Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 2
2,192
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Overview of electrocatalytic treatment of antibiotic pollutants in wastewater

ORCID Icon, , , & ORCID Icon
Pages 569-619 | Received 17 Feb 2021, Accepted 01 Jun 2021, Published online: 19 Aug 2021

References

  • Joy, S. R.; Bartelt-Hunt, S. L.; Snow, D. D.; Gilley, J. E.; Woodbury, B. L.; Parker, D. B.; Marx, D. B.; Fate, L. X. Transport of Antimicrobials and Antimicrobial Resistance Genes in Soil and Runoff following Land Application of Swine Manure Slurry. Environ. Sci. Technol. 2013, 47(21), 12081–12088. DOI: 10.1021/es4026358.
  • Shen, Y.; Liu, W.; Bao, Z.; Guo, Z. Solubility and Solution Thermodynamics of Tylosin in Pure Solvents and Mixed Solvents at Various Temperatures. ES Mater. Manuf. 2019, 5, 38–48. DOI: 10.30919/esmm5f233.
  • Zhang, -Q.-Q.; Ying, -G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49(11), 6772–6782. DOI: 10.1021/acs.est.5b00729.
  • Chee-Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y. F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J. Environ. Qual. 2009, 38(3), 1086–1108. DOI: 10.2134/jeq2008.0128.
  • Zhou, L.-J.; Ying, -G.-G.; Zhao, J.-L.; Yang, J.-F.; Wang, L.; Yang, B.; Liu, S. Trends in the Occurrence of Human and Veterinary Antibiotics in the Sediments of the Yellow River, Hai River and Liao River in Northern China. Environ. Pollut. 2011, 159(7), 1877–1885. DOI: 10.1016/j.envpol.2011.03.034.
  • Yuan, B.; Li, L.; Murugadoss, V.; Vupputuri, S.; Wang, J.; Alikhani, N.; Guo, Z. Nanocellulose-based Composite Materials for Wastewater Treatment and Waste-oil Remediation. ES Food Agrofor. 2020, 1, 41–52. DOI: 10.30919/esfaf0004.
  • Jadhav, P.; Shinde, S.; Suryawanshi, S. S.; Teli, S. B.; Patil, P. S.; Ramteke, A. A.; Hiremath, N. G.; Prasad, N. R. Green AgNPs Decorated ZnO Nanocomposites for Dye Degradation and Antimicrobial Applications. Eng. Sci. 2020, 12, 79–94. DOI: 10.30919/es8d1138.
  • Chen, J.; Wang, X.; Huang, Y.; Lv, S.; Cao, X.; Yun, J.; Cao, D. Adsorption Removal of Pollutant Dyes in Wastewater by Nitrogen-doped Porous Carbons Derived from Natural Leaves. Eng. Sci. 2019, 5, 30–38. DOI: 10.30919/es8d666.
  • Zhao, Z.; Ma, H.; Feng, M.; Li, Z.; Cao, D.; Guo, Z. In Situ Preparation of WO3/g-C3N4 Composite and Its Enhanced Photocatalytic Ability, A Comparative Study on the Preparation Methods of Chemical Composite and Mechanical Mixing. Eng. Sci. 2019, 7, 52–58. DOI: 10.30919/es8d689.
  • Lin, C.; Qiao, Z.; Zhang, J.; Tang, J.; Zhang, Z.; Guo, Z. Highly Efficient Fluoride Adsorption in Domestic Water with RGO/Ag Nanomaterials. ES Energy Environ. 2019, 4, 27–33. DOI: 10.30919/esee8c217.
  • Yu, M.; Yu, T.; Chen, S.; Guo, Z.; Seok, I.; Facile, A. Synthesis of Ag/TiO2/rGO Nanocomposites with Enhanced Visible Light Photocatalytic Activity. ES Mater. Manuf. 2020, 7, 64–69. DOI: 10.30919/esmm5f712.
  • Xia, X.; Xu, X.; Lin, C.; Yang, Y.; Zeng, L.; Zheng, Y.; Wu, X.; Li, W.; Xiao, L.; Qian, Q.; et al. Microalgal-immobilized Biocomposite Scaffold Fabricated by Fused Deposition Modeling 3D Printing Technology for Dyes Removal. ES Mater. Manuf. 2020, 7, 40–50. DOI: 10.30919/esmm5f706.
  • Wei, H.; Ma, J.; Shi, Y.; Cui, D.; Liu, M.; Lu, N.; Wang, N.; Wu, T.; Wujcik, E. K.; Guo, Z. Sustainable Cross-linked Porous Corn Starch Adsorbents with High Methyl Violet Adsorption. ES Mater. Manuf. 2018, 2, 28–34. DOI: 10.30919/esmm5f162.
  • Singh, N.; Jana, S.; Singh, G. P.; Dey, R. K. Graphene-supported TiO2: Study of Promotion of Charge Carrier in Photocatalytic Water Splitting and Methylene Blue Dye Degradation. Adv. Compos. Hybrid Mater. 2020, 3(1), 127–140. DOI: 10.1007/s42114-020-00140-w.
  • Babu, M. J.; Botsa, S. M.; Rani, S. J.; Venkateswararao, B.; Muralikrishna, R. Enhanced Photocatalytic Degradation of Cationic Dyes under Visible Light Irradiation by CuWO4-RGO Nanocomposite. Adv. Compos. Hybrid Mater. 2020, 3, 205–212. DOI: 10.1007/s42114-020-00149-1.
  • Jain, B.; Singh, A. K.; Hashmi, A.; Susan, M. A. B. H.; Lellouche, J.-P. Surfactant-assisted Cerium Oxide and Its Catalytic Activity towards Fenton Process for Non-degradable Dye. Adv. Compos. Hybrid Mater. 2020, 3(3), 430–441. DOI: 10.1007/s42114-020-00159-z.
  • Halling-Sorensen, B.; Sengelov, G.; Tjornelund, J. Toxicity of Tetracyclines and Tetracycline Degradation Products to Environmentally Relevant Bacteria, Including Selected Tetracycline-resistant Bacteria. Arch. Environ. Contam. Toxicol. 2002, 42(3), 263–271. DOI: 10.1007/s00244-001-0017-2.
