Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 3
993
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst

, , , , &

References

  • Liao, L.; Wang, S.; Xiao, J.; Bian, X.; Zhang, Y.; Scanlon, M. D.; Hu, X.; Tang, Y.; Liu, B.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7(1), 387–392. DOI: 10.1039/C3EE42441C.
  • McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 C. Nature. 2015, 517(7533), 187. DOI: 10.1038/nature14016.
  • Deeke, A.; Sleutels, T. H.; Hamelers, H. V.; Buisman, C. J. Capacitive bioanodes enable renewable energy storage in microbial fuel cells. Environ. Sci. Technol. 2012, 46(6), 3554–3560. DOI: 10.1021/es204126r.
  • Lajunen, A.; Lipman, T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy. 2016, 106, 329–342. DOI: 10.1016/j.energy.2016.03.075.
  • Zhang, X.; Li, X.; Zhao, X.; Li, Y. Factors affecting the efficiency of a bioelectrochemical system: A review. RSC Adv. 2019, 9(34), 19748–19761. DOI: 10.1039/C9RA03605A.
  • Pant, D.; Singh, A.; Van Bogaert, G.; Olsen, S. I.; Nigam, P. S.; Diels, L.; Vanbroekhoven, K. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012, 2(4), 1248–1263. DOI: 10.1039/C1RA00839K.
  • Hiegemann, H.; Littfinski, T.; Krimmler, S.; Lübken, M.; Klein, D.; Schmelz, K.-G.; Ooms, K.; Pant, D.; Wichern, M. Performance and inorganic fouling of a submergible 255 L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresour. Technol. 2019, 294, 122227. DOI: 10.1016/j.biortech.2019.122227.
  • Das, S.; Ludo, D.; Deepak, P.; Patil, S.; Ghangrekar, M. Microbial electrosynthesis: A way towards the production of electro-commodities through carbon sequestration with microbes as biocatalysts. J. Electrochem. Soc. 2020, 167(15), 155510. DOI: 10.1149/1945-7111/abb836.
  • Sarkar, I. J. R.; Peera, S. G.; Chetty, R. Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte. Ionics. 2020, 26(11), 5685–5696. DOI: 10.1007/s11581-020-03722-2.
  • Rismani-Yazdi, H.; Carver, S. M.; Christy, A. D.; Tuovinen, O. H. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources. 2008, 180(2), 683–694. DOI: 10.1016/j.jpowsour.2008.02.074.
  • Rana, S.; Singh, L. Bin Ab Wahid, Z. Electrotroph as an Emerging Biocommodity Producer in a Biocatalyzed Bioelectrochemical System. Waste to Sustainable Energy: MFCs–Prospects through Prognosis 2019.
  • Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7(5), 375–381. DOI: 10.1038/nrmicro2113.
  • Wang, H.; Luo, H.; Fallgren, P. H.; Jin, S.; Ren, Z. J. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol. Adv. 2015, 33(3–4), 317–334. DOI: 10.1016/j.biotechadv.2015.04.003.
  • Logan, B. E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40(17), 5181–5192. DOI: 10.1021/es0605016.
  • Liew, K. B.; Daud, W. R. W.; Ghasemi, M.; Leong, J. X.; Lim, S. S.; Ismail, M. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. Int. J. Hydrogen Energy. 2014, 39(10), 4870–4883. DOI: 10.1016/j.ijhydene.2014.01.062.
  • Hamelers, H. V.; Ter Heijne, A.; Sleutels, T. H.; Jeremiasse, A. W.; Strik, D. P.; Buisman, C. J. New applications and performance of bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85(6), 1673–1685. DOI: 10.1007/s00253-009-2357-1.
  • Yuan, H.; Hou, Y.; Abu-Reesh, I. M.; Chen, J.; He, Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horiz. 2016, 3(5), 382–401. DOI: 10.1039/C6MH00093B.
  • Cheng, S.; Liu, H.; Logan, B. E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 2006, 40(7), 2426–2432. DOI: 10.1021/es051652w.
  • Koo, B.; Jung, S. P. Recent Trends of Oxygen Reduction Catalysts in Microbial Fuel Cells: A Review. J. Korean Soc. Environ. Eng. 2019, 41(11), 657–675. DOI: 10.4491/KSEE.2019.41.11.657.
  • Li, Y.; Li, Q.; Wang, H.; Zhang, L.; Wilkinson, D. P.; Zhang, J. Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochem. Energy Rev. 2019, 2(4), 1–21.
  • Fujita, T.; Guan, P.; McKenna, K.; Lang, X.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11(9), 775–780. DOI: 10.1038/nmat3391.
  • Luo, M.; Sun, Y.; Qin, Y.; Li, Y.; Li, C.; Yang, Y.; Xu, N.; Wang, L.; Guo, S. Palladium-based nanoelectrocatalysts for renewable energy generation and conversion. Mater. Today Nano. 2018, 1, 29–40. DOI: 10.1016/j.mtnano.2018.04.008.
  • Sonawane, J. M.; Pant, D.; Ghosh, P. C.; Adeloju, S. B. Fabrication of a carbon paper/polyaniline-copper hybrid and its utilization as an air cathode for microbial fuel cells. ACS Appl. Energy Mater. 2019, 2(3), 1891–1902. DOI: 10.1021/acsaem.8b02017.
  • Singh, S.; Pophali, A.; Omar, R. A.; Kumar, R.; Kumar, P.; Mondal, D. P.; Pant, D.; Verma, N. A nickel oxide-decorated in situ grown 3-D graphitic forest engrained carbon foam electrode for microbial fuel cells. Chem. Commun. 2021, 57(7), 879–882. DOI: 10.1039/D0CC07303B.
  • Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5(2), 5577–5591. DOI: 10.1039/c2ee02618j.
  • Cao, B.; Veith, G. M.; Diaz, R. E.; Liu, J.; Stach, E. A.; Adzic, R. R.; Khalifah, P. G. Cobalt molybdenum oxynitrides: Synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52(41), 10753–10757. DOI: 10.1002/anie.201303197.
  • Kreider, M.; Stevens, M. B.; Liu, Y.; Gallo, A.; Mehta, A.; King, L. A.; Jaramillo, T. F. In Nickel and Molybdenum Nitrides As Oxygen Reduction Reaction Catalysts: Probing the Structure-Activity Relationship, Meeting Abstracts, The Electrochemical Society: 2019; pp 1495.
  • Cho, K. Y.; Yeom, Y. S.; Seo, H. Y.; Kumar, P.; Lee, A. S.; Baek, K.-Y.; Yoon, H. G. Molybdenum-doped PdPt@ Pt core–shell octahedra supported by ionic block copolymer-functionalized graphene as a highly active and durable oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces. 2017, 9(2), 1524–1535. DOI: 10.1021/acsami.6b13299.
  • Luo, Y.; Kirchhoff, B.; Fantauzzi, D.; Calvillo, L.; Estudillo‐Wong, L. A.; Granozzi, G.; Jacob, T.; Alonso‐Vante, N. Molybdenum doping augments platinum–Copper Oxygen reduction Electrocatalyst. ChemSusChem. 2018, 11(1), 193–201. DOI: 10.1002/cssc.201701822.
  • Shaik, G. P.; Kwon, H.-J.; Lee, T. G. Highly efficient Co@ NCS nanosheet electrocatalyst for oxygen reduction reaction: An environment-friendly, low-cost and sustainable electrocatalyst. Mater. Res. Bull. 2020, 128, 110873. DOI: 10.1016/j.materresbull.2020.110873.
  • Wang, Q.; Huang, L.; Quan, X.; Puma, G. L. Sequential anaerobic and electro-Fenton processes mediated by W and Mo oxides for degradation/mineralization of azo dye methyl orange in photo assisted microbial fuel cells. Appl. Catal. B Environ. 2019, 245, 672–680. DOI: 10.1016/j.apcatb.2019.01.026.
  • Lu, Y.; Li, Z.; Xu, Y.; Tang, L.; Xu, S.; Li, D.; Zhu, J.; Jiang, D. Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 411, 128433. DOI: 10.1016/j.cej.2021.128433.
