Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 3
2,979
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Microreaction and membrane technologies for continuous single-enantiomer production: A review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Shekhar, C. Chirality Meets Topology. Nat. Mater. 2018, 17(11), 953–954. DOI: 10.1038/s41563-018-0210-6.
  • Barron, L. D. Chirality and Life. Space Sci. Rev. 2008, 135(1–4), 187–201. DOI: 10.1007/s11214-007-9254-7.
  • Kuncha, S. K.; Kruparani, S. P.; Sankaranarayanan, R. Chiral Checkpoints during Protein Biosynthesis. J. Biol. Chem. 2019, 294(45), 16535–16548. DOI: 10.1074/jbc.REV119.008166.
  • Blackmond, D. G. The Origin of Biological Homochirality. Cold Spring Harbor Perspect.Biol. 2019, 11(3), a032540. DOI: 10.1101/cshperspect.a032540.
  • Bentley, R. The Nose as a Stereochemist. Enantiomers and Odor. Chem. Rev. 2006, 106(9), 4099–4112. DOI: 10.1021/cr050049t.
  • Leitereg, T. J.; Guadagni, D. G.; Harris, J.; Mon, T. R.; Teranishi, R. Evidence for the Difference between the Odours of the Optical Isomers (+)- and (−)-carvone. Nature. 1971, 230(5294), 455–456. DOI: 10.1038/230455a0.
  • Gal, J. The Discovery of Stereoselectivity at Biological Receptors: Arnaldo Piutti and the Taste of the Asparagine Enantiomers-History and Analysis on the 125th Anniversary. Chirality. 2012, 24(12), 959–976. DOI: 10.1002/chir.22071.
  • Scott, A. K. Stereoisomers and Drug Toxicity - the Value of Single Stereoisomer Therapy. Drug Safety. 1993, 8(2), 149–159. DOI: 10.2165/00002018-199308020-00005.
  • Chhabra, N.; Aseri, M. L.; Padmanabhan, D. A Review of Drug Isomerism and Its Significance. Int J Appl Basic Med Res. 2013, 3(1), 16–18. DOI: 10.4103/2229-516x.112233.
  • Brown, J. M.; Davies, S. G. Chemical Asymmetric-Synthesis. Nature. 1989, 342(6250), 631–636. DOI: 10.1038/342631a0.
  • Miller, M. T. Thalidomide Embryopathy: A Model for the Study of Congenital Incomitant Horizontal Strabismus. Transact. Am. Ophthalmol. Soc. 1991, 89, 623–674.
  • Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Sturmer, R.; Zelinski, T. Industrial Methods for the Production of Optically Active Intermediates. Angewandte Chemie International Edition. 2004, 43(7), 788–824. DOI: 10.1002/anie.200300599.
  • Ren, Q.; Ruth, K.; Thony-Meyer, L.; Zinn, M. Enatiomerically Pure Hydroxycarboxylic Acids: Current Approaches and Future Perspectives. Appl. Microbiol. Biotechnol. 2010, 87(1), 41–52. DOI: 10.1007/s00253-010-2530-6.
  • Ghanem, A. Trends in Lipase-catalyzed Asymmetric Access to Enantiomerically Pure/enriched Compounds. Tetrahedron. 2007, 63(8), 1721–1754. DOI: 10.1016/j.tet.2006.09.110.
  • Delville, M. M. E.; Van Gool, J. J. F.; van Wijk, I. M.; Van Hest, J. C. M.; Rutjes, F. Synthesis of Methoxyisopropyl (Mip)-protected (R)-mandelonitrile and Derivatives in a Flow Reactor. J. Flow Chem. 2012, 2(4), 124–128. DOI: 10.1556/jfc-d-12-00008.
  • Gruber, P.; Carvalho, F.; Marques, M. P. C.; O’Sullivan, B.; Subrizi, F.; Dobrijevic, D.; Ward, J.; Hailes, H. C.; Fernandes, P.; Wohlgemuth, R.; et al. Enzymatic Synthesis of Chiral Amino-alcohols by Coupling Transketolase and Transaminase-catalyzed Reactions in a Cascading Continuous-flow Microreactor System. Biotechnol. Bioeng. 2018, 115(3), 586–596. DOI: 10.1002/bit.26470.
  • Halim, A. A.; Szita, N.; Baganz, F. Characterization and Multi-step Transketolase-omega-transaminase Bioconversions in an Immobilized Enzyme Microreactor (IEMR) with Packed Tube. J. Biotechnol. 2013, 168(4), 567–575. DOI: 10.1016/j.jbiotec.2013.09.001.
  • Honda, T.; Miyazaki, M.; Yamaguchi, Y.; Nakamura, H.; Maeda, H. Integrated Microreaction System for Optical Resolution of Racemic Amino Acids. Lab Chip. 2007, 7(3), 366–372. DOI: 10.1039/b614500k.
  • Matosevic, S.; Lye, G. J.; Baganz, F. Immobilised Enzyme Microreactor for Screening of Multi-step Bioconversions: Characterisation of a De Novo Transketolase-omega-transaminase Pathway to Synthesise Chiral Amino Alcohols. J. Biotechnol. 2011, 155(3), 320–329. DOI: 10.1016/j.jbiotec.2011.07.017.
  • Milozic, N.; Stojkovic, G.; Vogel, A.; Bouwes, D.; Znidarsic-Plazl, P. Development of Microreactors with Surface-immobilized Biocatalysts for Continuous Transamination. New Biotechnol. 2018, 47, 18–24. DOI: 10.1016/j.nbt.2018.05.004.
  • Sheldon, R. A. Biocatalytic Vs Chemical Synthesis of Enantiomerically Pure Compounds. Chimia. 1996, 50(9), 418–419.
  • Dittrich, P. S.; Manz, A. Lab-on-a-chip: Microfluidics in Drug Discovery. Nat. Rev. Drug Discovery. 2006, 5(3), 210–218. DOI: 10.1038/nrd1985.
  • Abou-Hassan, A.; Sandre, O.; Cabuil, V. Microfluidics in Inorganic Chemistry. Angew. Chem-Int. Ed. 2010, 49(36), 6268–6286. DOI: 10.1002/anie.200904285.
