liu, Y.; Wu, D.; Chen, M.; Ma, L.; Wang, H.; Wang, S. Wet air oxidation of fracturing flowback fluids over promoted bimetallic Cu-Cr catalyst. Catal. Commun. 2017, 90, 60–64.
  • Izquierdo‐Colorado, A.; Torres‐Torres, G.; Gamboa‐Rodríguez, M. T.; Silahua‐Pavón, A. A.; Arévalo‐Pérez, J. C.; Cervantes‐Uribe, A.; Cordero‐García, A.; Beltramini, J. N. Catalytic Wet Air Oxidation (CWAO) of Phenol in a Fixed Bed Reactor Using Supported Ru and Ru‐Au Catalysts: Effect of Gold and Ce Loading. ChemistrySelect. 2019, 4, 1275–1284.
  • Matatov-Meytal, Y. I.; Sheintuch, M. Catalytic abatement of water pollutants. Ind. Eng. Chem. Res. 1998, 37, 309–326.
  • Lee, D.-K.; Kim, D.-S.; Kim, T.-H.; Lee, Y.-K.; Jeong, S.-E.; Le, N. T.; Cho, M.-J.; Henam, S. D. Deactivation of Pt Catalysts during Wet Oxidation of Phenol. Catal. Today. 2010, 154, 244–249.
  • Levec, J.; Pintar, A. Catalytic wet-air oxidation processes: A review. Catal. Today. 2007, 124, 172–184.
  • Nousir, S.; Keav, S.; Barbier Jr, J.; Bensitel, M.; Brahmi, R.; Duprez, D. Deactivation Phenomena during Catalytic Wet Air Oxidation (CWAO) of Phenol over Platinum Catalysts Supported on Ceria and Ceria–zirconia Mixed Oxides. Appl. Catal. B. 2008, 84, 723–731.
  • Mikulová, J.; Rossignol, S.; Barbier Jr, J.; Duprez, D.; Kappenstein, C. Characterizations of Platinum Catalysts Supported on Ce, Zr, Pr-oxides and Formation of Carbonate Species in Catalytic Wet Air Oxidation of Acetic Acid. Catal. Today. 2007, 124, 185–190.
  • Mikulová, J.; Rossignol, S.; Barbier Jr, J.; Mesnard, D.; Kappenstein, C.; Duprez, D. Ruthenium and Platinum Catalysts Supported on Ce, Zr, Pr-O Mixed Oxides Prepared by Soft Chemistry for Acetic Acid Wet Air Oxidation. Appl. Catal. B. 2007, 72, 1–10.
  • Wang, J.; Zhu, W.; He, X.; Yang, S. Catalytic Wet Air Oxidation of Acetic Acid over Different Ruthenium Catalysts. Catal. Commun. 2008, 9, 2163–2167.
  • Zhang, Y.; Zhou, Y.; Peng, C.; Shi, J.; Wang, Q.; He, L.; Shi, L. Enhanced Activity and Stability of Copper oxide/γ-alumina Catalyst in Catalytic Wet-air Oxidation: Critical Roles of Cerium Incorporation. Appl. Surf. Sci. 2018, 436, 981–988.
  • Xu, Y.; Li, X.; Cheng, X.; Sun, D.; Wang, X. Degradation of cationic red GTL by catalytic wet air oxidation over Mo–Zn–Al–O catalyst under room temperature and atmospheric pressure. Environ. Sci. Technol. 2012, 46, 2856–2863.
  • Sun, W.; Wei, H.; Yang An, L.; Jin, C.; Wu, H.; Xiong, Z.-A.; Pu, C.; Sun, C. Oxygen vacancy mediated La1-xCexFeO3-δ perovskite oxides as efficient catalysts for CWAO of acrylic acid by A-site Ce doping. Appl. Catal. B. 2019, 245, 20–28.
  • Zhang, Y.; Zhou, Y.; Wang, Q.; Shi, J.; Peng, C.; He, L.; Shi, L. Manipulating Catalytic Activity and Durability of Pt-modified Cu–Fe–La/γ-Al2O3 Ternary Catalyst for Catalytic Wet Air Oxidation: Effect of Calcination Temperature. RSC Adv. 2018, 8, 547–556.
  • Liu, Y.; Sun, D. Development of Fe2O3-CeO2-TiO2/γ-Al2O3 as Catalyst for Catalytic Wet Air Oxidation of Methyl Orange Azo Dye under Room Condition. Appl. Catal. B. 2007, 72, 205–211.
  • Arena, F.; Giovenco, R.; Torre, T.; Venuto, A.; Parmaliana, A. Activity and Resistance to Leaching of Cu-based Catalysts in the Wet Oxidation of Phenol. Appl. Catal. B. 2003, 45, 51–62.