  • Hubaut, R.; Altafulla, J.; Rives, A.; Scott, C. Characterization and HDS activities of mixed Fe–Mo sulphides supported on alumina and carbon. Fuel. 2007, 86(5–6), 743–749. DOI: 10.1016/j.fuel.2006.09.012.
  • Clauwaert, P.; Aelterman, P.; De Schamphelaire, L.; Carballa, M.; Rabaey, K.; Verstraete, W. Minimizing losses in bio-electrochemical systems: The road to applications. Appl. Microbiol. Biotechnol. 2008, 79(6), 901–913. DOI: 10.1007/s00253-008-1522-2.
  • Xie, X.; Pasta, M.; Hu, L.; Yang, Y.; McDonough, J.; Cha, J.; Criddle, C. S.; Cui, Y. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells. Energy Environ. Sci. 2011, 4(4), 1293–1297. DOI: 10.1039/c0ee00793e.
  • Liu, X.-W.; Li, -W.-W.; Yu, H.-Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem. Soc. Rev. 2014, 43(22), 7718–7745. DOI: 10.1039/C3CS60130G.
  • Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev. 2018, 118(5), 2340–2391. DOI: 10.1021/acs.chemrev.7b00542.
  • Dessie, Y.; Tadesse, S.; Eswaramoorthy, R. Review on manganese oxide based biocatalyst in microbial fuel cell: Nanocomposite approach. Mater. Sci.Energy Technol. 2019, 3, 136–149.
  • Khilari, S.; Pradhan, D. Role of Cathode Catalyst in Microbial Fuel Cell. In Microbial Fuel Cell; Springer, 2018; pp 141–163.
  • Kadier, A.; Kalil, M. S.; Abdeshahian, P.; Chandrasekhar, K.; Mohamed, A.; Azman, N. F.; Logroño, W.; Simayi, Y.; Hamid, A. A. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renewable Sustainable Energy Rev. 2016, 61, 501–525.
  • Harnisch, F.; Schröder, U. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev. 2010, 39(11), 4433–4448. DOI: 10.1039/c003068f.
  • Liao, L.; Bian, X.; Xiao, J.; Liu, B.; Scanlon, M. D.; Girault, H. H. Nanoporous molybdenum carbide wires as an active electrocatalyst towards the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16(21), 10088–10094. DOI: 10.1039/C3CP54754J.
  • Xia, D.; Liu, S.; Wang, Z.; Chen, G.; Zhang, L.; Zhang, L.; Hui, S. R.; Zhang, J. Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. J. Power Sources. 2008, 177(2), 296–302. DOI: 10.1016/j.jpowsour.2007.11.050.
  • Qi, J.; Jiang, L.; Jiang, Q.; Wang, S.; Sun, G. Theoretical and experimental studies on the relationship between the structures of molybdenum nitrides and their catalytic activities toward the oxygen reduction reaction. J. Phys. Chem. C. 2010, 114(42), 18159–18166. DOI: 10.1021/jp102284s.
  • Luque, G. C.; Fernández, J. L. Electrocatalysis of oxygen reduction at electrodeposited molybdenum phosphate-based films. J. Power Sources. 2012, 203, 57–64.
  • Gautam, R. K.; Verma, A. Electrocatalyst Materials for Oxygen Reduction Reaction in Microbial Fuel Cell. In Microbial Electrochemical Technology; Elsevier, 2019; pp 451–483.
  • Zhou, R.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. Determination of the electron transfer number for the oxygen reduction reaction: From theory to experiment. ACS Catal. 2016, 6(7), 4720–4728.
  • Song, C.; Zhang, J. Electrocatalytic oxygen reduction reaction. In PEM fuel cell electrocatalysts and catalyst layers; Springer, 2008; pp 89–134.
  • Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 2011, 4(3), 760–764. DOI: 10.1039/c0ee00326c.
  • Erable, B.; Féron, D.; Bergel, A. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: A review. ChemSusChem. 2012, 5(6), 975–987. DOI: 10.1002/cssc.201100836.
  • Peera, S. G.; Maiyalagan, T.; Liu, C.; Ashmath, S.; Lee, T. G.; Jiang, Z.; Mao, S. A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. Int. J. Hydrogen Energy. 2021, 46(4), 3056–3089.
  • Kannan, M. Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications. Biosens. Bioelectron. 2016, 77, 1208–1220. DOI: 10.1016/j.bios.2015.10.018.
  • Wang, C.; Wang, D.; Liu, S.; Jiang, P.; Lin, Z.; Xu, P.; Yang, K.; Lu, J.; Tong, H.; Hu, L. Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction. J. Catal. 2020, 389, 150–156. DOI: 10.1016/j.jcat.2020.05.034.
  • Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016, 351(6271), 361–365. DOI: 10.1126/science.aad0832.
  • Fei, H.; Dong, J.; Feng, Y.; Allen, C. S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H. General synthesis and definitive structural identification of MN 4 C 4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1(1), 63–72. DOI: 10.1038/s41929-017-0008-y.
  • Tang, C.; Jiao, Y.; Shi, B.; Liu, J. N.; Xie, Z.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two‐electron oxygen reduction on high‐loading molybdenum single‐atom catalysts. Angew. Chem. Int. Ed. 2020, 59(23), 9171–9176. DOI: 10.1002/anie.202003842.
  • Yuan, H.; Li, J.; Yuan, C.; He, Z. Facile synthesis of MoS2@ CNT as an effective catalyst for hydrogen production in microbial electrolysis cells. ChemElectroChem. 2014, 1(11), 1828–1833. DOI: 10.1002/celc.201402150.
  • Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4(11), 3957–3971. DOI: 10.1021/cs500923c.
  • Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14(3), 1228–1233. DOI: 10.1021/nl404108a.
  • Pu, Z.; Liu, Q.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Graphene film-confined molybdenum sulfide nanoparticles: Facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst. J. Power Sources. 2014, 263, 181–185. DOI: 10.1016/j.jpowsour.2014.03.093.
  • Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2(7), 1262–1267. DOI: 10.1039/C1SC00117E.
  • Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A. 2019, 7(25), 14971–15005. DOI: 10.1039/C9TA03220G.
  • Tokash, J. C.; Logan, B. E. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. Int. J. Hydrogen Energy. 2011, 36(16), 9439–9445. DOI: 10.1016/j.ijhydene.2011.05.080.
  • Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127(15), 5308–5309. DOI: 10.1021/ja0504690.
  • Kokko, M.; Bayerköhler, F.; Erben, J.; Zengerle, R.; Kurz, P.; Kerzenmacher, S. Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater. Appl. Energy. 2017, 190, 1221–1233. DOI: 10.1016/j.apenergy.2016.12.097.
  • Li, -W.-W.; Yu, H.-Q.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2014, 7(3), 911–924. DOI: 10.1039/C3EE43106A.
  • Chae, K.-J.; Choi, M.-J.; Kim, K.-Y.; Ajayi, F. F.; Chang, I.-S.; Kim, I. S. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen. Environ. Sci. Technol. 2009, 43(24), 9525–9530. DOI: 10.1021/es9022317.
  • Lang, P.; Yuan, N.; Jiang, Q.; Zhang, Y.; Tang, J. Recent advances and prospects of metal‐based catalysts for oxygen reduction reaction. Energy Technol. 2020, 8(3), 1900984. DOI: 10.1002/ente.201900984.
  • Tabassum, H.; Mahmood, A.; Zhu, B.; Liang, Z.; Zhong, R.; Guo, S.; Zou, R. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ. Sci. 2019, 12(10), 2924–2956. DOI: 10.1039/C9EE00315K.
  • Pletcher, D.; Greff, R.; Peat, R.; Peter, L.; Robinson, J. Instrumental methods in electrochemistry; Elsevier, 2001.
  • de Oliveira, F. M.; Guedes, T. D. J.; Lima, A. B.; Da Silva, L. M.; Dos Santos, W. T. Alternative method to obtain the Tafel plot for simple electrode reactions using batch injection analysis coupled with multiple-pulse amperometric detection. Electrochim. Acta. 2017, 242, 180–186. DOI: 10.1016/j.electacta.2017.05.018.