  • deMello, A. J. Control and Detection of Chemical Reactions in Microfluidic Systems. Nature. 2006, 442(7101), 394–402. DOI: 10.1038/nature05062.
  • Whitesides, G. M. The Origins and the Future of Microfluidics. Nature. 2006, 442(7101), 368–373. DOI: 10.1038/nature05058.
  • de Jong, J.; Lammertink, R. G. H.; Wessling, M. Membranes and Microfluidics: A Review. Lab Chip. 2006, 6(9), 1125–1139. DOI: 10.1039/b603275c.
  • Lin, W. Y.; Wang, Y. J.; Wang, S. T.; Tseng, H. R. Integrated Microfluidic Reactors. Nano Today. 2009, 4(6), 470–481. DOI: 10.1016/j.nantod.2009.10.007.
  • Makgwane, P. R.; Ray, S. S. Synthesis of Nanomaterials by Continuous-Flow Microfluidics: A Review. J. Nanosci. Nanotechnol. 2014, 14(2), 1338–1363. DOI: 10.1166/jnn.2014.9129.
  • Maier, N. M.; Franco, P.; Lindner, W. Separation of Enantiomers: Needs, Challenges, Perspectives. J. Chromatogr. A. 2001, 906(1–2), 3–33. DOI: 10.1016/S0021-9673(00)00532-X.
  • Abe, K.; Goto, M.; Nakashio, F. Novel Optical Resolution of Phenylalanine Racemate Utilizing Enzyme Reaction and Membrane Extraction. Sep. Sci. Technol. 1997, 32(11), 1921–1935. DOI: 10.1080/01496399708000745.
  • Hsu, L. C.; Kim, H.; Yang, X.; Ross, D. Large Scale Chiral Chromatography for the Separation of an Enantiomer to Accelerate Drug Development. Chirality. 2011, 23(4), 361–366. DOI: 10.1002/chir.20931.
  • Pinto, M. M. M.; Fernandes, C.; Tiritan, M. E. Chiral Separations in Preparative Scale: A Medicinal Chemistry Point of View. Molecules. 2020, 25(8), 1931. DOI: 10.3390/molecules25081931.
  • Wu, D.; Pan, F.; Tan, W.; Gao, L.; Tao, Y.; Kong, Y. Recent Progress of Enantioseparation under Scale Production (2014–2019). J. Sep. Sci. 2020, 43(1), 337–347. DOI: 10.1002/jssc.201900682.
  • van der Ent, E. M.; Thielen, T. P. H.; Cohen Stuart, M. A.; van der Padt, A.; Keurentjes, J. T. F. Electrodialysis System for Large-Scale Enantiomer Separation. Ind. Eng. Chem. Res. 2001, 40(25), 6021–6027. DOI: 10.1021/ie0103759.
  • Praveen, C. Dexterity of Gold Catalysis in Controlling the Regioselectivity of Cycloaddition Reactions. Catal. Rev.-Sci. Eng. 2019, 61(3), 406–446. DOI: 10.1080/01614940.2019.1594016.
  • Wu, Y. H.; Zhang, L. Y.; Wang, N. X.; Xing, Y. L. Recent Advances in the Rare-earth Metal Triflates-catalyzed Organic Reactions. Catal. Rev.-Sci. Eng. 2020, 1–37. DOI: 10.1080/01614940.2020.1831758.
  • Appun, J.; Boomhoff, M.; Hoffmeyer, P.; Kallweit, I.; Pahl, M.; Belder, D.; Schneider, C. A Highly Stereoselective Synthesis of Tetrahydrofurans. Angew. Chem-Int. Ed. 2017, 56(24), 6758–6761. DOI: 10.1002/anie.201700774.
  • Dai, W.; Mi, Y.; Lv, Y.; Chen, B.; Li, G. S.; Chen, G. W.; Gao, S. Development of a Continuous-Flow Microreactor for Asymmetric Sulfoxidation Using a Biomimetic Manganese Catalyst. Adv. Synth. Catal. 2016, 358(4), 667–671. DOI: 10.1002/adsc.201501023.
  • Dai, W.; Mi, Y.; Lv, Y.; Shang, S. S.; Li, G. S.; Chen, G. W.; Gao, S. Development of a Continuous-Flow Microreactor for Asymmetric Epoxidation of Electron-Deficient Olefins. Synthesis-Stuttgart. 2016, 48(16), 2653–2658. DOI: 10.1055/s-0035-1561955.
  • De Angelis, S.; De Renzo, M.; Carlucci, C.; Degennaro, L.; Luisi, R. A Convenient Enantioselective CBS-reduction of Arylketones in Flow-microreactor Systems. Org. Biomol. Chem. 2016, 14(18), 4304–4311. DOI: 10.1039/c6ob00336b.
  • Hayashi, T.; Kikuchi, S.; Asano, Y.; Endo, Y.; Yamada, T. Homogeneous Enantioselective Catalysis in a Continuous-Flow Microreactor: Highly Enantioselective Borohydride Reduction of Ketones Catalyzed by Optically Active Cobalt Complexes. Org. Process Res. Dev. 2012, 16(6), 1235–1240. DOI: 10.1021/op300061k.
  • Chiroli, V.; Benaglia, M.; Puglisi, A.; Porta, R.; Jumde, R. P.; Mandoli, A. A Chiral Organocatalytic Polymer-based Monolithic Reactor. Green Chem. 2014, 16(5), 2798–2806. DOI: 10.1039/c4gc00031e.
  • Kasaplar, P.; Rodriguez-Escrich, C.; Pericas, M. A. Continuous Flow, Highly Enantioselective Michael Additions Catalyzed by a PS-Supported Squaramide. Org. Lett. 2013, 15(14), 3498–3501. DOI: 10.1021/ol400974z.