  • Jjemba, P. K.;. The Potential Impact of Veterinary and Human Therapeutic Agents in Manure and Biosolids on Plants Grown on Arable Land: A Review. Agric. Ecosyst. Environ. 2002, 93(1–3), 267–278. DOI: 10.1016/s0167-8809(01)00350-4.
  • Zhu, Y.-G.; Johnson, T. A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R. D.; Hashsham, S. A.; Tiedje, J. M. Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(9), 3435–3440. DOI: 10.1073/pnas.1222743110.
  • Reis, A. C.; Kolvenbach, B. A.; Nunes, O. C.; Corvini, P. F. X. Biodegradation of Antibiotics: The New Eesistance Determinants-Part I. New Biotechol. 2020, 54, 34–51. DOI: 10.1016/j.nbt.2019.08.002.
  • Yang, X.; Yuan, L.; Zhao, Y.; Yan, L.; Bai, Y.; Ma, J.; Li, S.; Sorokin, P.; Shao, L. Mussel-inspired Structure Evolution Customizing Membrane Interface Hydrophilization. J. Membr. Sci. 2020, 612, 118471. DOI: 10.1016/j.memsci.2020.118471.
  • Yang, F.; Sadam, H.; Zhang, Y.; Xia, J.; Yang, X.; Long, J.; Li, S.; Shao, L. A De Novo Sacrificial-MOF Strategy to Construct Enhanced-flux Nanofiltration Membranes for Efficient Dye Removal. Chem. Eng. Sci. 2020, 225, 115845. DOI: 10.1016/j.ces.2020.115845.
  • Zhang, Y. Q.; Cheng, X. Q.; Jiang, X.; Urban, J. J.; Lau, C. H.; Liu, S. Q.; Shao, L. Robust Natural Nanocomposites Realizing Unprecedented Ultrafast Precise Molecular Separations. Mater. Today. 2020, 36, 40–47. DOI: 10.1016/j.mattod.2020.02.002.
  • Li, W. X.; Cao, J.; Xiong, W. P.; Yang, Z. H.; Sun, S. W.; Jia, M. Y.; Xu, Z. Y. In-situ Growing of Metal-organic Frameworks on Three-dimensional Iron Network as an Efficient Adsorbent for Antibiotics Removal. Chem. Eng. J. 2020, 392, 9. DOI: 10.1016/j.cej.2020.124844.
  • Jang, H. M.; Yoo, S.; Choi, Y. K.; Park, S.; Kan, E. Adsorption Isotherm, Kinetic Modeling and Mechanism of Tetracycline on Pinus Taeda-derived Activated Biochar. Bioresour. Technol. 2018, 259, 24–31. DOI: 10.1016/j.biortech.2018.03.013.
  • Zuo, X. T.; Qian, C.; Ma, S. L.; Xiong, J. Sulfonamide Antibiotics Sorption by High Silica ZSM-5: Effect of pH and Humic Monomers (Vanillin and Caffeic Acid). Chemosphere. 2020, 248, 9. DOI: 10.1016/j.chemosphere.2020.126061.
  • Yan, W.; Zhang, R.; Ji, F.; Jing, C. Y. Deciphering Co-catalytic Mechanisms of Potassium Doped g-C3N4 in Fenton Process. J. Hazard. Mater. 2020, 392, 11. DOI: 10.1016/j.jhazmat.2020.122472.
  • Liu, Y.; Tan, N.; Guo, J.; Wang, J. Catalytic Activation of O2 by Al0-CNTs-Cu2O Composite for Fenton-like Degradation of Sulfamerazine Antibiotic at Wide pH Range. J. Hazard. Mater. 2020, 396, 122751. DOI: 10.1016/j.jhazmat.2020.122751.
  • Weng, X. L.; Owens, G.; Chen, Z. L. Synergetic Adsorption and Fenton-like Oxidation for Simultaneous Removal of Ofloxacin and Enrofloxacin Using Green Synthesized Fe NPs. Chem. Eng. J. 2020, 382, 11. DOI: 10.1016/j.cej.2019.122871.
  • Zhang, T. H.; Liu, Y. J.; Rao, Y. D.; Li, X. P.; Yuan, D. L.; Tang, S. F.; Zhao, Q. X. Enhanced Photocatalytic Activity of TiO2 with Acetylene Black and Persulfate for Degradation of Tetracycline Hydrochloride under Visible Light. Chem. Eng. J. 2020, 384, 10. DOI: 10.1016/j.cej.2019.123350.
  • Isari, A. A.; Hayati, F.; Kakavandi, B.; Rostami, M.; Motevassel, M.; Dehghanifard, E. N. N, Cu Co-doped TiO2@functionalized SWCNT Photocatalyst Coupled with Ultrasound and Visible-light: An Effective Sono-photocatalysis Process for Pharmaceutical Wastewaters Treatment. Chem. Eng. J. 2020, 392, 16. DOI: 10.1016/j.cej.2019.123685.
  • Wang, H.; Zhang, J. J.; Yuan, X. Z.; Jiang, L. B.; Xia, Q.; Chen, H. Y. Photocatalytic Removal of Antibiotics from Natural Water Matrices and Swine Wastewater via Cu(I) Coordinately Polymeric Carbon Nitride Framework. Chem. Eng. J. 2020, 392, 14. DOI: 10.1016/j.cej.2019.123638.
  • Yang, R. X.; Zhu, Z. J.; Hu, C. Y.; Zhong, S.; Zhang, L. S.; Liu, B. J.; Wang, W. One-step Preparation (3D/2D/2D) BiVO4/FeVO4@rGO Heterojunction Composite Photocatalyst for the Removal of Tetracycline and Hexavalent Chromium Ions in Water. Chem. Eng. J. 2020, 390, 15. DOI: 10.1016/j.cej.2020.124522.
  • Mu, Y.; Huang, C.; Li, H.; Chen, L.; Zhang, D.; Yang, Z. Electrochemical Degradation of Ciprofloxacin with a Sb-doped SnO2 Electrode: Performance, Influencing Factors and Degradation Pathways. RSC Adv. 2019, 9(51), 29796–29804. DOI: 10.1039/C9RA04860J.