  • Li, Y.; Zhang, W.-B.; Hsieh, I.-F.; Zhang, G.; Cao, Y.; Li, X.; Wesdemiotis, C.; Lotz, B.; Xiong, H.; Cheng, S. Z. Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: Molecular design,“click” synthesis, and hierarchical structure. J. Am. Chem. Soc. 2011, 133(28), 10712–10715. DOI: 10.1021/ja202906m.
  • Logan, B. E.; Call, D.; Cheng, S.; Hamelers, H. V.; Sleutels, T. H.; Jeremiasse, A. W.; Rozendal, R. A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 2008, 42(23), 8630–8640. DOI: 10.1021/es801553z.
  • Gil-Carrera, L.; Escapa, A.; Carracedo, B.; Morán, A.; Gómez, X. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages. Bioresour. Technol. 2013, 146, 63–69. DOI: 10.1016/j.biortech.2013.07.020.
  • Gil-Carrera, L.; Escapa, A.; Mehta, P.; Santoyo, G.; Guiot, S.; Morán, A.; Tartakovsky, B. Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production. Bioresour. Technol. 2013, 130, 584–591. DOI: 10.1016/j.biortech.2012.12.062.
  • Ledezma, P.; Donose, B. C.; Freguia, S.; Keller, J. Oxidised stainless steel: A very effective electrode material for microbial fuel cell bioanodes but at high risk of corrosion. Electrochim. Acta. 2015, 158, 356–360. DOI: 10.1016/j.electacta.2015.01.175.
  • Selembo, P. A.; Merrill, M. D.; Logan, B. E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrogen Energy. 2010, 35(2), 428–437. DOI: 10.1016/j.ijhydene.2009.11.014.
  • Hu, H.; Fan, Y.; Liu, H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int. J. Hydrogen Energy. 2009, 34(20), 8535–8542. DOI: 10.1016/j.ijhydene.2009.08.011.
  • Song, T.-S.; Wang, D.-B.; Wang, H.; Li, X.; Liang, Y.; Xie, J. Cobalt oxide/nanocarbon hybrid materials as alternative cathode catalyst for oxygen reduction in microbial fuel cell. Int. J. Hydrogen Energy. 2015, 40(10), 3868–3874. DOI: 10.1016/j.ijhydene.2015.01.119.
  • Xu, Y.; Zhou, S.; Li, M. Enhanced bioelectricity generation and cathodic oxygen reduction of air breathing microbial fuel cells based on MoS2 decorated carbon nanotube. Int. J. Hydrogen Energy. 2019, 44(26), 13875–13884. DOI: 10.1016/j.ijhydene.2019.04.040.
  • Jiang, B.; Muddemann, T.; Kunz, U.; Silva E Silva, L. G.; Bormann, H.; Niedermeiser, M.; Haupt, D.; Schläfer, O.; Sievers, M. Graphite/MnO2and MoS2Composites Used as Catalysts in the Oxygen Reduction Cathode of Microbial Fuel Cells. J. Electrochem. Soc. 2017, 164(14), E519–E524. DOI: 10.1149/2.0801714jes.
  • Chiodoni, A.; Salvador, G. P.; Massaglia, G.; Delmondo, L.; Muñoz-Tabares, J. A.; Sacco, A.; Garino, N.; Castellino, M.; Margaria, V.; Ahmed, D., et al. MnxOy- based cathodes for oxygen reduction reaction catalysis in microbial fuel cells. Int. J. Hydrogen Energy. 2019, 44(9), 4432–4441. DOI: 10.1016/j.ijhydene.2018.11.064.
  • Jadhav, D. A.; Deshpande, P. A.; Ghangrekar, M. M. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts. Bioresour. Technol. 2017, 238, 568–574. DOI: 10.1016/j.biortech.2017.04.085.
  • Huang, J.; Zhu, N.; Yang, T.; Zhang, T.; Wu, P.; Dang, Z. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens. Bioelectron. 2015, 72, 332–339. DOI: 10.1016/j.bios.2015.05.035.
  • Chen, J.; Hu, Y.; Huang, W.; Zhang, L. Enhanced electricity generation for biocathode microbial fuel cell by in situ microbial-induced reduction of graphene oxide and polarity reversion. Int. J. Hydrogen Energy. 2017, 42(17), 12574–12582. DOI: 10.1016/j.ijhydene.2017.03.012.
  • Li, M.; Zhou, S.; Xu, M. Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells. Chem. Eng. J. 2017, 328, 106–116. DOI: 10.1016/j.cej.2017.07.031.
  • Noori, M. T.; Mukherjee, C.; Ghangrekar, M. Enhancing performance of microbial fuel cell by using graphene supported V2O5-nanorod catalytic cathode. Electrochim. Acta. 2017, 228, 513–521. DOI: 10.1016/j.electacta.2017.01.016.
  • Tardy, G. M.; Lóránt, B.; Lóka, M.; Nagy, B.; László, K. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst. Biotechnol. Lett. 2017, 39(7), 993–999. DOI: 10.1007/s10529-017-2338-x.
  • Huang, Q.; Zhou, P.; Yang, H.; Zhu, L.; Wu, H. In situ generation of inverse spinel CoFe2O4 nanoparticles onto nitrogen-doped activated carbon for an effective cathode electrocatalyst of microbial fuel cells. Chem. Eng. J. 2017, 325, 466–473. DOI: 10.1016/j.cej.2017.05.079.
  • Pu, L.; Liu, D.; Li, K.; Wang, J.; Yang, T.; Ge, B.; Liu, Z. Carbon-supported binary transition metal chalcogenide used as cathode catalyst for oxygen reduction in microbial fuel cell. Int. J. Hydrogen Energy. 2017, 42(20), 14253–14263. DOI: 10.1016/j.ijhydene.2017.04.074.
  • Majidi, M. R.; Farahani, F. S.; Hosseini, M.; Ahadzadeh, I. Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry. 2019, 125, 38–45. DOI: 10.1016/j.bioelechem.2018.09.004.
  • Gao, M.-R.; Liang, J.-X.; Zheng, Y.-R.; Xu, Y.-F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S.-H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6(1), 1–7. DOI: 10.1038/ncomms6982.
  • Banham, D.; Ye, S.; Pei, K.; Ozaki, J.-I.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources. 2015, 285, 334–348. DOI: 10.1016/j.jpowsour.2015.03.047.
  • Schmidt, T.; Paulus, U.; Gasteiger, H. A.; Behm, R. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J. Electroanal. Chem. 2001, 508(1–2), 41–47. DOI: 10.1016/S0022-0728(01)00499-5.
  • Rowley-Neale, S. J.; Fearn, J. M.; Brownson, D. A.; Smith, G. C.; Ji, X.; Banks, C. E. 2D molybdenum disulphide (2D-MoS 2) modified electrodes explored towards the oxygen reduction reaction. Nanoscale. 2016, 8(31), 14767–14777. DOI: 10.1039/C6NR04073J.
  • Gao, M.-R.; Xu, Y.-F.; Jiang, J.; Zheng, Y.-R.; Yu, S.-H. Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J. Am. Chem. Soc. 2012, 134(6), 2930–2933. DOI: 10.1021/ja211526y.
  • Liu, Y.; Yue, X.; Li, K.; Qiao, J.; Wilkinson, D. P.; Zhang, J. PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coord. Chem. Rev. 2016, 315, 153–177. DOI: 10.1016/j.ccr.2016.02.002.
  • Gara, M.; Compton, R. G. Activity of carbon electrodes towards oxygen reduction in acid: A comparative study. New J. Chem. 2011, 35(11), 2647–2652. DOI: 10.1039/c1nj20612e.
  • Gubler, L.; Dockheer, S. M.; Koppenol, W. H. Radical (HO•, H• and HOO•) formation and ionomer degradation in polymer electrolyte fuel cells. J. Electrochem. Soc. 2011, 158(7), B755. DOI: 10.1149/1.3581040.
  • Uosaki, K.; Elumalai, G.; Noguchi, H.; Masuda, T.; Lyalin, A.; Nakayama, A.; Taketsugu, T. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: Theoretical suggestion and experimental proof. J. Am. Chem. Soc. 2014, 136(18), 6542–6545. DOI: 10.1021/ja500393g.
  • Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J.-P.; Wu, G.; Chung, H. T.; Johnston, C. M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4(1), 114–130. DOI: 10.1039/C0EE00011F.