  • Kluson, P.; Stavarek, P.; Penkavova, V.; Vychodilova, H.; Hejda, S.; Bendova, M. Microfluidic Chip Reactor and the Stereoselective Hydrogenation of Methylacetoacetate over (R)-ru-binap in the N-8222 Tf2N /Methanol/water Mixed Phase. Chem Eng Processing-Process Intensif. 2017, 115, 39–45. DOI: 10.1016/j.cep.2017.02.002.
  • Kluson, P.; Stavarek, P.; Penkavova, V.; Vychodilova, H.; Hejda, S.; Jaklova, N.; Curinova, P. Stereoselective Synthesis of Optical Isomers of Ethyl 4-chloro-3-hydroxybutyrate in a Microfluidic Chip Reactor. J. Flow Chem. 2019, 9(4), 221–230. DOI: 10.1007/s41981-019-00043-y.
  • Laudadio, G.; Gemoets, H. P. L.; Hessel, V.; Noel, T. Flow Synthesis of Diaryliodonium Triflates. J. Org. Chem. 2017, 82(22), 11735–11741. DOI: 10.1021/acs.joc.7b01346.
  • Liu, H. L.; Feng, J.; Zhang, J. Y.; Miller, P. W.; Chen, L. P.; Su, C. Y. A Catalytic Chiral Gel Microfluidic Reactor Assembled via Dynamic Covalent Chemistry. Chem. Sci. 2015, 6(4), 2292–2296. DOI: 10.1039/c5sc00314h.
  • Nishiyama, Y.; Mori, R.; Nishida, K.; Tanimoto, H.; Morimoto, T.; Kakiuchi, K. Diastereodifferentiating 2+2 Photocycloaddition of a Chiral Cyclohexenone with Cyclopentene in Supercritical Carbon Dioxide Using a Flow Microreactor. J. Flow Chem. 2014, 4(4), 185–189. DOI: 10.1556/jfc-d-14-00012.
  • Pirola, M.; Compostella, M. E.; Raimondi, L.; Puglisi, A.; Benaglia, M. A Continuous-Flow, Two-Step, Metal-Free Process for the Synthesis of Differently Substituted Chiral 1,2-Diamino Derivatives. Synthesis-Stuttgart. 2018, 50(7), 1430–1438. DOI: 10.1055/s-0036-1591911.
  • Rossi, S.; Porta, R.; Brenna, D.; Puglisi, A.; Benaglia, M. Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3D-Printed Mesoreactors. Angew. Chem-Int. Ed. 2017, 56(15), 4290–4294. DOI: 10.1002/anie.201612192.
  • Sandel, S.; Weber, S. K.; Trapp, O. Oxidations with Bonded Salen-catalysts in Microcapillaries. Chem. Eng. Sci. 2012, 83, 171–179. DOI: 10.1016/j.ces.2011.10.034.
  • Shu, W.; Buchwald, S. L. Enantioselective ss-Arylation of Ketones Enabled by Lithiation/Borylation/1,4-Addition Sequence under Flow Conditions. Angew. Chem-Int. Ed. 2012, 51(22), 5355–5358. DOI: 10.1002/anie.201202221.
  • Schober, L.; Ratnam, S.; Yamashita, Y.; Adebar, N.; Pieper, M.; Berkessel, A.; Hessel, V.; Groger, H. An Asymmetric Organocatalytic Aldol Reaction of a Hydrophobic Aldehyde in Aqueous Medium Running in Flow Mode. Synthesis-Stuttgart. 2019, 51(5), 1178–1184. DOI: 10.1055/s-0037-1610404.
  • Solodenko, W.; Jas, G.; Kunz, U.; Kirschning, A. Continuous Enantioselective Kinetic Resolution of Terminal Epoxides Using Immobilized Chiral Cobalt-salen Complexes. Synthesis-Stuttgart. 2007, 4, 583–589. doi: 10.1055/s-2007-965877.
  • Tanaka, D.; Kawakubo, W.; Tsuda, E.; Mitsumoto, Y.; Yoon, D. H.; Sekiguchi, T.; Akitsu, T.; Shoji, S. Microfluidic Synthesis of Chiral Salen Mn(II) and Co(II) Complexes Containing Lysozyme. RSC Adv. 2016, 6(85), 81862–81868. DOI: 10.1039/c6ra09975k.
  • Tang, X. F.; Zhao, J. N.; Wu, Y. F.; Zheng, Z. H.; Ma, C. F.; Yu, Z. Y.; Yun, L.; Liu, G. Z.; Meng, Q. W. Asymmetric Alpha-hydroxylation Of Beta-dicarbonyl Compounds By C-2 ‘ modified cinchonine-derived phase-transfer catalysts in batch and flow microreactors. Synth. Commun. 2020, 50(16), 2478–2487. DOI: 10.1080/00397911.2020.1781183.
  • Terao, K.; Nishiyama, Y.; Aida, S.; Tanimoto, H.; Morimoto, T.; Kakiuchi, K. Diastereodifferentiating 2+2 Photocycloaddition of Chiral Cyclohexenone Carboxylates with Cyclopentene by a Microreactor. J. Photochem. Photobiol. a-Chem. 2012, 242, 13–19. DOI: 10.1016/j.jphotochem.2012.05.021.
  • Tibhe, J. D.; Fu, H.; Noel, T.; Wang, Q.; Meuldijk, J.; Hessel, V. Flow Synthesis of Phenylserine Using Threonine Aldolase Immobilized on Eupergit Support. Beilstein J. Org. Chem. 2013, 9, 2168–2179. DOI: 10.3762/bjoc.9.254.
  • Tomida, Y.; Nagaki, A.; Yoshida, J. Asymmetric Carbolithiation of Conjugated Enynes: A Flow Microreactor Enables the Use of Configurationally Unstable Intermediates before They Epimerize. J. Am. Chem. Soc. 2011, 133(11), 3744–3747. DOI: 10.1021/ja110898s.
  • Vile, G.; Schmidt, G.; Richard-Bildstein, S.; Abele, S. Enantiospecific Cyclization of Methyl N-(tert-butoxycarbonyl)-N-(3-chloropropyl)-D-alaninate to 2-methylproline Derivative via ‘Memory of Chirality’ in Flow. J. Flow Chem. 2019, 9(1), 19–25. DOI: 10.1007/s41981-018-0022-5.