  • Fan, T.; Deng, W.; Gang, Y.; Du, Z.; Li, Y. Degradation of Hazardous Organics via Cathodic Flow-through Process Using a Spinel FeCo2O4/CNT Decorated Stainless-Steel Mesh. ES Mater. Manuf. 2021, 12, 53–62. DOI: 10.30919/esmm5f417.
  • Martinez-Huitle, C. A.; Ferro, S. Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes. Chem. Soc. Rev. 2006, 35(12), 1324–1340. DOI: 10.1039/b517632h.
  • Li, N.; Zhang, F.; Wang, H.; Hou, S. Catalytic Degradation of 4-Nitrophenol in Polluted Water by Three-Dimensional Gold Nanoparticles/Reduced Graphene Oxide Microspheres. Eng. Sci. 2019, 7, 72–79. DOI: 10.30919/es8d509.
  • Ul-Islam, M. U.; Ali, J.; Khan, W.; Haider, A.; Shah, N.; Ahmad, M. W.; Ullah, M. W.; Yang, G. Fast 4-nitrophenol Reduction Using Gelatin Hydrogel Containing Silver Nanoparticles. Eng. Sci. 2019, 8, 19–24. DOI: 10.30919/es8d504.
  • Wu, D.; Zhang, X.; Zhu, J.; Cheng, D. Concerted Catalysis on Tanghulu-like Cu@Zeolitic Imidazolate Framework-8 (ZIF-8) Nanowires with Tuning Catalytic Performances for 4-nitrophenol Reduction. Eng. Sci. 2018, 2, 49–56. DOI: 10.30919/es8d718.
  • Martínez-Huitle, C. A.; Panizza, M. Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. DOI: 10.1016/j.coelec.2018.07.010.
  • Chen, Z.; Liu, Y.; Wei, W.; Ni, B.-J. Recent Advances in Electrocatalysts for Halogenated Organic Pollutant Degradation. Environ. Sci. 2019, 6(8), 2332–2366. DOI: 10.1039/C9EN00411D.
  • Brillas, E.; Martínez-Huitle, C. A. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review. Appl. Catal. B: Environ. 2015, 166-167, 603–643. DOI: 10.1016/j.apcatb.2014.11.016.
  • Carlesi Jara, C.; Fino, D.; Specchia, V.; Saracco, G.; Spinelli, P. Electrochemical Removal of Antibiotics from Wastewaters. Appl. Catal. B: Environ. 2007, 70(1–4), 479–487. DOI: 10.1016/j.apcatb.2005.11.035.
  • Yang, K.; Liu, Y.; Liu, J.; Qiao, J. Preparation Optimization of Multilayer-structured SnO2-Sb-Ce/Ti Electrode for Efficient Electrocatalytic Oxidation of Tetracycline in Water. Chin. J. Chem. Eng. 2018, 26(12), 2622–2627. DOI: 10.1016/j.cjche.2018.08.010.
  • Xia, Y.; Dai, Q. Electrochemical Degradation of Antibiotic Levofloxacin by PbO2 Electrode: Kinetics, Energy Demands and Reaction Pathways. Chemosphere. 2018, 205, 215–222. DOI: 10.1016/j.chemosphere.2018.04.103.
  • Kim, S.; Choi, S. K.; Yoon, B. Y.; Lim, S. K.; Park, H. Effects of Electrolyte on the Electrocatalytic Activities of RuO2/Ti and Sb–SnO2/Ti Anodes for Water Treatment. Appl. Catal. B: Environ. 2010, 97(1–2), 135–141. DOI: 10.1016/j.apcatb.2010.03.033.
  • Chen, J.; Xia, Y.; Dai, Q. Electrochemical Degradation of Chloramphenicol with a Novel Al Doped PbO2 Electrode: Performance, Kinetics and Degradation Mechanism. Electrochim. Acta. 2015, 165, 277–287. DOI: 10.1016/j.electacta.2015.02.029.
  • Fabianska, A.; Bialk-Bielinska, A.; Stepnowski, P.; Stolte, S.; Siedlecka, E. M. Electrochemical Degradation of Sulfonamides at BDD Electrode: Kinetics, Reaction Pathway and Eco-toxicity Evaluation. J. Hazard. Mater. 2014, 280, 579–587. DOI: 10.1016/j.jhazmat.2014.08.050.
  • Boukhchina, S.; Akrout, H.; Berling, D.; Bousselmi, L. Highly Efficient Modified Lead Oxide Electrode Using a Spin Coating/electrodeposition Mode on Titanium for Electrochemical Treatment of Pharmaceutical Pollutant. Chemosphere. 2019, 221, 356–365. DOI: 10.1016/j.chemosphere.2019.01.057.
  • Xie, R.; Meng, X.; Sun, P.; Niu, J.; Jiang, W.; Bottomley, L.; Li, D.; Chen, Y.; Crittenden, J. Electrochemical Oxidation of Ofloxacin Using a TiO2-based SnO2-Sb/polytetrafluoroethylene Resin-PbO2 Electrode: Reaction Kinetics and Mass Transfer Impact. Appl. Catal. B: Environ. 2017, 203, 515–525. DOI: 10.1016/j.apcatb.2016.10.057.
  • Martín de Vidales, M. J.; Robles-Molina, J.; Domínguez-Romero, J. C.; Cañizares, P.; Sáez, C.; Molina-Díaz, A.; Rodrigo, M. A. Removal of Sulfamethoxazole from Waters and Wastewaters by Conductive-diamond Electrochemical Oxidation. J. Chem. Technol. Biotechnol. 2012, 87(10), 1441–1449. DOI: 10.1002/jctb.3766.
  • McBeath, S. T.; Wilkinson, D. P.; Graham, N. J. D. Application of Boron-doped Diamond Electrodes for the Anodic Oxidation of Pesticide Micropollutants in a Water Treatment Process: A Critical Review. Environ. Sci. Water Res. Technol. 2019, 5(12), 2090–2107. DOI: 10.1039/C9EW00589G.
  • Martin, H. B.; Argoitia, A.; Landau, U.; Anderson, A. B.; Angus, J. C. Hydrogen and Oxygen Evolution on Boron‐doped Diamond Electrodes. J. Electrochem. Soc. 1996, 143(6), L133–L136. DOI: 10.1149/1.1836901.