  • Rocha, R. P.; Pereira, M. F. R.; Figueiredo, J. L. Metal-free Carbon Materials as Catalysts for Wet Air Oxidation. Catal. Today. 2020, 356, 189-196.
  • Fortuny, A.; Font, J.; Fabregat, A. Wet Air Oxidation of Phenol Using Active Carbon as Catalyst. Appl. Catal. B. 1998, 19, 165–173.
  • Cordero, T.; Rodríguez-Mirasol, J.; Bedia, J.; Gomis, S.; Yustos, P.; García-Ochoa, F.; Santos, A. Activated carbon as catalyst in wet oxidation of phenol: effect of the oxidation reaction on the catalyst properties and stability. Appl. Catal. B. 2008, 81, 122–131.
  • Arena, F.; Italiano, C.; Ferrante, G. D.; Trunfio, G.; Spadaro, L. A Mechanistic Assessment of the Wet Air Oxidation Activity of MnCeOx Catalyst toward Toxic and Refractory Organic Pollutants. Appl. Catal. B. 2014, 144, 292–299.
  • Wei, H.; Yan, X.; He, S.; Sun, C. Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts. Catal. Today. 2013, 201, 49–56.
  • Arena, F.; Italiano, C.; Spadaro, L. Efficiency and Reactivity Pattern of Ceria-based Noble Metal and Transition Metal-oxide Catalysts in the Wet Air Oxidation of Phenol. Appl. Catal. B. 2012, 115, 336–345.
  • Silva, A. M.; Quinta-Ferreira, R. M.; Levec, J. Catalytic and noncatalytic wet oxidation of formaldehyde. A novel kinetic model. Ind. Eng. Chem. Res. 2003, 42, 5099–5108.
  • Li, L.; Chen, P.; Gloyna, E. F. Generalized Kinetic Model for Wet Oxidation of Organic Compounds. AlChE. J. 1991, 37, 1687–1697.
  • Feng, D.; Malleret, L.; Soric, A.; Boutin, O. Kinetic Study of Glyphosate Degradation in Wet Air Oxidation Conditions. Chemosphere. 2020, 247, 125930.
  • Pintar, A.; Levec, J. Catalytic oxidation of organics in aqueous solutions: I. Kinetics of phenol oxidation. J. Catal. 1992, 135, 345–357.
  • Hamoudi, S.; Belkacemi, K.; Larachi, F. Ç. Catalytic oxidation of aqueous phenolic solutions catalyst deactivation and kinetics. Chem. Eng. Sci. 1999, 54, 3569–3576.
  • Mohite, R.; Garg, A. Performance of Supported Copper Catalysts for Oxidative Degradation of Phenolics in Aqueous Medium: Optimization of Reaction Conditions, Kinetics, Catalyst Stability, Characterization, and Reusability. Ind. Eng. Chem. Res. 2020, 59, 12986–12998.
  • Silva, A. M.; Oliveira, A. C.; Quinta-Ferreira, R. M. Catalytic Wet Oxidation of Ethylene Glycol: Kinetics of Reaction on a Mn–Ce–O Catalyst. Chem. Eng. Sci. 2004, 59, 5291–5299.
  • Lei, L.; Dai, Q.; Zhou, M.; Zhang, X. Decolorization of Cationic Red X-GRL by Wet Air Oxidation: Performance Optimization and Degradation Mechanism. Chemosphere. 2007, 68, 1135–1142.
  • Shende, R. V.; Levec, J. Wet Oxidation Kinetics of Refractory Low Molecular Mass Carboxylic Acids. Ind. Eng. Chem. Res. 1999, 38, 3830–3837.
  • Benitez, F. J.; García, J.; Acero, J. L.; Real, F. J.; Roldan, G. Non-catalytic and Catalytic Wet Air Oxidation of Pharmaceuticals in Ultra-pure and Natural Waters. Process Saf. Environ. Prot. 2011, 89, 334–341.
  • Zapico, R. R.; Marín, P.; Díez, F. V.; Ordóñez, S. Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: development of a kinetic model. Chem. Eng. J. 2015, 270, 122–132.
  • Lefèvre, S.; Boutin, O.; Ferrasse, J.-H.; Malleret, L.; Faucherand, R.; Viand, A. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process. Chemosphere. 2011, 84, 1208–1215.
  • Li, N.; Descorme, C.; Besson, M. Catalytic Wet Air Oxidation of Aqueous Solution of 2-chlorophenol over Ru/zirconia Catalysts. Appl. Catal. B. 2007, 71, 262–270.
  • Collado, S.; Garrido, L.; Laca, A.; Diaz, M. Wet Oxidation of Salicylic Acid Solutions. Environ. Sci. Technol. 2010, 44, 8629–8635.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.