  • Wang, Y. F.; Jiang, Z. H.; Chu, M. M.; Qi, S. S.; Yin, H.; Han, H. T.; Xu, D. Q. Asymmetric Copper-catalyzed Fluorination of Cyclic Beta-keto Esters in a Continuous-flow Microreactor. Org. Biomol. Chem. 2020, 18(26), 4927–4931. DOI: 10.1039/d0ob00588f.
  • Warias, R.; Zaghi, A.; Heiland, J. J.; Piendl, S. K.; Gilmore, K.; Seeberger, P. H.; Massi, A.; Belder, D. An Integrated Lab-on-a-chip Approach to Study Heterogeneous Enantioselective Catalysts at the Microscale. Chemcatchem. 2018, 10(23), 5382–5385. DOI: 10.1002/cctc.201801637.
  • Yoo, C. J.; Rackl, D.; Liu, W. B.; Hoyt, C. B.; Pimentel, B.; Lively, R. P.; Davies, H. M. L.; Jones, C. W. An Immobilized-Dirhodium Hollow-Fiber Flow Reactor for Scalable and Sustainable C-H Functionalization in Continuous Flow. Angew. Chem-Int. Ed. 2018, 57(34), 10923–10927. DOI: 10.1002/anie.201805528.
  • Bartha-Vari, J. H.; Tosa, M. I.; Irimie, F. D.; Weiser, D.; Boros, Z.; Vertessy, B. G.; Paizs, C.; Poppe, L. Immobilization of Phenylalanine Ammonia-Lyase on Single-Walled Carbon Nanotubes for Stereoselective Biotransformations in Batch and Continuous-Flow Modes. Chemcatchem. 2015, 7(7), 1122–1128. DOI: 10.1002/cctc.201402894.
  • Belder, D.; Ludwig, M.; Wang, L. W.; Reetz, M. T. Enantioselective Catalysis and Analysis on a Chip. Angew. Chem-Int. Ed. 2006, 45(15), 2463–2466. DOI: 10.1002/anie.200504205.
  • Cech, J.; Hessel, V.; Pribyl, M. Aldolase Catalyzed L-phenylserine Synthesis in a Slug-flow Microfluidic System - Performance and Diastereoselectivity Studies. Chem. Eng. Sci. 2017, 169, 97–105. DOI: 10.1016/j.ces.2016.08.033.
  • Huh, Y. S.; Jun, Y. S.; Hong, Y. K.; Hong, W. H.; Kim, D. H. Microfluidic Separation of (S)-ibuprofen Using Enzymatic Reaction. J. Mol. Catal. B Enzym. 2006, 43(1–4), 96–101. DOI: 10.1016/j.molcatb.2006.06.017.
  • Cheikhou, K.; Tzedakis, T. Electrochemical Microreactor for Chiral Syntheses Using the Cofactor NADH. AIChE J. 2008, 54(5), 1365–1376. DOI: 10.1002/aic.11463.
  • Kataoka, S.; Takeuchi, Y.; Harada, A.; Yamada, M.; Endo, A. Microreactor with Mesoporous Silica Support Layer for Lipase Catalyzed Enantioselective Transesterification. Green Chem. 2010, 12(2), 331–337. DOI: 10.1039/b917374a.
  • Kawakami, K.; Ueno, M.; Takei, T.; Oda, Y.; Takahashi, R. Application of a Burkholderia Cepacia Lipase-immobilized Silica Monolith Micro-bioreactor to Continuous-flow Kinetic Resolution for Transesterification of (R, S)-1-phenylethanol. Process Biochem. 2012, 47(1), 147–150. DOI: 10.1016/j.procbio.2011.09.017.
  • Koch, K.; Van Den Berg, R. J. F.; Nieuwland, P. J.; Wijtmans, R.; Schoemaker, H. E.; Van Hest, J. C. M.; Rutjes, F. Enzymatic Enantioselective C-C-bond Formation in Microreactors. Biotechnol. Bioeng. 2008, 99(4), 1028–1033. DOI: 10.1002/bit.21649.
  • Koch, K.; Van Den Berg, R. J. F.; Nieuwland, P. J.; Wijtmans, R.; Wubbolts, M. G.; Schoemaker, H. E.; Rutjes, F.; Van Hest, J. C. M. Enzymatic Synthesis of Optically Pure Cyanohydrins in Microchannels Using a Crude Cell Lysate. Chem. Eng. J. 2008, 135, S89–S92. DOI: 10.1016/j.cej.2007.07.013.
  • O’Sullivan, B.; Al-Bahrani, H.; Lawrence, J.; Campos, M.; Cazares, A.; Baganz, F.; Wohlgemuth, R.; Hailes, H. C.; Szita, N. Modular Microfluidic Reactor and Inline Filtration System for the Biocatalytic Synthesis of Chiral Metabolites. J. Mol. Catal. B Enzym. 2012, 77, 1–8. DOI: 10.1016/j.molcatb.2011.12.010.
  • Van Der Helm, M. P.; Bracco, P.; Busch, H.; Szymanska, K.; Jarzebski, A. B.; Hanefeld, U. Hydroxynitrile Lyases Covalently Immobilized in Continuous Flow Microreactors. Catal. Sci. Technol. 2019, 9(5), 1189–1200. DOI: 10.1039/c8cy02192a.
  • Weiser, D.; Bencze, L. C.; Banoczi, G.; Ender, F.; Kiss, R.; Kokai, E.; Szilagyi, A.; Vertessy, B. G.; Farkas, O.; Paizs, C.; et al. Phenylalanine Ammonia-Lyase-Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles. Chembiochem. 2015, 16(16), 2283–2288. DOI: 10.1002/cbic.201500444.
  • Zhang, M.; Ettelaie, R.; Yan, T.; Zhang, S. J.; Cheng, F. Q.; Binks, B. P.; Yang, H. Q. Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. J. Am. Chem. Soc. 2017, 139(48), 17387–17396. DOI: 10.1021/jacs.7b07731.