  • Deng, Y.; Ting, L. R. L.; Neo, P. H. L.; Zhang, Y.-J.; Peterson, A. A.; Yeo, B. S. Operando Raman spectroscopy of amorphous molybdenum sulfide (MoS x) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction. ACS Catal. 2016, 6(11), 7790–7798. DOI: 10.1021/acscatal.6b01848.
  • McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 2014, 26(16), 4826–4831. DOI: 10.1021/cm502035s.
  • Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid‐stable, earth‐abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2014, 53(52), 14433–14437. DOI: 10.1002/anie.201408222.
  • Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv.Mate. 2014, 26(32), 5702–5707. DOI: 10.1002/adma.201401692.
  • Chen, W.-F.; Wang, C.-H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6(3), 943–951. DOI: 10.1039/c2ee23891h.
  • Pan, L. F.; Li, Y. H.; Yang, S.; Liu, P. F.; Yu, M. Q.; Yang, H. G. Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction. Chem. Commun. 2014, 50(86), 13135–13137. DOI: 10.1039/C4CC05698A.
  • Chen, S.; Duan, J.; Tang, Y.; Jin, B.; Qiao, S. Z. Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy. 2015, 11, 11–18. DOI: 10.1016/j.nanoen.2014.09.022.
  • Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15(1), 48–53. DOI: 10.1038/nmat4465.
  • Vrubel, H.; Hu, X. Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 2013, 3(9), 2002–2011. DOI: 10.1021/cs400441u.
  • Morales-Guio, C. G.; Hu, X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47(8), 2671–2681. DOI: 10.1021/ar5002022.
  • Wang, T.; Gao, D.; Zhuo, J.; Zhu, Z.; Papakonstantinou, P.; Li, Y.; Li, M. Size‐dependent enhancement of electrocatalytic oxygen‐reduction and hydrogen‐evolution performance of MoS2 particles. Chemistry. 2013, 19(36), 11939–11948. DOI: 10.1002/chem.201301406.
  • Asadi, M.; Kumar, B.; Liu, C.; Phillips, P.; Yasaei, P.; Behranginia, A.; Zapol, P.; Klie, R. F.; Curtiss, L. A.; Salehi-Khojin, A. Cathode based on molybdenum disulfide nanoflakes for lithium–oxygen batteries. ACS nano. 2016, 10(2), 2167–2175. DOI: 10.1021/acsnano.5b06672.
  • Du, C.; Huang, H.; Feng, X.; Wu, S.; Song, W.; MoS, C. 2 nanodots in 3D porous nitrogen-doped graphene with amendable ORR performance. J. Mater. Chem. A. 2015, 3(14), 7616–7622. DOI: 10.1039/C5TA00648A.
  • Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science. 2007, 317(5834), 100–102. DOI: 10.1126/science.1141483.
  • Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7(1), 11204. DOI: 10.1038/ncomms11204.
  • Li, G.; Zhang, D.; Qiao, Q.; Yu, Y.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138(51), 16632–16638. DOI: 10.1021/jacs.6b05940.
  • Brorson, M.; Carlsson, A.; Topsøe, H. The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM. Catal. Today. 2007, 123(1–4), 31–36. DOI: 10.1016/j.cattod.2007.01.073.
  • Amiinu, I. S.; Pu, Z.; Liu, X.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H.; Mu, S. Multifunctional Mo–N/C@ MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv. Funct. Mater. 2017, 27(44), 1702300. DOI: 10.1002/adfm.201702300.
  • Zhao, G.; Rui, K.; Dou, S. X.; Sun, W. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28(43), 1803291. DOI: 10.1002/adfm.201803291.
  • Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y. Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv.Mate. 2013, 25(40), 5807–5813. DOI: 10.1002/adma.201302685.
  • Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene‐protected 3D Ni foams. Adv.Mate. 2013, 25(5), 756–760. DOI: 10.1002/adma.201202920.
  • Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS 2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11(11), 963. DOI: 10.1038/nmat3439.
  • Tang, Q.; Shan, Z.; Wang, L.; Qin, X. MoO2–graphene nanocomposite as anode material for lithium-ion batteries. Electrochim. Acta. 2012, 79, 148–153. DOI: 10.1016/j.electacta.2012.06.093.
  • Lassalle-Kaiser, B.; Merki, D.; Vrubel, H.; Gul, S.; Yachandra, V. K.; Hu, X.; Yano, J. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 2015, 137(1), 314–321. DOI: 10.1021/ja510328m.
  • Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I., et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 2016, 15(6), 1702300–1702306. DOI: 10.1038/nmat4588.
  • Ting, L. R. L.; Deng, Y.; Ma, L.; Zhang, Y.-J.; Peterson, A. A.; Yeo, B. S. Catalytic Activities of Sulfur Atoms in Amorphous Molybdenum Sulfide for the Electrochemical Hydrogen Evolution Reaction. ACS Catal. 2016, 6(2), 861–867. DOI: 10.1021/acscatal.5b02369.
  • Huang, Z., . L. W.; Ma, L.; Yu, M.; Ren, X.; He, M. Dimeric [Mo2S12]2− Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis. Angew. Chemie. 2015, 54(50), 15181–15185. DOI: 10.1002/anie.201507529.
  • Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsoe, H.; Clausen, B. S.; Laegsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2(1), 53–58. DOI: 10.1038/nnano.2006.171.
  • Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6(3), 183–191. DOI: 10.1038/nmat1849.
  • Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS(2): a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105(13), 136805. DOI: 10.1103/PhysRevLett.105.136805.
  • Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7(11), 699–712. DOI: 10.1038/nnano.2012.193.
  • Yang, H.; Kim, S. W.; Chhowalla, M.; Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017, 13(10), 931–937. DOI: 10.1038/nphys4188.
  • Duerloo, K. A.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5(1), 4214. DOI: 10.1038/ncomms5214.
  • Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.; Kawazoe, Y.; Sun, Q.; Jena, P. Structures and Phase Transition of a MoS2 Monolayer. J. Phys. Chem. C. 2014, 118(3), 1515–1522. DOI: 10.1021/jp4076355.
  • Zhu, J.; Wang, Z.; Yu, H.; Li, N.; Zhang, J.; Meng, J.; Liao, M.; Zhao, J.; Lu, X.; Du, L., et al. Argon Plasma Induced Phase Transition in Monolayer MoS2. J. Am. Chem. Soc. 2017, 139(30), 10216–10219. DOI: 10.1021/jacs.7b05765.
  • Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9(5), 391–396. DOI: 10.1038/nnano.2014.64.
  • Wang, L.; Xu, Z.; Wang, W.; Bai, X. Atomic mechanism of dynamic electrochemical lithiation processes of MoS(2) nanosheets. J. Am. Chem. Soc. 2014, 136(18), 6693–6697. DOI: 10.1021/ja501686w.
  • Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13(12), 1128–1134. DOI: 10.1038/nmat4080.
  • Tan, S. M.; Ambrosi, A.; Sofer, Z.; Huber, S.; Sedmidubsky, D.; Pumera, M.; Basal-, P. Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties. Chemistry. 2015, 21(19), 7170–7178. DOI: 10.1002/chem.201500435.
  • Benson, J.; Li, M.; Wang, S.; Wang, P.; Papakonstantinou, P. Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots. ACS Appl. Mater. Interfaces. 2015, 7(25), 14113–14122. DOI: 10.1021/acsami.5b03399.
  • Tsai, C.; Chan, K.; Abild-Pedersen, F.; Norskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16(26), 13156–13164. DOI: 10.1039/C4CP01237B.
  • Chia, X.; Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano. 2015, 9(5), 5164–5179. DOI: 10.1021/acsnano.5b00501.
  • Eng AYS, A. A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of transition metal dichalcogenides: Strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano. 2014, 8(12), 12185–12198. DOI: 10.1021/nn503832j.
  • Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS(2) nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13(12), 6222–6227. DOI: 10.1021/nl403661s.
  • Liu, Q.; Li, X.; He, Q.; Khalil, A.; Liu, D.; Xiang, T.; Wu, X.; Song, L. Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2: Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Small. 2015, 11(41), 5556–5564. DOI: 10.1002/smll.201501822.
  • Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135(28), 10274–10277. DOI: 10.1021/ja404523s.
  • Maitra, U.; Gupta, U.; De, M.; Datta, R.; Govindaraj, A.; Rao, C. N. Highly effective visible-light-induced H(2) generation by single-layer 1T-MoS(2) and a nanocomposite of few-layer 2H-MoS(2) with heavily nitrogenated graphene. Angew. Chem. Int. Ed. Engl. 2013, 52(49), 13057–13061. DOI: 10.1002/anie.201306918.
  • Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11(12), 5111–5116. DOI: 10.1021/nl201874w.
  • Tang, Q.; Jiang, D.-E. Stabilization and Band-Gap Tuning of the 1T-MoS2 Monolayer by Covalent Functionalization. Chem. Mater. 2015, 27(10), 3743–3748. DOI: 10.1021/acs.chemmater.5b00986.
  • Voiry, D.; Goswami, A.; Kappera, R.; E Silva Cde, C.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2015, 7(1), 10274–10277. DOI: 10.1038/nchem.2108.
  • Ambrosi, A.; Sofer, Z.; Pumera, M. Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small. 2015, 11(5), 605–612.
  • Huang, Y.; Nielsen, R. J.; Goddard, W. A., 3rd; Soriaga, M. P. The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS2. J. Am. Chem. Soc. 2015, 137(20), 45–49. DOI: 10.1021/jacs.5b03329.
  • Peera, S. G.; Kwon, H.-J.; Lee, T. G.; Hussain, A. M. Heteroatom-and metalloid-doped carbon catalysts for oxygen reduction reaction: A mini-review. Ionics. 2020, 26(4), 1563–1589. DOI: 10.1007/s11581-020-03473-0.
  • Gao, M.-R.; Liu, S.; Jiang, J.; Cui, C.-H.; Yao, W.-T.; Yu, S.-H. In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance. J. Mater. Chem. 2010, 20(42), 42. DOI: 10.1039/c0jm01547d.
  • Randviir, E. P.; Banks, C. E. The oxygen reduction reaction at graphene modified electrodes. Electroanalysis. 2014, 26(1), 76–83. DOI: 10.1002/elan.201300477.
  • Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42(7), 2986–3017. DOI: 10.1039/c2cs35310e.
  • Randviir, E. P.; Brownson, D. A.; Gomez-Mingot, M.; Kampouris, D. K.; Iniesta, J.; Banks, C. E. Electrochemistry of Q-graphene. Nanoscale. 2012, 4(20), 6470–6480. DOI: 10.1039/c2nr31823g.
  • Ataca, C.; Topsakal, M.; Aktürk, E.; Ciraci, S.; Comparative, A. Study of Lattice Dynamics of Three- and Two-Dimensional MoS2. J. Phys. Chem. C. 2011, 115(33), 16354–16361. DOI: 10.1021/jp205116x.
  • Rowley-Neale, S. J.; Brownson, D. A.; Smith, G. C.; Sawtell, D. A.; Kelly, P. J.; Banks, C. E. 2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale. 2015, 7(43), 18152–18168. DOI: 10.1039/C5NR05164A.
  • Cesano, F.; Bertarione, S.; Piovano, A.; Agostini, G.; Rahman, M. M.; Groppo, E.; Bonino, F.; Scarano, D.; Lamberti, C.; Bordiga, S., et al. Model oxide supported MoS2 HDS catalysts: Structure and surface properties. Catal. Sci. Technol. 2011, 1(1), 1. DOI: 10.1039/c0cy00050g.
  • Dhas, N. A.; Suslick, K. S. Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J. Am. Chem. Soc. 2005, 127(8), 2368–2369. DOI: 10.1021/ja049494g.
  • Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, V. P. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 2013, 135(12), 4584–4587. DOI: 10.1021/ja310929s.
  • Zhao, Y., . Z. Y.; Yang, Z.; Yan, Y.; Sun, K. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: A review. Sci. Technol. Adv. Mater. 2013, 14(4), 043501. DOI: 10.1088/1468-6996/14/4/043501.
  • Zhang, N.; Li, H.; Yu, K.; Zhu, Z. Differently structured MoS2 for the hydrogen production application and a mechanism investigation. J. Alloys Compd. 2016, 685, 65–69. DOI: 10.1016/j.jallcom.2016.05.228.
  • Ogi, T.; Makino, T.; Okuyama, K.; Stark, W. J.; Iskandar, F.; Biosorption, S. Recovery of Tungsten from an Urban Mine and Feasibility Evaluation. Ind. Eng. Chem. Res. 2016, 55(10), 2903–2910. DOI: 10.1021/acs.iecr.5b04843.
  • Lasheen, T. A.; El-Ahmady, M. E.; Hassib, H. B.; Helal, A. S. Molybdenum Metallurgy Review: Hydrometallurgical Routes to Recovery of Molybdenum from Ores and Mineral Raw Materials. Mineral Process. Extr. Metall. Rev. 2014, 36(3), 145–173. DOI: 10.1080/08827508.2013.868347.
  • Zhao, Z.; Cao, C.; Chen, X.; Huo, G. Separation of macro amounts of tungsten and molybdenum by selective precipitation. Hydrometallurgy. 2011, 108(3–4), 229–232. DOI: 10.1016/j.hydromet.2011.04.006.
  • Hao, L.; Yu, J.; Xu, X.; Yang, L.; Xing, Z.; Dai, Y.; Sun, Y.; Zou, J. Nitrogen-doped MoS2/carbon as highly oxygen-permeable and stable catalysts for oxygen reduction reaction in microbial fuel cells. J. Power Sources. 2017, 339, 68–79. DOI: 10.1016/j.jpowsour.2016.11.041.
  • Jiang, B.; Muddemann, T.; Kunz, U.; Bormann, H.; Niedermeiser, M.; Haupt, D.; Schläfer, O.; Sievers, M. Evaluation of Microbial Fuel Cells with Graphite Plus MnO2and MoS2Paints as Oxygen Reduction Cathode Catalyst. J. Electrochem. Soc. 2016, 164(3), H3083–H3090. DOI: 10.1149/2.0131703jes.
  • Keong Koh, E. W.; Chiu, C. H.; Lim, Y. K.; Zhang, Y.-W.; Pan, H. Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study. Int. J. Hydrogen Energy. 2012, 37(19), 14323–14328. DOI: 10.1016/j.ijhydene.2012.07.069.
  • Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133(19), 7296–7299. DOI: 10.1021/ja201269b.
  • Firmiano, E. G.; Cordeiro, M. A.; Rabelo, A. C.; Dalmaschio, C. J.; Pinheiro, A. N.; Pereira, E. C.; Leite, E. R. Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 2012, 48(62), 2986–3017. DOI: 10.1039/c2cc33397j.
  • Bian, X.; Zhu, J.; Liao, L.; Scanlon, M. D.; Ge, P.; Ji, C.; Girault, H. H.; Liu, B. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochem. Commun. 2012, 22, 128–132. DOI: 10.1016/j.elecom.2012.06.009.
  • Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Alamry, K. A.; Sun, X. MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Appl. Catal. B Environ. 2015, 164, 144–150. DOI: 10.1016/j.apcatb.2014.09.016.
  • Tenca, A.; Cusick, R. D.; Schievano, A.; Oberti, R.; Logan, B. E. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. Int. J. Hydrogen Energy. 2013, 38(4), 1859–1865. DOI: 10.1016/j.ijhydene.2012.11.103.
  • Xia, X.; Zheng, Z.; Zhang, Y.; Zhao, X.; Wang, C. Synthesis of MoS2-carbon composites with different morphologies and their application in hydrogen evolution reaction. Int. J. Hydrogen Energy. 2014, 39(18), 9638–9650. DOI: 10.1016/j.ijhydene.2014.04.092.
  • Yan, Y.; Ge, X.; Liu, Z.; Wang, J. Y.; Lee, J. M.; Wang, X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale. 2013, 5(17), 7768–7771. DOI: 10.1039/c3nr02994h.
  • Wu, Z. Y.; Liang, H. W.; Chen, L. F.; Hu, B. C.; Yu, S. H. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. Acc. Chem. Res. 2016, 49(1), 96–105. DOI: 10.1021/acs.accounts.5b00380.
  • Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A. M.; Sun, X. Mo2C Nanoparticles Decorated Graphitic Carbon Sheets: Biopolymer-Derived Solid-State Synthesis and Application as an Efficient Electrocatalyst for Hydrogen Generation. ACS Catal. 2014, 4(8), 2658–2661. DOI: 10.1021/cs5005294.
  • Youn, D. H.; Han, S.; Kim, J. Y.; Kim, J. Y.; Park, H.; Choi, S. H.; Lee, J. S. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support. ACS Nano. 2014, 8(5), 5164–5173. DOI: 10.1021/nn5012144.
  • Buijnsters, J. G.; Vázquez, L.; Van Dreumel, G.; Ter Meulen, J.; Van Enckevort, W.; Celis, J.-P. Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers. J. Appl. Phys. 2010, 108(10), 103514. DOI: 10.1063/1.3506525.
  • Sawant, S. Y.; Han, T. H.; Cho, M. H. Metal-free carbon-based materials: Promising electrocatalysts for oxygen reduction reaction in microbial fuel cells. Int. J. Mol. Sci. 2017, 18(1), 25. DOI: 10.3390/ijms18010025.
  • Zou, L.; Qiao, Y.; Gu, S.; Huang, Y.; Zhong, C.; Long, Z.-E. Nano-porous Mo 2 C in-situ grafted on macroporous carbon electrode as an efficient 3D hydrogen evolution cathode. J. Alloys Compd. 2017, 712, 103–110. DOI: 10.1016/j.jallcom.2017.03.237.
  • Wang, H.; Lu, Z.; Xu, S.; Kong, D.; Cha, J. J.; Zheng, G.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B., et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(49), 19701–19706. DOI: 10.1073/pnas.1316792110.
  • Cho, S.; Kim. S.; Kim, J.H.; Zhao, J.; Seok, J.; Keum, D.H.; Baik, J.; Choe, D.H.; Chang, K.J.; Suenaga, K.; Kim, S.W. Phase patterning for ohmic homojunction contact in MoTe2. Science. 2015, 349(6248), 625–628.
  • Tan, Y.; Luo, F.; Zhu, M.; Xu, X.; Ye, Y.; Li, B.; Wang, G.; Luo, W.; Zheng, X.; Wu, N., et al. Controllable 2H-to-1T’ phase transition in few-layer MoTe2. Nanoscale. 2018, 10(42), 19964–19971. DOI: 10.1039/C8NR06115G.
  • Hua, W.; Sun, -H.-H.; Xu, F.; Wang, J.-G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39(4), 335–351. DOI: 10.1007/s12598-020-01384-7.
  • Fornero, J. J. Improving the cathode conditions by pressurizing and carbon dioxide addition to enhance the practicality of MFC treatment of wastewater. Washington University in St. Louis: 2009.
  • Tang, X.; Ng, H. Y. Cobalt and nitrogen-doped carbon catalysts for enhanced oxygen reduction and power production in microbial fuel cells. Electrochim. Acta. 2017, 247, 193–199. DOI: 10.1016/j.electacta.2017.06.120.
  • Dong, Y.; Liu, M.; Liu, Y.; Wang, S.; Li, J. Molybdenum-doped mesoporous carbon/graphene composites as efficient electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A. 2015, 3(39), 19969–19973. DOI: 10.1039/C5TA04624F.
  • Lin, L.; Yang, Z. K.; Jiang, Y.-F.; Xu, A.-W. Nonprecious bimetallic (Fe, Mo)–N/C catalyst for efficient oxygen reduction reaction. ACS Catal. 2016, 6(7), 4449–4454. DOI: 10.1021/acscatal.6b00535.
  • Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science. 2015, 348(6240), 1230–1234. DOI: 10.1126/science.aaa8765.
  • Lebedeva, N.; Janssen, G. On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells. Electrochim. Acta. 2005, 51(1), 29–40. DOI: 10.1016/j.electacta.2005.04.034.
  • Mohanraju, K.; Cindrella, L. Impact of alloying and lattice strain on ORR activity of Pt and Pd based ternary alloys with Fe and Co for proton exchange membrane fuel cell applications. RSC Adv. 2014, 4(23), 11939–11947. DOI: 10.1039/c3ra47021k.
  • Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. PdMo bimetallene for oxygen reduction catalysis. Nature. 2019, 574(7776), 81–85. DOI: 10.1038/s41586-019-1603-7.
  • Gao, J.; Zou, J.; Zeng, X.; Ding, W. Carbon supported nano Pt–Mo alloy catalysts for oxygen reduction in magnesium–air batteries. RSC Adv. 2016, 6(86), 83025–83030. DOI: 10.1039/C6RA16142A.
  • Raghuveer, V.; Manthiram, A.; Bard, A. J. Pd− Co− Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. B. 2005, 109(48), 22909–22912. DOI: 10.1021/jp054815b.
  • Tan, X.; Wang, L.; Cheng, C.; Yan, X.; Shen, B.; Zhang, J.; MoO, P. 3− x@ MoO 3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52(14), 2893–2896. DOI: 10.1039/C5CC10020H.
  • Sinaim, H.; Ham, D. J.; Lee, J. S.; Phuruangrat, A.; Thongtem, S.; Thongtem, T. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties. J. Alloys Compd. 2012, 516, 172–178. DOI: 10.1016/j.jallcom.2011.12.024.
  • Ren, H.; Sun, S.; Cui, J.; Li, X.; Synthesis, F. M. Diversified Applications of Molybdenum Oxides Micro-/Nanocrystals: A Review. Cryst. Growth Des. 2018, 18(10), 6326–6369. DOI: 10.1021/acs.cgd.8b00894.
  • Tang, K.; Farooqi, S. A.; Wang, X.; Yan, C. Recent Progress on Molybdenum Oxides for Rechargeable Batteries. ChemSusChem. 2019, 12(4), 755–771. DOI: 10.1002/cssc.201801860.
  • Jiang, F.; Li, W.; Zou, R.; Liu, Q.; Xu, K.; An, L.; Hu, J. MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy. 2014, 7, 72–79. DOI: 10.1016/j.nanoen.2014.04.007.
  • Zhu, Y.; Yao, Y.; Luo, Z.; Pan, C.; Yang, J.; Fang, Y.; Deng, H.; Liu, C.; Tan, Q.; Liu, F., et al. Nanostructured MoO3 for Efficient Energy and Environmental Catalysis. Molecules. 2019, 25(1), 1. DOI: 10.3390/molecules25010018.
  • Wu, C.; Xie, H.; Li, D.; Liu, D.; Ding, S.; Tao, S.; Chen, H.; Liu, Q.; Chen, S.; Chu, W., et al. Atomically Intercalating Tin Ions into the Interlayer of Molybdenum Oxide Nanobelt toward Long-Cycling Lithium Battery. J. Phys. Chem. Lett. 2018, 9(4), 817–824. DOI: 10.1021/acs.jpclett.7b03374.
  • Hu, X.; Zhang, W.; Liu, X.; Mei, Y.; Huang, Y. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 2015, 44(8), 2376–2404. DOI: 10.1039/c4cs00350k.
  • Yang, S.; Wang, Z.; Hu, Y.; Luo, X.; Lei, J.; Zhou, D.; Fei, L.; Wang, Y.; Gu, H. Highly Responsive Room-Temperature Hydrogen Sensing of alpha-MoO(3) Nanoribbon Membranes. ACS Appl. Mater. Interfaces. 2015, 7(17), 9247–9253. DOI: 10.1021/acsami.5b01858.
  • Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries. Adv.Mate. 2007, 19(21), 3712–3716. DOI: 10.1002/adma.200700883.
  • Chithambararaj, A.; Rajeswari Yogamalar, N.; Bose, A. C. Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals: New Findings on Crystal-Structure-Dependent Charge Transport. Cryst. Growth Des. 2016, 16(4), 1984–1995. DOI: 10.1021/acs.cgd.5b01571.
  • Tan, X.; Wang, L.; Cheng, C.; Yan, X.; Shen, B.; Zhang, J. Plasmonic MoO3-x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52(14), 2893–2896.