  • Parsa, J. B.; Abbasi, M.; Cornell, A. Improvement of the Current Efficiency of the Ti/Sn-Sb-Ni Oxide Electrode via Carbon Nanotubes for Ozone Generation. J. Electrochem. Soc. 2012, 159(5), D265–D269. DOI: 10.1149/2.jes112940.
  • Guinea, E.; Centellas, F.; Brillas, E.; Cañizares, P.; Sáez, C.; Rodrigo, M. A. Electrocatalytic Properties of Diamond in the Oxidation of a Persistant Pollutant. Appl. Catal. B: Environ. 2009, 89(3–4), 645–650. DOI: 10.1016/j.apcatb.2009.01.028.
  • Andrade, L. S.; Ruotolo, L. A. M.; Rocha-Filho, R. C.; Bocchi, N.; Biaggio, S. R.; Iniesta, J.; García-Garcia, V.; Montiel, V. On the Performance of Fe and Fe, F Doped Ti-Pt/PbO2 Electrodes in the Electrooxidation of the Blue Reactive 19 Dye in Simulated Textile Wastewater. Chemosphere. 2007, 66(11), 2035–2043. DOI: 10.1016/j.chemosphere.2006.10.028.
  • Shaikh, A. V.; Sayyed, S. G.; Naeem, S.; Mane, R. S. Electrodeposition of n-CdSe/p-Cu2Se Heterojunction Solar Cells. Eng. Sci. 2021, 13, 79–86. DOI: 10.30919/es8d1124.
  • Niu, J.; Li, Y.; Shang, E.; Xu, Z.; Liu, J. Electrochemical Oxidation of Perfluorinated Compounds in Water. Chemosphere. 2016, 146, 526–538. DOI: 10.1016/j.chemosphere.2015.11.115.
  • Dai, Q.; Xia, Y.; Sun, C.; Weng, M.; Chen, J.; Wang, J.; Chen, J. Electrochemical Degradation of Levodopa with Modified PbO2 Electrode: Parameter Optimization and Degradation Mechanism. Chem. Eng. J. 2014, 245, 359–366. DOI: 10.1016/j.cej.2013.08.036.
  • Wachter, N.; Aquino, J. M.; Denadai, M.; Barreiro, J. C.; Silva, A. J.; Cass, Q. B.; Rocha-Filho, R. C.; Bocchi, N. Optimization of the Electrochemical Degradation Process of the Antibiotic Ciprofloxacin Using a Double-sided β-PbO2 Anode in a Flow Reactor: Kinetics, Identification of Oxidation Intermediates and Toxicity Evaluation. Environ. Sci. Pollut. Res. 2019, 26(5), 4438–4449. DOI: 10.1007/s11356-018-2349-8.
  • Liu, Y.; Liu, H. Comparative Studies on the Electrocatalytic Properties of Modified PbO2 Anodes. Electrochim. Acta. 2008, 53(16), 5077–5083. DOI: 10.1016/j.electacta.2008.02.103.
  • De Amorim, K. P.; Romualdo, L. L.; Andrade, L. S. Electrochemical Degradation of Sulfamethoxazole and Trimethoprim at Boron-doped Diamond Electrode: Performance, Kinetics and Reaction Pathway. Sep. Purif. Technol. 2013, 120, 319–327. DOI: 10.1016/j.seppur.2013.10.010.
  • Manzoor, Z.; Saravade, V.; Corda, A. M.; Ferguson, I.; Lu, N. Optical and Structural Properties of Nickel Doped Zinc Oxide Grown by Metal Organic Chemical Vapor Deposition (MOCVD) at Different Reaction Chamber Conditions. ES Mater. Manuf. 2020, 8, 31–35. DOI: 10.30919/esmm5f715.
  • Tröster, I.; Schäfer, L.; Fryda, M.; Matthée, T. Electrochemical Advanced Oxidation Process Using DiaChem® Electrodes. Water Sci. Technol. 2004, 49(4), 207–212. DOI: 10.2166/wst.2004.0264.
  • Bai, H.; He, P.; Chen, J.; Liu, K.; Lei, H.; Zhang, X.; Dong, F.; Li, H. Electrocatalytic Degradation of Bromocresol Green Wastewater on Ti/SnO2-RuO2 Electrode. Water Sci. Technol. 2017, 75(1), 220–227. DOI: 10.2166/wst.2016.509.
  • Li, Y.; Zhang, S.; Han, Y.; Cheng, S.; Hu, W.; Han, J.; Li, Y. Heterogeneous Electrocatalytic Degradation of Ciprofloxacin by Ternary Ce3ZrFe4O14-x/CF Composite Cathode. Catal. Today. 2019, 327, 116–125. DOI: 10.1016/j.cattod.2018.05.043.
  • Comninellis, C.; Pulgarin, C. Anodic Oxidation of Phenol for Waste Water Treatment. J. Appl. Electrochem. 1991, 21(8), 703–708. DOI: 10.1007/BF01034049.
  • Comninellis, C.;. Electrocatalysis in the Electrochemical Conversion/combustion of Organic Pollutants for Waste Water Treatment. Electrochim. Acta. 1994, 39(11–12), 1857–1862. DOI: 10.1016/0013-4686(94)85175-1.
  • Marselli, B.; Garcia-Gomez, J.; Michaud, P.-A.; Rodrigo, M.; Comninellis, C. Electrogeneration of Hydroxyl Radicals on Boron-doped Diamond Electrodes. J. Electrochem. Soc. 2003, 150(3), D79–D83. DOI: 10.1149/1.1553790.
  • Bonfatti, F.; Ferro, S.; Lavezzo, F.; Malacarne, M.; Lodi, G.; De Battisti, A. Electrochemical Incineration of Glucose as a Model Organic Substrate. II. Role of Active Chlorine Mediation. J. Electrochem. Soc. 2000, 147(2), 592. DOI: 10.1149/1.1393238.