  • Gao, W. C.; Xiong, Z. Y.; Pirhaghani, S.; Wirth, T. Enantioselective Electrochemical Lactonization Using Chiral Iodoarenes as Mediators. Synthesis-Stuttgart. 2019, 51(1), 276–284. DOI: 10.1055/s-0037-1610373.
  • Cech, J.; Pribyl, M.; Snita, D. Three-phase Slug Flow in Microchips Can Provide Beneficial Reaction Conditions for Enzyme Liquid-liquid Reactions. Biomicrofluidics. 2013, 7(5), 054103. DOI: 10.1063/1.4821168.
  • Romanov, A.; Slouka, Z.; Pribyl, M. Electric-field-enhanced Selective Separation of Products of an Enzymatic Reaction in a Membrane Micro-contactor. Biotechnol. Bioeng. 2021, 118(2), 715–724. DOI: 10.1002/bit.27597.
  • Vobecka, L.; Ticha, L.; Atanasova, A.; Slouka, Z.; Hasal, P.; Pribyl, M. Enzyme Synthesis of Cephalexin in Continuous-flow Microfluidic Device in ATPS Environment. Chem. Eng. J. 2020, 396, 125236. DOI: 10.1016/j.cej.2020.125236.
  • Cech, J.; Schrott, W.; Slouka, Z.; Pribyl, M.; Broz, M.; Kuncova, G.; Snita, D. Enzyme Hydrolysis of Soybean Oil in a Slug Flow Microsystem. Biochem. Eng. J. 2012, 67, 194–202. DOI: 10.1016/j.bej.2012.06.015.
  • Zhang, Y.; Zhang, Y.; Ramstrom, O. Dynamic Covalent Kinetic Resolution. Catal. Rev.-Sci. Eng. 2020, 62(1), 66–95. DOI: 10.1080/01614940.2019.1664031.
  • Gholami, Z.; Tisler, Z.; Rubas, V. Recent Advances in Fischer-Tropsch Synthesis Using Cobalt-based Catalysts: A Review on Supports, Promoters, and Reactors. Catal. Rev.-Sci. Eng. 2020, 1–84. DOI: 10.1080/01614940.2020.1762367.
  • Britton, J.; Majumdar, S.; Weiss, G. A. Continuous Flow Biocatalysis. Chem. Soc. Rev. 2018, 47(15), 5891–5918. DOI: 10.1039/c7cs00906b.
  • Calcaterra, A.; D’Acquarica, I. The Market of Chiral Drugs: Chiral Switches versus De Novo Enantiomerically Pure Compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. DOI: 10.1016/j.jpba.2017.07.008.
  • Smith, S. W. Chiral Toxicology: It’s the Same Thing … Only Different. Toxicol. Sci. 2009, 110(1), 4–30. DOI: 10.1093/toxsci/kfp097.
  • Evans, C. H.; Mankin, H. J.; Ferguson, A. B.; Robbins, P. D.; Ghivizzani, S. C.; Herndon, J. H.; Kang, R.; Tomaino, M. M.; Wright, T. M. Clinical Trial to Assess the Safety, Feasibility, and Efficacy of Transferring a Potentially Anti-arthritic Cytokine Gene to Human Joints with Rheumatoid Arthritis. Hum. Gene Ther. 1996, 7(10), 1261–1280. DOI: 10.1089/hum.1996.7.10-1261.
  • Tsai, R. K.; Lee, Y. H. Reversibility of Ethambutol Optic Neuropathy. J. Ocul. Pharmacol. Ther. 1997, 13(5), 473–477. DOI: 10.1089/jop.1997.13.473.
  • Vargesson, N. Thalidomide-induced Teratogenesis: History and Mechanisms. Birth Defect. Res. Part C-Embryo Today-Rev. 2015, 105(2), 140–156. DOI: 10.1002/bdrc.21096.
  • Albert, K. S.; Gernaat, C. M. Pharmacokinetics of Ibuprofen. Am. J. Med. 1984, 77(1A), 40–46. DOI: 10.1016/s0002-9343(84)80017-0.
  • Burke, W. J.; Kratochvil, C. J. Stereoisomers in Psychiatry: The Case of Escitalopram. Prim. Care Compan. J. Clin. Psychiatry. 2002, 4(1), 20–24. DOI: 10.4088/pcc.v04n0107.
  • Ignarro, L. J. Different Pharmacological Properties of Two Enantiomers in a Unique Beta-blocker, Nebivolol. Cardiovascul. Therap. 2008, 26(2), 115–134. DOI: 10.1111/j.1527-3466.2008.00044.x.
  • da Cunha, L. C.; Gondim, F. A.; de Paola, A. A.; Barros, I. C.; Santos, S. R. Kinetic Disposition of (+)-S- and (-)-r-sotalol Enantiomers in Cardiac Patients with Tachyarrhythmias Using an Improved HPLC-fluorescence Stereoselective Method. Boll. Chim. Farm. 2002, 141(1), 45–51.
  • Kean, W. F.; Lock, C. J. L.; Rischke, J.; Butt, R.; Buchanan, W. W.; Howardlock, H. Effect of R-enantiomer and S-enantiomer of Naproxen on Aggregation and Thromboxane Production in Human-platelets. J. Pharm. Sci. 1989, 78(4), 324–327. DOI: 10.1002/jps.2600780413.
  • Dorszewska, J.; Prendecki, M.; Lianeri, M.; Kozubski, W. Molecular Effects of L-dopa Herapy in Parkinson’s Disease. Curr. Genomics. 2014, 15(1), 11–17. DOI: 10.2174/1389202914666131210213042.
  • Scriba, G. K. Chiral Recognition in Separation Science–an Update. J. Chromatogr. A. 2016, 1467, 56–78. DOI: 10.1016/j.chroma.2016.05.061.
  • Zaera, F. Chirality in Adsorption on Solid Surfaces. Chem. Soc. Rev. 2017, 46(23), 7374–7398. DOI: 10.1039/C7CS00367F.