  • Lunk, H. J.; Hartl, H.; Hartl, M. A.; Fait, M. J.; Shenderovich, I. G.; Feist, M.; Frisk, T. A.; Daemen, L. L.; Mauder, D.; Eckelt, R., et al. “Hexagonal molybdenum trioxide”–known for 100 years and still a fount of new discoveries. Inorg. Chem. 2010, 49(20), 9400–9408. DOI: 10.1021/ic101103g.
  • Pan, W.; Tian, R.; Jin, H.; Guo, Y.; Zhang, L.; Wu, X.; Zhang, L.; Han, Z.; Liu, G.; Li, J., et al. and Catalytic Properties of Novel Hexagonal Metastableh-MoO3Nano- and Microrods Synthesized with Modified Liquid-Phase Processes. Chem. Mater. 2010, 22(22), 6202–6208. DOI: 10.1021/cm102703s.
  • Meduri, P.; Clark, E.; Kim, J. H.; Dayalan, E.; Sumanasekera, G. U.; Sunkara, M. K. MoO3–x Nanowire Arrays As Stable and High-Capacity Anodes for Lithium Ion Batteries. Nano Lett. 2012, 12(4), 1984–1995. DOI: 10.1021/nl203649p.
  • Prakash, N. G.; Dhananjaya, M.; Narayana, A. L.; Shaik, D. P. M. D.; Rosaiah, P.; Hussain, O. M. High Performance One Dimensional α-MoO3 Nanorods for Supercapacitor Applications. Ceram. Int. 2018, 44(8), 9967–9975. DOI: 10.1016/j.ceramint.2018.03.032.
  • Hu, S.; Wang, X. Single-walled MoO3 nanotubes. J. Am. Chem. Soc. 2008, 130(26), 8126–8127. DOI: 10.1021/ja801448c.
  • Enyashin, A. N.; Ivanovskaya, V. V.; Ivanovskii, A. L. Electronic properties and chemical bonding of single-walled MoO3 nanotubes. Mendeleev Commun. 2004, 14(3), 94–95. DOI: 10.1070/MC2004v014n03ABEH001862.
  • Peng, H.; Ma, G.; Mu, J.; Sun, K.; Lei, Z. Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts. J. Mater. Chem. A. 2014, 2(27), 10384–10388. DOI: 10.1039/C4TA01899K.
  • Balendhran, S.; Deng, J.; Ou, J. Z.; Walia, S.; Scott, J.; Tang, J.; Wang, K. L.; Field, M. R.; Russo, S.; Zhuiykov, S., et al. Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 2013, 25(1), 109–114. DOI: 10.1002/adma.201203346.
  • Ji, F.; Ren, X.; Zheng, X.; Liu, Y.; Pang, L.; Jiang, J.; Liu, S. F. 2D-MoO3 nanosheets for superior gas sensors. Nanoscale. 2016, 8(16), 8696–8703. DOI: 10.1039/C6NR00880A.
  • Sui, L.-L.; Xu, Y.-M.; Zhang, X.-F.; Cheng, X.-L.; Gao, S.; Zhao, H.; Cai, Z.; Huo, L.-H. Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor. Sens. Actuators B Chem. 2015, 208, 406–414. DOI: 10.1016/j.snb.2014.10.138.
  • Zhang, H.; Yao, G.; Wang, L.; Su, Y.; Yang, W.; Lin, Y. 3D Pt/MoO 3 nanocatalysts fabricated for effective electrocatalytic oxidation of alcohol. Appl. Surf. Sci. 2015, 356, 294–300. DOI: 10.1016/j.apsusc.2015.08.082.
  • Yu, L.; Wu, H. B.; Lou, X. W. Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications. Acc. Chem. Res. 2017, 50(2), 293–301. DOI: 10.1021/acs.accounts.6b00480.
  • Liu, T. B.; Xie, Y.; Chu, B. Use of block copolymer micelles on formation of hollow MoO3 nanospheres. Langmuir. 2000, 16(23), 9015–9022. DOI: 10.1021/la000282g.
  • Du, K.; Fu, W.; Wei, R.; Yang, H.; Xu, J.; Chang, L.; Yu, Q.; Zou, G. Ultrasonic-assisted synthesis of highly dispersed MoO3 nanospheres using 3-mercaptopropyltrimethoxysilane. Ultrason. Sonochem. 2008, 15(3), 233–238. DOI: 10.1016/j.ultsonch.2007.04.004.
  • Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9(2), 146–151. DOI: 10.1038/nmat2612.
  • Luo, Z.; Miao, R.; Huan, T. D.; Mosa, I. M.; Poyraz, A. S.; Zhong, W.; Cloud, J. E.; Kriz, D. A.; Thanneeru, S.; He, J., et al. Mesoporous MoO3–x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions. Adv. Energy Mater. 2016, 6(16), 1600528. DOI: 10.1002/aenm.201600528.
  • Zhang, H. Q.; Wang, Y.; Fachini, E. R.; Cabrera, C. R. Electrochemically codeposited platinum molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem. Solid State Lett. 1999, 2(9), 437–439. DOI: 10.1149/1.1390863.
  • Wang, Y.; Fachini, E. O. R.; Cruz, G.; Zhu, Y.; Ishikawa, Y.; Colucci, J. A.; Cabrera, C. R. Effect of Surface Composition of Electrochemically Codeposited Platinum/Molybdenum Oxide on Methanol Oxidation. J. Electrochem. Soc. 2001, 148(3), C222. DOI: 10.1149/1.1349881.
  • Justin, P.; Ranga Rao, G. Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int. J. Hydrogen Energy. 2011, 36(10), 5875–5884. DOI: 10.1016/j.ijhydene.2011.01.122.
  • Shao, M.; Chang, Q.; Dodelet, J. P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116(6), 3594–3657. DOI: 10.1021/acs.chemrev.5b00462.
  • Çakar, İ.; Özdokur, K. V.; Demir, B.; Yavuz, E.; Demirkol, D. O.; Koçak, S.; Timur, S.; Ertaş, F. N. Molybdenum oxide/platinum modified glassy carbon electrode: A novel electrocatalytic platform for the monitoring of electrochemical reduction of oxygen and its biosensing applications. Sens. Actuators B Chem. 2013, 185, 331–336. DOI: 10.1016/j.snb.2013.04.106.
  • Liu, X.; Wang, H.; Chen, S.; Qi, X.; Gao, H.; Hui, Y.; Bai, Y.; Guo, L.; Ding, W.; Wei, Z. SO2-tolerant Pt-MoO3/C catalyst for oxygen reduction reaction. J. Energy Chem. 2014, 23(3), 358–362. DOI: 10.1016/S2095-4956(14)60158-3.
  • Yavuz, E.; Özdokur, K. V.; Çakar, İ.; Koçak, S.; Ertaş, F. N.; Preparation, E. Characterization of Molybdenum-Oxide/Platinum Binary Catalysts and Its Application to Oxygen Reduction Reaction in Weakly Acidic Medium. Electrochim. Acta. 2015, 151, 72–80. DOI: 10.1016/j.electacta.2014.11.006.
  • Karuppasamy, L.; Chen, C. Y.; Anandan, S.; Wu, J. J. High index surfaces of Au-nanocrystals supported on one-dimensional MoO3-nanorod as a bi-functional electrocatalyst for ethanol oxidation and oxygen reduction. Electrochim. Acta. 2017, 246, 75–88. DOI: 10.1016/j.electacta.2017.06.040.
  • Kumar, V.; Wang, X.; Lee, P. S. Formation of hexagonal-molybdenum trioxide (h-MoO 3) nanostructures and their pseudocapacitive behavior. Nanoscale. 2015, 7(27), 11777–11786. DOI: 10.1039/C5NR01505G.
  • Cai, Z.; Huang, L.; Quan, X.; Zhao, Z.; Shi, Y.; Puma, G. L. Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species. Appl. Catal. B Environ. 2020, 267, 118611.
  • Huang, L.; Song, S.; Cai, Z.; Zhou, P.; Puma, G. L. Efficient conversion of bicarbonate (HCO3−) to acetate and simultaneous heavy metal Cr (VI) removal in photo-assisted microbial electrosynthesis systems combining WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens electrotroph. Chem. Eng. J. 2021, 406, 126786. DOI: 10.1016/j.cej.2020.126786.