  • Oturan, N.; Wu, J.; Zhang, H.; Sharma, V. K.; Oturan, M. A. Electrocatalytic Destruction of the Antibiotic Tetracycline in Aqueous Medium by Electrochemical Advanced Oxidation Processes: Effect of Electrode Materials. Appl. Catal. B: Environ. 2013, 140, 92–97. DOI: 10.1016/j.apcatb.2013.03.035.
  • Lin, H.; Niu, J.; Xu, J.; Li, Y.; Pan, Y. Electrochemical Mineralization of Sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 Anode: Kinetics, Reaction Pathways, and Energy Cost Evolution. Electrochim. Acta. 2013, 97, 167–174. DOI: 10.1016/j.electacta.2013.03.019.
  • Matzek, L. W.; Tipton, M. J.; Farmer, A. T.; Steen, A. D.; Carter, K. E. Understanding Electrochemically Activated Persulfate and its Application to Ciprofloxacin Abatement. Environ. Sci. Technol. 2018, 52(10), 5875–5883. DOI: 10.1021/acs.est.8b00015.
  • Zhou, C.; Wang, Y.; Chen, J.; Niu, J. Porous Ti/SnO2-Sb Anode as Reactive Electrochemical Membrane for Removing Trace Antiretroviral Drug Stavudine from Wastewater. Environ. Int. 2019, 133, 105157. DOI: 10.1016/j.envint.2019.105157.
  • Suhadolnik, L.; Lašič Jurković, D.; Likozar, B.; Bele, M.; Drev, S.; Čeh, M. Structured Titanium Oxynitride (TiOxNy) Nanotube Arrays for a Continuous Electrocatalytic Phenol-Degradation Process: Synthesis, Characterization, Mechanisms and the Chemical Reaction Micro-kinetics. Appl. Catal. B: Environ. 2019, 257, 117894. DOI: 10.1016/j.apcatb.2019.117894.
  • Chai, S.; Zhao, G.; Zhang, Y.-N.; Wang, Y.; Nong, F.; Li, M.; Li, D. Selective Photoelectrocatalytic Degradation of Recalcitrant Contaminant Driven by an n-P Heterojunction Nanoelectrode with Molecular Recognition Ability. Environ. Sci. Technol. 2012, 46(18), 10182–10190. DOI: 10.1021/es3021342.
  • Panizza, M.; Cerisola, G. Direct and Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109(12), 6541–6569. DOI: 10.1021/cr9001319.
  • De Coster, J.; Vanherck, W.; Appels, L.; Dewil, R. Selective Electrochemical Degradation of 4-chlorophenol at a Ti/RuO2-IrO2 Anode in Chloride Rich Wastewater. J. Environ. Manage. 2017, 190, 61–71. DOI: 10.1016/j.jenvman.2016.11.049.
  • Chai, S.; Wang, Y.; Zhang, Y.-N.; Liu, M.; Wang, Y.; Zhao, G. Selective Electrocatalytic Degradation of Odorous Mercaptans Derived from S–Au Bond Recongnition on a Dendritic Gold/Boron-Doped Diamond Composite Electrode. Environ. Sci. Technol. 2017, 51(14), 8067–8076. DOI: 10.1021/acs.est.7b00393.
  • Wang, C.; Yin, L.; Xu, Z.; Niu, J.; Hou, L.-A. Electrochemical Degradation of Enrofloxacin by Lead Dioxide Anode: Kinetics, Mechanism and Toxicity Evaluation. Chem. Eng. J. 2017, 326, 911–920. DOI: 10.1016/j.cej.2017.06.038.
  • Sánchez-Montes, I.; Fuzer Neto, J. R.; Silva, B. F.; Silva, A. J.; Aquino, J. M.; Rocha-Filho, R. C. Evolution of the Antibacterial Activity and Oxidation Intermediates during the Electrochemical Degradation of Norfloxacin in a Flow Cell with a PTFE-doped β-PbO2 Anode: Critical Comparison to a BDD Anode. Electrochim. Acta. 2018, 284, 260–270. DOI: 10.1016/j.electacta.2018.07.122.
  • Sun, W.; Sun, Y.; Shah, K. J.; Zheng, H.; Ma, B. Electrochemical Degradation of Oxytetracycline by Ti-Sn-Sb/γ-Al2O3 Three-dimensional Electrodes. J. Environ. Manage. 2019, 241, 22–31. DOI: 10.1016/j.jenvman.2019.03.128.
  • Sun, W.; Sun, Y.; Shah, K. J.; Chiang, P.-C.; Zheng, H. Electrocatalytic Oxidation of Tetracycline by Bi-Sn-Sb/γ-Al2O3 Three-dimensional Particle Electrode. J. Hazard. Mater. 2019, 370, 24–32. DOI: 10.1016/j.jhazmat.2018.09.085.
  • Yu, H.; Zhang, X.; Zhao, M.; Zhang, L.; Dong, H.; Yu, H. Norfloxacin Degradation by a Green Carbon Black-Ti/SnO2-Sb Electrochemical System in Saline Water. Catal. Today. 2019, 327, 308–314. DOI: 10.1016/j.cattod.2018.04.034.
  • Moreno-Palacios, A. V.; Palma-Goyes, R. E.; Vazquez-Arenas, J.; Torres-Palma, R. A. Bench-scale Reactor for Cefadroxil Oxidation and Elimination of its Antibiotic Activity Using Electro-generated Active Chlorine. J. Environ. Chem. Eng. 2019, 7(3), 103173. DOI: 10.1016/j.jece.2019.103173.
  • Palma-Goyes, R. E.; Vazquez-Arenas, J.; Ostos, C.; Ferraro, F.; Torres-Palma, R. A.; Gonzalez, I. Microstructural and Electrochemical Analysis of Sb2O5 doped-Ti/RuO2-ZrO2 to Yield Active Chlorine Species for Ciprofloxacin Degradation. Electrochim. Acta. 2016, 213, 740–751. DOI: 10.1016/j.electacta.2016.07.150.
  • Kaur, R.; Kushwaha, J. P.; Singh, N. Electro-catalytic Oxidation of Ofloxacin Antibiotic in Continuous Reactor: Evaluation, Transformation Products and Pathway. J. Electrochem. Soc. 2019, 166(6), H250–H261. DOI: 10.1149/2.1281906jes.