  • Powell, M. E.; Evans, C. D.; Bull, S. D.; James, T. D.; Fordred, P. S. 8.29 Spectroscopic Analysis: Diastereomeric Derivatization for Spectroscopy. In Comprehensive Chirality; Carreira, E. M., Yamamoto, H., Eds.; Elsevier: Amsterdam, 2012; pp 571–599.
  • Patti, A. Methods for the Preparation of Optically Active Chiral Compounds. In Green Approaches To Asymmetric Catalytic Synthesis; Springer Netherlands: Dordrecht, 2011; pp 1–27.
  • Fernandes, C.; Tiritan, M. E.; Pinto, M. M. M. Chiral Separation in Preparative Scale: A Brief Overview of Membranes as Tools for Enantiomeric Separation. Symmetry. 2017, 9(10), 206. DOI: 10.3390/sym9100206.
  • García Doménech, N.; Purcell-Milton, F.; Gun’ko, Y. K. Recent Progress and Future Prospects in Development of Advanced Materials for Nanofiltration. Mater. Today Commun. 2020, 23, 100888. DOI: 10.1016/j.mtcomm.2019.100888.
  • Rautenbach, R.; Albrecht, R. Membrane Separation Processes; J. Wiley & Sons: Chichester, 1989.
  • Mulder, M. Basic Principles of Membrane Technology; Kluwer Academic Publishers: Dordrecht, 1991.
  • Baker, R. W. Membrane Technology and Applications; John Wiley & Sons: Chichester, 2004.
  • Strathmann, H. Membrane Separation Processes. J. Membr. Sci. 1981, 9(1), 121–189. DOI: 10.1016/S0376-7388(00)85121-2.
  • Slouka, Z.; Senapati, S.; Chang, H.-C. Microfluidic Systems with Ion-Selective Membranes. Ann. Rev. Analyt. Chem. 2014, 7(1), 317–335. DOI: 10.1146/annurev-anchem-071213-020155.
  • Xie, R.; Chu, L.-Y.; Deng, J.-G. Membranes and Membrane Processes for Chiral Resolution. Chem. Soc. Rev. 2008, 37(6), 1243–1263. DOI: 10.1039/B713350B.
  • Kim, D.; Judy, J. W. Analysis of Donnan-dialyzer Irreproducibility and Experimental Study of a Microfluidic Parallel-plate Membrane-separation Module for Total Analysis Systems. J. Membr. Sci. 2014, 460, 148–159. DOI: 10.1016/j.memsci.2014.02.029.
  • Anand, D.; Dhoke, G. V.; Gehrmann, J.; Garakani, T. M.; Davari, M. D.; Bocola, M.; Zhu, L.; Schwaneberg, U. Chiral Separation of D/l-arginine with Whole Cells through an Engineered FhuA Nanochannel. Chem. Commun. 2019, 55(38), 5431–5434. DOI: 10.1039/C9CC00154A.
  • Ingole, P. G.; Bajaj, H. C.; Singh, K. Membrane Separation Processes: Optical Resolution of Lysine and Asparagine Amino Acids. Desalination. 2014, 343, 75–81. DOI: 10.1016/j.desal.2013.10.009.
  • Abbasi, A.; Rahbar-Kelishami, A.; Ghasemi, M. J. Development of a Microfluidic-chip System Based on Parallel Flow for Intensified Gd(III) Extraction from Nitrate Media Using Cationic Extractant. J. Rare Earths. 2018, 36(11), 1198–1204. DOI: 10.1016/j.jre.2018.03.024.
  • Bryjak, M.; Kozłowski, J.; Wieczorek, P.; Kafarski, P. Enantioselective Transport of Amino Acid through Supported Chiral Liquid Membranes. J. Membr. Sci. 1993, 85(3), 221–228. DOI: 10.1016/0376-7388(93)85276-3.
  • Miyako, E.; Maruyama, T.; Kubota, F.; Kamiya, N.; Goto, M. Optical Resolution of Various Amino Acids Using a Supported Liquid Membrane Encapsulating a Surfactant−Protease Complex. Langmuir. 2005, 21(10), 4674–4679. DOI: 10.1021/la046789z.
  • Murai, Y.; Yoshikawa, M. Polymeric Pseudo-liquid Membranes from Poly(dodecyl Methacrylate): KCl Transport and Optical Resolution. Polym. J. 2013, 45(10), 1058–1063. DOI: 10.1038/pj.2013.30.
  • Aoki, T.; Maruyama, A.; Shinohara, K.-I.; Oikawa, E. Optical Resolution by Use of Surface-Modified Poly(methyl Methacrylate) Membrane Containing (–)-oligo{methyl(10-pinanyl)siloxane}. Polym. J. 1995, 27(5), 547–550. DOI: 10.1295/polymj.27.547.
  • Aoki, T.; Shinohara, K. I.; Oikawa, E. Optical Resolution through the Solid Membrane from (+)‐poly {1‐[dimethyl (10‐pinanyl) Silyl]‐1‐propyne}. Die Makromolekulare Chemie, Rapid Communicat. 1992, 13(12), 565–570. DOI: 10.1002/marc.1992.030131206.
  • Yuan, L. M.; Ma, W.; Xu, M.; Zhao, H. L.; Li, Y. Y.; Wang, R. L.; Duan, A. H.; Ai, P.; Chen, X. X. Optical Resolution and Mechanism Using Enantioselective Cellulose, Sodium Alginate and hydroxypropyl‐β‐cyclodextrin Membranes. Chirality. 2017, 29(6), 315–324. DOI: 10.1002/chir.22693.
  • Singh, K.; Bajaj, H. Optical Resolution of Racemic Tryptophan through Non-chiral Membranes by Ultrafiltration Using Chiral Selector in Solution. Indian J. Chem. Technol. 2007, 14(6), 547–551.
  • Schuur, B.; Verkuijl, B. J. V.; Minnaard, A. J.; De Vries, J. G.; Heeres, H. J.; Feringa, B. L. Chiral Separation by Enantioselective Liquid-liquid Extraction. Org. Biomol. Chem. 2011, 9(1), 36–51. DOI: 10.1039/c0ob00610f.
  • Armstrong, D. W.; Jin, H. L. Enrichment of Enantiomers and Other Isomers with Aqueous Liquid Membranes Containing Cyclodextrin Carriers. Anal. Chem. 1987, 59(18), 2237–2241. DOI: 10.1021/ac00145a005.
  • Wang, J. F.; Luo, J. Q.; Feng, S. C.; Li, H. R.; Wan, Y. H.; Zhang, X. P. Recent Development of Ionic Liquid Membranes. Green Energy Environ. 2016, 1(1), 43–61. DOI: 10.1016/j.gee.2016.05.002.
  • Izák, P.; Kragl, U.; Köckerling, M. Multiphase Membrane. DE 10 2006 024 397 2006.
  • Izak, P.; Ruth, W.; Fei, Z.; Dyson, P. J.; Kragl, U. Selective Removal of Acetone and Butan-1-ol from Water with Supported Ionic Liquid-polydimethylsiloxane Membrane by Pervaporation. Chem. Eng. J. 2008, 139(2), 318–321. DOI: 10.1016/j.cej.2007.08.001.
  • Izak, P.; Bobbink, F. D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, S.; Dyson, P. J. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies. Chempluschem. 2018, 83(1), 7–18. DOI: 10.1002/cplu.201700293.
  • Wang, S. F.; Wu, Y. Z.; Zhang, N.; He, G. W.; Xin, Q. P.; Wu, X. Y.; Wu, H.; Cao, X. Z.; Guiver, M. D.; Jiang, Z. Y. A Highly Permeable Graphene Oxide Membrane with Fast and Selective Transport Nanochannels for Efficient Carbon Capture. Energy Environ. Sci. 2016, 9(10), 3107–3112. DOI: 10.1039/c6ee01984f.
  • Hoek, E. M. V.; Tarabara, V. V. Encyclopedia of Membrane Science and Technology; Hoboken: John Wiley & Sons, 2013.
  • Xie, S.-M.; Wang, W.-F.; Ai, P.; Yang, M.; Yuan, L.-M. Chiral Separation of (R,s)-2-phenyl-1-propanol through Cellulose Acetate Butyrate Membranes. J. Membr. Sci. 2008, 321(2), 293–298. DOI: 10.1016/j.memsci.2008.05.011.
  • van der Ent, E. M.; van’t Riet, K.; Keurentjes, J. T. F.; van der Padt, A. Design Criteria for Dense Permeation-selective Membranes for Enantiomer Separations. J. Membr. Sci. 2001, 185(2), 207–221. DOI: 10.1016/S0376-7388(00)00647-5.
  • Aoki, T.; Shinohara, K.-I.; Kaneko, T.; Oikawa, E. Macromolecular Design for Optical Resolution Membrane. J. Synthetic Org. Chem., Japan. 1996, 54(6), 525–536. DOI: 10.5059/yukigoseikyokaishi.54.525.
  • Higuchi, A.; Ishida, Y.; Nakagawa, T. Surface Modified Polysulfone Membranes: Separation of Mixed Proteins and Optical Resolution of Tryptophan. Desalination. 1993, 90(1), 127–136. DOI: 10.1016/0011-9164(93)80170-R.
  • Nakamura, M.; Kiyohara, S.; Saito, K.; Sugita, K.; Sugo, T. Chiral Separation of Dl-tryptophan Using Porous Membranes Containing Multilayered Bovine Serum Albumin Crosslinked with Glutaraldehyde. J. Chromatogr. A. 1998, 822(1), 53–58. DOI: 10.1016/S0021-9673(98)00501-9.
  • Yuan, L.; Su, Y.; Duan, A.; Zheng, Y.; Ai, P.; Chen, X. Optical Resolution of D, L-Phenylglycine and Chiral Separation Mechanism Using an Enantioselective Membrane of Vancomycin. Chem. J. Chin. Univ. 2016, 37(11), 1960–1965. DOI: 10.7503/cjcu20160460.
  • Liu, L.; Zang, Y.; Hadano, S.; Aoki, T.; Teraguchi, M.; Kaneko, T.; Namikoshi, T. New Achiral Phenylacetylene Monomers Having an Oligosiloxanyl Group Most Suitable for Helix-Sense-Selective Polymerization and for Obtaining Good Optical Resolution Membrane Materials. Macromolecules. 2010, 43(22), 9268–9276. DOI: 10.1021/ma101999k.
  • Keating, J. J.; Bhattacharya, S.; Belfort, G. Separation of D, L-amino Acids Using Ligand Exchange Membranes. J. Membr. Sci. 2018, 555, 30–37. DOI: 10.1016/j.memsci.2018.03.030.
  • Michaels, A. S. Membranes, Membrane Processes, and Their Applications - Needs, Unsolved Problems, and Challenges of the 1990s. Desalination. 1990, 77(1–3), 5–34. DOI: 10.1016/0011-9164(90)85018-6.
  • Hadik, P.; Szabó, L.-P.; Nagy, E. D,L-lactic Acid and D,L-alanine Enantioseparation by Membrane Process. Desalination. 2002, 148(1), 193–198. DOI: 10.1016/S0011-9164(02)00697-5.
  • Hadik, P.; Szabó, L. P.; Nagy, E.; Farkas, Z. Enantioseparation of D,L-lactic Acid by Membrane Techniques. J. Membr. Sci. 2005, 251(1), 223–232. DOI: 10.1016/j.memsci.2004.10.044.
  • Ingole, P. G.; Ingole, N. P. Methods for Separation of Organic and Pharmaceutical Compounds by Different Polymer Materials. Korean J. Chem. Eng. 2014, 31(12), 2109–2123. DOI: 10.1007/s11814-014-0284-z.
  • Kim, J. H.; Kim, J. H.; Jegal, J.; Lee, K.-H. Optical Resolution of α-amino Acids through Enantioselective Polymeric Membranes Based on Polysaccharides. J. Membr. Sci. 2003, 213(1), 273–283. DOI: 10.1016/S0376-7388(02)00534-3.