  • Hussain, S.; Gul, S.; Steter, J. R.; Miwa, D. W.; Motheo, A. J. Route of Electrochemical Oxidation of the Antibiotic Sulfamethoxazole on a Mixed Oxide Anode. Environ. Sci. Pollut. Res. 2015, 22(19), 15004–15015. DOI: 10.1007/s11356-015-4699-9.
  • Liang, S.; Lin, H.; Yan, X.; Huang, Q. Electro-oxidation of Tetracycline by a Magnéli Phase Ti4O7 Porous Anode: Kinetics, Products, and Toxicity. Chem. Eng. J. 2018, 332, 628–636. DOI: 10.1016/j.cej.2017.09.109.
  • Misal, S. N.; Lin, M.-H.; Mehraeen, S.; Chaplin, B. P. Modeling Electrochemical Oxidation and Reduction of Sulfamethoxazole Using Electrocatalytic Reactive Electrochemical Membranes. J. Hazard. Mater. 2020, 384, 121420. DOI: 10.1016/j.jhazmat.2019.121420.
  • Jojoa-Sierra, S. D.; Silva-Agredo, J.; Herrera-Calderon, E.; Torres-Palma, R. A. Elimination of the Antibiotic Norfloxacin in Municipal Wastewater, Urine and Seawater by Electrochemical Oxidation on IrO2 Anodes. Sci. Total Environ. 2017, 575, 1228–1238. DOI: 10.1016/j.scitotenv.2016.09.201.
  • Yu, H.; Song, Y.; Zhao, B.; Lu, Y.; Zhu, S.; Qu, J.; Wang, X.; Qin, W. Efficient Electrocatalytic Degradation of 4-Chlorophenol Using a Ti/RuO2-SnO2-TiO2/PbO2-CeO2 Composite Electrode. Electrocatalysis. 2018, 9(6), 725–734. DOI: 10.1007/s12678-018-0484-0.
  • Shestakova, M.; Bonete, P.; Gómez, R.; Sillanpää, M.; Tang, W. Z. Novel Ti/Ta2O5-SnO2 Electrodes for Water Electrolysis and Electrocatalytic Oxidation of Organics. Electrochim. Acta. 2014, 120, 302–307. DOI: 10.1016/j.electacta.2013.12.113.
  • Montilla, F.; Morallón, E.; De Battisti, A.; Vázquez, J. L. Preparation and Characterization of Antimony-doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. J. Phys. Chem. B. 2004, 108(16), 5036–5043. DOI: 10.1021/jp037480b.
  • Christensen, P. A.; Zakaria, K.; Christensen, H.; Yonar, T. The Effect of Ni and Sb Oxide Precursors, and of Ni Composition, Synthesis Conditions and Operating Parameters on the Activity, Selectivity and Durability of Sb-Doped SnO2 Anodes Modified with Ni. J. Electrochem. Soc. 2013, 160(8), H405–H413. DOI: 10.1149/2.023308jes.
  • Yang, S. Y.; Kim, D.; Park, H. Shift of the Reactive Species in the Sb–SnO2-electrocatalyzed Inactivation of E. Coli and Degradation of Phenol: Effects of Nickel Doping and Electrolytes. Environ. Sci. Technol. 2014, 48(5), 2877–2884. DOI: 10.1021/es404688z.
  • Carneiro, J. F.; Aquino, J. M.; Silva, A. J.; Barreiro, J. C.; Cass, Q. B.; Rocha-Filho, R. C. The Effect of the Supporting Electrolyte on the Electrooxidation of Enrofloxacin Using a Flow Cell with a BDD Anode: Kinetics and Follow-up of Oxidation Intermediates and Antimicrobial Activity. Chemosphere. 2018, 206, 674–681. DOI: 10.1016/j.chemosphere.2018.05.031.
  • Tan, T.-Y.; Zeng, Z.-T.; Zeng, G.-M.; Gong, J.-L.; Xiao, R.; Zhang, P.; Song, B.; Tang, -W.-W.; Ren, X.-Y. Electrochemically Enhanced Simultaneous Degradation of Sulfamethoxazole, Ciprofloxacin and Amoxicillin from Aqueous Solution by Multi-walled Carbon Nanotube Filter. Sep. Purif. Technol. 2020, 235, 116167. DOI: 10.1016/j.seppur.2019.116167.
  • Tang, B.; Du, J.; Feng, Q.; Zhang, J.; Wu, D.; Jiang, X.; Dai, Y.; Zou, J. Enhanced Generation of Hydroxyl Radicals on Well-crystallized Molybdenum Trioxide/nano-graphite Anode with Sesame Cake-like Structure for Degradation of Bio-refractory Antibiotic. J. Colloid Interface Sci. 2018, 517, 28–39. DOI: 10.1016/j.jcis.2018.01.098.
  • Liu, Z.; Zhu, M.; Zhao, L.; Deng, C.; Ma, J.; Wang, Z.; Liu, H.; Wang, H. Aqueous Tetracycline Degradation by Coal-based Carbon Electrocatalytic Filtration Membrane: Effect of Nano Antimony-doped Tin Dioxide Coating. Chem. Eng. J. 2017, 314, 59–68. DOI: 10.1016/j.cej.2016.12.093.
  • Duan, P.; Yang, X.; Huang, G.; Wei, J.; Sun, Z.; Hu, X. La2O3-CuO2/CNTs Electrode with Excellent Electrocatalytic Oxidation Ability for Ceftazidime Removal from Aqueous Solution. Colloids Surf. A. 2019, 569, 119–128. DOI: 10.1016/j.colsurfa.2019.02.056.
  • Coledam, D. A. C.; Pupo, M. M. S.; Silva, B. F.; Silva, A. J.; Eguiluz, K. I. B.; Salazar-Banda, G. R.; Aquino, J. M. Electrochemical Mineralization of Cephalexin Using a Conductive Diamond Anode: A Mechanistic and Toxicity Investigation. Chemosphere. 2017, 168, 638–647. DOI: 10.1016/j.chemosphere.2016.11.013.