  • Krone, K. M.; Warias, R.; Ritter, C.; Li, A. T.; Acevedo-Rocha, C. G.; Reetz, M. T.; Beldert, D. Analysis of Enantioselective Biotransformations Using a Few Hundred Cells on an Integrated Microfluidic Chip. J. Am. Chem. Soc. 2016, 138(7), 2102–2105. DOI: 10.1021/jacs.5b12443.
  • Singh, K.; Devi, S.; Bajaj, H. C.; Ingole, P.; Choudhari, J.; Bhrambhatt, H. Optical Resolution of Racemic Mixtures of Amino Acids through Nanofiltration Membrane Process. Sep. Sci. Technol. 2014, 49(17), 2630–2641. DOI: 10.1080/01496395.2014.911023.
  • Ingole, P. G.; Singh, K.; Bajaj, H. C. Enantioselective Polymeric Composite Membrane for Optical Resolution of Racemic Mixtures of α-amino Acids. Sep. Sci. Technol. 2011, 46(12), 1898–1907. DOI: 10.1080/01496395.2011.585625.
  • Singh, K.; Ingole, P. G.; Bajaj, H. C.; Bhattacharya, A.; Brahmbhatt, H. R. Optical Resolution of α-Amino Acids by Reverse Osmosis Using Enantioselective Polymer Membrane Containing Chiral Metal-Schiff Base Complex. Sep. Sci. Technol. 2010, 45(10), 1374–1384. DOI: 10.1080/01496391003758028.
  • Gaálová, J.; Yalcinkaya, F.; Cuřínová, P.; Kohout, M.; Stibor, I.; Izák, P. Composite chiral membrane, preparation method and methods of enrichment of mixtures of enantiomers. CZ 308513, 2020.
  • Hadik, P.; Kotsis, L.; Eniszné-Bódogh, M.; Szabó, L.-P.; Nagy, E. Lactic Acid Enantioseparation by Means of Porous Ceramic Disc and Hollow Fiber Organic Membrane. Sep. Purif. Technol. 2005, 41(3), 299–304. DOI: 10.1016/j.seppur.2004.03.020.
  • Gaálová, J.; Yalcinkaya, F.; Cuřínová, P.; Kohout, M.; Yalcinkaya, B.; Koštejn, M.; Jirsák, J.; Stibor, I.; Bara, J. E.; Van der Bruggen, B. Separation of Racemic Compound by Nanofibrous Composite Membranes with Chiral Selector. J. Membr. Sci. 2020, 596, 117728. DOI: 10.1016/j.memsci.2019.117728.
  • Yoon, T.-H.; Hong, L.-Y.; Kim, D.-P. Chiral Separation by a Pseudo Membrane in a Triple-Laminar Flow with a Microfluidic Contactor. Chem. Asian J. 2011, 6(4), 1015–1018. DOI: 10.1002/asia.201000798.
  • Wang, P.-C.; Gao, J.; Lee, C. S. High-resolution Chiral Separation Using Microfluidics-based Membrane Chromatography. J. Chromatogr. A. 2002, 942(1–2), 115–122. DOI: 10.1016/s0021-9673(01)01399-1.
  • Fakhari, A. R.; Mohammadi Kosalar, H.; Asadi, S.; Hasheminasab, K. S. Surfactant‐assisted Electromembrane Extraction Combined with Cyclodextrin‐modified Capillary Electrophoresis for the Separation and Quantification of Tranylcypromine Enantiomers in Biological Samples. J. Sep. Sci. 2018, 41(2), 475–482. DOI: 10.1002/jssc.201700488.
  • Nojavan, S.; Fakhari, A. R. Electro Membrane Extraction Combined with Capillary Electrophoresis for the Determination of Amlodipine Enantiomers in Biological Samples. J. Sep. Sci. 2010, 33(20), 3231–3238. DOI: 10.1002/jssc.201000242.
  • El-Feky, H. H.; Cano-Odena, A.; Gumi, T. Facile Synthesis of Porous Monolithic Membrane Microdevice. J. Membr. Sci. 2013, 439, 96–102. DOI: 10.1016/j.memsci.2013.03.008.
  • Grossehilmann, J.; Vanderveen, J. R.; Jessop, P. G.; Kragl, U. Switchable-Hydrophilicity Solvents for Product Isolation and Catalyst Recycling in Organocatalysis. Chemsuschem. 2016, 9(7), 696–702. DOI: 10.1002/cssc.201501654.
  • Ohla, S.; Beyreiss, R.; Fritzsche, S.; Glaser, P.; Nagl, S.; Stockhausen, K.; Schneider, C.; Belder, D. Monitoring On-Chip Pictet-Spengler Reactions by Integrated Analytical Separation and Label-Free Time-Resolved Fluorescence. Chemistry. 2012, 18(4), 1240–1246. DOI: 10.1002/chem.201101768.
  • Lotter, C.; Poehler, E.; Heiland, J. J.; Mauritz, L.; Belder, D. Enantioselective Reaction Monitoring Utilizing Two-dimensional Heart-cut Liquid Chromatography on an Integrated Microfluidic Chip. Lab Chip. 2016, 16(24), 4648–4652. DOI: 10.1039/c6lc01138a.
  • Scatena, G. S.; de la Torre, A. F.; Cass, Q. B.; Rivera, D. G.; Paixao, M. W. Multicomponent Approach to Silica-Grafted Peptide Catalysts: A 3D Continuous-Flow Organocatalytic System with On-line Monitoring of Conversion and Stereoselectivity. Chemcatchem. 2014, 6(11), 3208–3214. DOI: 10.1002/cctc.201402501.
  • Johnson, A. C.; Bowser, M. T. Micro Free Flow Electrophoresis. Lab Chip. 2018, 18(1), 27–40. DOI: 10.1039/c7lc01105a.
  • Lu, N.; Sticker, D.; Kretschmann, A.; Petersen, N. J.; Kutter, J. P. A Thiol-ene Microfluidic Device Enabling Continuous Enzymatic Digestion and Electrophoretic Separation as Front-end to Mass Spectrometric Peptide Analysis. Anal. Bioanal. Chem. 2020, 412(15), 3559–3571. DOI: 10.1007/s00216-020-02609-5.