  • Mora-Gomez, J.; Ortega, E.; Mestre, S.; Pérez-Herranz, V.; García-Gabaldón, M. Electrochemical Degradation of Norfloxacin Using BDD and New Sb-doped SnO2 Ceramic Anodes in an Electrochemical Reactor in the Presence and Absence of a Cation-exchange Membrane. Sep. Purif. Technol. 2019, 208, 68–75. DOI: 10.1016/j.seppur.2018.05.017.
  • Lan, Y.; Coetsier, C.; Causserand, C.; Groenen Serrano, K. An Experimental and Modelling Study of the Electrochemical Oxidation of Pharmaceuticals Using a Boron-doped Diamond Anode. Chem. Eng. J. 2018, 333, 486–494. DOI: 10.1016/j.cej.2017.09.164.
  • Sirés, I.; Brillas, E.; Oturan, M. A.; Rodrigo, M. A.; Panizza, M. Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environ. Sci. Pollut. Res. 2014, 21(14), 8336–8367. DOI: 10.1007/s11356-014-2783-1.
  • Canizares, P.; García‐Gómez, J.; Saez, C.; Rodrigo, M. A. Electrochemical Oxidation of Several Chlorophenols on Diamond Electrodes-Part I. Reaction Mechanism. J. Appl. Electrochem. 2003, 33(10), 917–927. DOI: 10.1023/A:1025888126686.
  • Xie, W.; Shi, Y.; Wang, Y.; Zheng, Y.; Liu, H.; Hu, Q.; Wei, S.; Gu, H.; Guo, Z. Electrospun Iron/cobalt Alloy Nanoparticles on Carbon Nanofibers towards Exhaustive Electrocatalytic Degradation of Tetracycline in Wastewater. Chem. Eng. J. 2021, 405, 126585. DOI: 10.1016/j.cej.2020.126585.
  • Pignatello, J. J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36(1), 1–84. DOI: 10.1080/10643380500326564.
  • Martin, E. T.; McGuire, C. M.; Mubarak, M. S.; Peters, D. G. Electroreductive Remediation of Halogenated Environmental Pollutants. Chem. Rev. 2016, 116(24), 15198–15234. DOI: 10.1021/acs.chemrev.6b00531.
  • Isse, A. A.; Scarpa, L.; Durante, C.; Gennaro, A. Reductive Cleavage of Carbon–chlorine Bonds at Catalytic and Non-catalytic Electrodes in 1-butyl-3-methylimidazolium Tetrafluoroborate. Phys. Chem. Chem. Phys. 2015, 17(46), 31228–31236. DOI: 10.1039/C5CP04142B.
  • Chan, K. S.; Liu, C. R.; Wong, K. L. Cobalt Porphyrin Catalyzed Hydrodehalogenation of Aryl Bromides with KOH. Tetrahedron Lett. 2015, 56(21), 2728–2731. DOI: 10.1016/j.tetlet.2015.04.014.
  • McGuire, C. M.; Hansen, A. M.; Karty, J. A.; Peters, D. G. Catalytic Reduction of 4,4′-(2,2,2-trichloroethane-1,1-diyl)bis(methoxybenzene) (Methoxychlor) with Nickel(I) Salen Electrogenerated at Reticulated Vitreous Carbon Cathodes. J. Electroanal. Chem. 2016, 772, 66–72. DOI: 10.1016/j.jelechem.2016.03.024.
  • Yang, L.; Chen, Z.; Cui, D.; Luo, X.; Liang, B.; Yang, L.; Liu, T.; Wang, A.; Luo, S. Ultrafine Palladium Nanoparticles Supported on 3D Self-supported Ni Foam for Cathodic Dechlorination of Florfenicol. Chem. Eng. J. 2019, 359, 894–901. DOI: 10.1016/j.cej.2018.11.099.
  • Liu, H.; Han, J.; Yuan, J.; Liu, C.; Wang, D.; Liu, T.; Liu, M.; Luo, J.; Wang, A.; Crittenden, J. C. Deep Dehalogenation of Florfenicol Using Crystalline CoP Nanosheet Arrays on a Ti Plate via Direct Cathodic Reduction and Atomic H. Environ. Sci. Technol. 2019, 53(20), 11932–11940. DOI: 10.1021/acs.est.9b04352.
  • Liu, T.; Luo, J.; Meng, X.; Yang, L.; Liang, B.; Liu, M.; Liu, C.; Wang, A.; Liu, X.; Pei, Y.; et al. Electrocatalytic Dechlorination of Halogenated Antibiotics via Synergistic Effect of Chlorine-cobalt Bond and Atomic H*. J. Hazard. Mater. 2018, 358, 294–301. DOI: 10.1016/j.jhazmat.2018.06.064.
  • Deng, D.; Deng, F.; Tang, B.; Zhang, J.; Liu, J. Electrocatalytic Reduction of Low-concentration Thiamphenicol and Florfenicol in Wastewater with Multi-walled Carbon Nanotubes Modified Electrode. J. Hazard. Mater. 2017, 332, 168–175. DOI: 10.1016/j.jhazmat.2017.03.013.
  • He, Z.; Sun, J.; Wei, J.; Wang, Q.; Huang, C.; Chen, J.; Song, S. Effect of Silver or Copper Middle Layer on the Performance of Palladium Modified Nickel Foam Electrodes in the 2-chlorobiphenyl Dechlorination. J. Hazard. Mater. 2013, 250-251, 181–189. DOI: 10.1016/j.jhazmat.2013.02.001.
  • Yang, P.; Zhao, H.; Yang, Y.; Zhao, P.; Zhao, X.; Yang, L. Fabrication of N, P-codoped Mo2C/Carbon Nanofibers via Electrospinning as Electrocatalyst for Hydrogen Evolution Reaction. ES Mater. Manuf. 2020, 7, 34–39. DOI: 10.30919/esmm5f618.
  • Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M. A. New Perspectives for Advanced Oxidation Processes. J. Environ. Manage. 2017, 195, 93–99. DOI: 10.1016/j.jenvman.2017.04.010.
  • Lei, J.; Duan, P.; Liu, W.; Sun, Z.; Hu, X. Degradation of Aqueous Cefotaxime in Electro-oxidation-Electro-Fenton-persulfate System with Ti/CNT/SnO2–Sb–Er Anode and Ni@NCNT Cathode. Chemosphere. 2020, 250, 126163. DOI: 10.1016/j.chemosphere.2020.126163.
  • Oturan, N.; Ganiyu, S. O.; Raffy, S.; Oturan, M. A. Sub-stoichiometric Titanium Oxide as a New a Anode Material for Electro-Fenton Process: Application to Electrocatalytic Destruction of Antibiotic Amoxicillin. Appl. Catal. B: Environ. 2017, 217, 214–223. DOI: 10.1016/j.apcatb.2017.05.062.
  • Liu, X.; Yang, D.; Zhou, Y.; Zhang, J.; Luo, L.; Meng, S.; Chen, S.; Tan, M.; Li, Z.; Tang, L. Electrocatalytic Properties of N-doped Graphite Felt in Electro-Fenton Process and Degradation Mechanism of Levofloxacin. Chemosphere. 2017, 182, 306–315. DOI: 10.1016/j.chemosphere.2017.05.035.
  • Li, Y.; Han, J.; Xie, B.; Li, Y.; Zhan, S.; Tian, Y. Synergistic Degradation of Antimicrobial Agent Ciprofloxacin in Water by Using 3D CeO2/RGO Composite as Cathode in Electro-Fenton System. J. Electroanal. Chem. 2017, 784, 6–12. DOI: 10.1016/j.jelechem.2016.11.057.
  • Li, Y.; Han, J.; Mi, X.; Mi, X.; Li, Y.; Zhang, S.; Zhan, S. Modified Carbon Felt Made Using CexA1-xO2 Composites as a Cathode in Electro-Fenton System to Degrade Ciprofloxacin. RSC Adv. 2017, 7(43), 27065–27078. DOI: 10.1039/C7RA03302H.
  • Luo, T.; Feng, H.; Tang, L.; Lu, Y.; Tang, W.; Chen, S.; Yu, J.; Xie, Q.; Ouyang, X.; Chen, Z. Efficient Degradation of Tetracycline by Heterogeneous Electro-Fenton Process Using Cu-doped Fe@Fe2O3: Mechanism and Degradation Pathway. Chem. Eng. J. 2020, 382, 122970. DOI: 10.1016/j.cej.2019.122970.
  • Wohlmuth Da Silva, S.; Arenhart Heberle, A. N.; Pereira Santos, A.; Siqueira Rodrigues, M. A.; Pérez-Herranz, V.; Moura Bernardes, A. Antibiotics Mineralization by Electrochemical and UV-based Hybrid Processes: Evaluation of the Synergistic Effect. Environ. Technol. 2019, 40(26), 3456–3466. DOI: 10.1080/09593330.2018.1478453.
  • Chen, T.; Hao, Q.; Yang, W.; Xie, C.; Chen, D.; Ma, C.; Yao, W.; Zhu, Y. A Honeycomb Multilevel Structure Bi2O3 with Highly Efficient Catalytic Activity Driven by Bias Voltage and Oxygen Defect. Appl. Catal. B: Environ. 2018, 237, 442–448. DOI: 10.1016/j.apcatb.2018.05.044.
  • Liu, X.; Zhou, Y.; Zhang, J.; Luo, L.; Yang, Y.; Huang, H.; Peng, H.; Tang, L.; Mu, Y. Insight into Electro-Fenton and Photo-Fenton for the Degradation of Antibiotics: Mechanism Study and Research Gaps. Chem. Eng. J. 2018, 347, 379–397. DOI: 10.1016/j.cej.2018.04.142.
  • Jandi, M.; Mishra, S. B.; Nxumalo, E. N.; Mhlanga, S. D.; Mishra, A. K. Smart Pathways for the Photocatalytic Degradation of Sulfamethoxazole Drug Using F-Pd Co-doped TiO2 Nanocomposites. Appl. Catal. B: Environ. 2020, 267, 12. DOI: 10.1016/j.apcatb.2020.118716.
  • Wang, Z. W.; Wang, H.; Zeng, Z. T.; Zeng, G. M.; Xu, P.; Xiao, R.; Huang, D. L.; Chen, X. J.; He, L. W.; Zhou, C. Y.; et al. Metal-organic Frameworks Derived Bi2O2CO3/porous Carbon Nitride: A Nanosized Z-scheme Systems with Enhanced Photocatalytic Activity. Appl. Catal. B: Environ. 2020, 267, 13. DOI: 10.1016/j.apcatb.2020.118700.
  • Sotelo-Vazquez, C.; Quesada-Cabrera, R.; Ling, M.; Scanlon, D. O.; Kafizas, A.; Thakur, P. K.; Lee, T.-L.; Taylor, A.; Watson, G. W.; Palgrave, R. G.; et al. Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study. Adv. Funct. Mater. 2017, 27(18), 1605413. DOI: 10.1002/adfm.201605413.
  • Song, S.; Zhang, Y.; Xing, Y.; Wang, C.; Feng, J.; Shi, W.; Zheng, G.; Zhang, H. Rectangular AgIn(WO4)2 Nanotubes: A Promising Photoelectric Material. Adv. Funct. Mater. 2008, 18(16), 2328–2334. DOI: 10.1002/adfm.200800111.
  • Chen, J.; Wang, X.; Huang, Y.; Lv, S.; Cao, X.; Yun, J.; Cao, D. Adsorption Removal of Pollutant Dyes in Wastewater by Nitrogen-doped Porous Carbons Derived from Natural Leaves. Eng. Sci. 2018, 5, 30–38. DOI: 10.30919/es8d666.
  • Wang, B.; Wei, K.; Mo, X.; Hu, J.; He, G.; Wang, Y.; Li, W.; He, Q. Improvement in Recycling Times and Photodegradation Efficiency of Core-Shell Structured Fe3O4@C-TiO2 Composites by pH Adjustment. ES Mater. Manuf. 2019, 4, 51–57. DOI: 10.30919/esmm5f215.
  • Cornejo, O. M.; Murrieta, M. F.; Castañeda, L. F.; Nava, J. L. Characterization of the Reaction Environment in Flow Reactors Fitted with BDD Electrodes for Use in Electrochemical Advanced Oxidation Processes: A Critical Review. Electrochim. Acta. 2020, 331, 135373. DOI: 10.1016/j.electacta.2019.135373.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.