  • Samdani, K. J.; Joh, D. W.; Rath, M. K.; Lee, K. T. Electrochemical mediatorless detection of norepinephrine based on MoO3 nanowires. Electrochim. Acta. 2017, 252, 268–274. DOI: 10.1016/j.electacta.2017.08.187.
  • Aravinda, L.; Nagaraja, K.; Bhat, K. U.; Bhat, B. R. Magnetron sputtered MoO3/carbon nanotube composite electrodes for electrochemical supercapacitor. J. Electroanal. Chem. 2013, 699, 28–32. DOI: 10.1016/j.jelechem.2013.03.022.
  • Sviridova, T.; Logvinovich, A.; Sviridov, D. Electrochemical growing of Ni-MoO3 nanocomposite coatings via redox mechanism. Surf. Coat. Technol. 2017, 319, 6–11. DOI: 10.1016/j.surfcoat.2017.03.041.
  • Yan, W.; Wu, W.; Wang, K.; Tang, Z.; Chen, S. Oxygen reduction reaction and hydrogen evolution reaction catalyzed by carbon-supported molybdenum-coated palladium nanocubes. Int. J. Hydrogen Energy. 2018, 43(36), 17132–17141. DOI: 10.1016/j.ijhydene.2018.07.097.
  • Zhang, R.; Wang, X.; Yu, S.; Wen, T.; Zhu, X.; Yang, F.; Sun, X.; Wang, X.; Hu, W. Ternary NiCo2 Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Adv. Mater. 2017, 29, 9.
  • Wang, X.-D.; Xu, Y.-F.; Rao, H.-S.; Xu, W.-J.; Chen, H.-Y.; Zhang, W.-X.; Kuang, D.-B.; Su, C.-Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 2016, 9(4), 1468–1475. DOI: 10.1039/C5EE03801D.
  • Fan, X.; Liu, Y.; Peng, Z.; Zhang, Z.; Zhou, H.; Zhang, X.; Yakobson, B. I.; Goddard, I. I. I.; Guo, W. A.; Hauge, X., et al. Mo2C hybrid as an active and stable bifunctional electrocatalyst. ACS nano. 2017, 11(1), 384–394. DOI: 10.1021/acsnano.6b06089.
  • Li, T.; Tang, Z.; Wang, K.; Wu, W.; Chen, S.; Wang, C. Palladium nanoparticles grown on β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Int. J. Hydrogen Energy. 2018, 43(10), 4932–4941. DOI: 10.1016/j.ijhydene.2018.01.107.
  • Sarkar, A.; Murugan, A. V.; Manthiram, A. Synthesis and characterization of nanostructured Pd-Mo electrocatalysts for oxygen reduction reaction in fuel cells. J. Phys. Chem. C. 2008, 112(31), 12037–12043. DOI: 10.1021/jp801824g.
  • Ensafi, A. A.; Heydari-Soureshjani, E.; Rezaei, B. Three-dimensional graphene promoted by palladium nanoparticles, an efficient electrocatalyst for energy production and storage. Int. J. Hydrogen Energy. 2018, 43(20), 9652–9662. DOI: 10.1016/j.ijhydene.2018.04.010.
  • Liu, S.; Mu, X.; Duan, H.; Chen, C.; Zhang, H. Pd Nanoparticle Assemblies as Efficient Catalysts for the Hydrogen Evolution and Oxygen Reduction Reactions. Eur. J. Inorg. Chem. 2017, 2017(3), 535–539. DOI: 10.1002/ejic.201601277.
  • Lv, L.-B.; Ye, T.-N.; Gong, L.-H.; Wang, K.-X.; Su, J.; Li, X.-H.; Chen, J.-S. Anchoring Cobalt Nanocrystals through the Plane of Graphene: Highly Integrated Electrocatalyst for Oxygen Reduction Reaction. Chem. Mater. 2015, 27(2), 544–549. DOI: 10.1021/cm503988n.
  • Huang, H.; Hu, X.; Zhang, J.; Su, N.; Cheng, J. Facile Fabrication of Platinum-Cobalt Alloy Nanoparticles with Enhanced Electrocatalytic Activity for a Methanol Oxidation Reaction. Sci. Rep. 2017, 7(1), 45555. DOI: 10.1038/srep45555.
  • Muntean, R. Carbon Nanofibers Decorated with Pt-Co Alloy Nanoparticles as Catalysts for Electrochemical Cell Applications. I. Synthesis and Structural Characterization. Int. J. Electrochem. Sci. 2017, 4597–4609. doi:10.20964/2017.05.25.
  • Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X.; Mullen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135(43), 16002–16005. DOI: 10.1021/ja407552k.
  • Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science. 2011, 332(6028), 443–447. DOI: 10.1126/science.1200832.
  • Wang, D.-W.; Su, D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7(2), 2. DOI: 10.1039/c3ee43463j.
  • Chen, S.; Wei, Z.; Qi, X.; Dong, L.; Guo, Y. G.; Wan, L.; Shao, Z.; Li, L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134(32), 13252–13255. DOI: 10.1021/ja306501x.
  • Yang, S.; Feng, X.; Wang, X.; Mullen, K. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. Int. Ed. Engl. 2011, 50(23), 5339–5343. DOI: 10.1002/anie.201100170.
  • Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46(8), 1878–1889. DOI: 10.1021/ar400011z.
  • Wang, Y.; Ohnishi, R.; Yoo, E.; He, P.; Kubota, J.; Domen, K.; Zhou, H. Nano- and micro-sized TiN as the electrocatalysts for ORR in Li–air fuel cell with alkaline aqueous electrolyte. J. Mater. Chem. 2012, 22, 31.
  • Yang, Z.-Y.; Zhang, Y.-X.; Jing, L.; Zhao, Y.-F.; Yan, Y.-M.; Sun, K.-N. Beanpod-shaped Fe–C–N composite as promising ORR catalyst for fuel cells operated in neutral media. J. Mater. Chem. A. 2014, 2(32), 12974–12981. DOI: 10.1039/C4TA02614D.
  • Kröger, R.; Eizenberg, M.; Marcadal, C.; Chen, L. Plasma induced microstructural, compositional, and resistivity changes in ultrathin chemical vapor deposited titanium nitride films. J. Appl. Phys. 2002, 91(8), 5149–5154. DOI: 10.1063/1.1459750.
  • Lingwal, V.; Panwar, N. S. Scanning magnetron-sputtered TiN coating as diffusion barrier for silicon devices. J. Appl. Phys. 2005, 97(10), 104902. DOI: 10.1063/1.1896433.
  • Avasarala, B.; Haldar, P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim. Acta. 2010, 55(28), 9024–9034. DOI: 10.1016/j.electacta.2010.08.035.
  • Kim, H.; Cho, M. K.; Kwon, J. A.; Jeong, Y. H.; Lee, K. J.; Kim, N. Y.; Kim, M. J.; Yoo, S. J.; Jang, J. H.; Kim, H. J., et al. Highly efficient and durable TiN nanofiber electrocatalyst supports. Nanoscale. 2015, 7(44), 18429–18434. DOI: 10.1039/C5NR04082E.
  • Patel, P. P.; Datta, M. K.; Jampani, P. H.; Hong, D.; Poston, J. A.; Manivannan, A.; Kumta, P. N. High performance and durable nanostructured TiN supported Pt50–Ru50 anode catalyst for direct methanol fuel cell (DMFC). J. Power Sources. 2015, 293, 437–446. DOI: 10.1016/j.jpowsour.2015.05.051.
  • Liu, F.; Wu, Z.; Dang, D.; Wang, G.; Tian, X.; Yang, X. Three dimensional titanium molybdenum nitride nanowire assemblies as highly efficient and durable platinum support for methanol oxidation reaction. Electrochim. Acta. 2019, 295, 50–57. DOI: 10.1016/j.electacta.2018.10.114.
  • Avasarala, B.; Murray, T.; Li, W.; Haldar, P. Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells. J. Mater. Chem. 2009, 19(13), 13. DOI: 10.1039/b819006b.
  • Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Yang, L.; Wang, X.; Hu, Z. Alloyed Co–Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium. ACS Catal. 2015, 5(3), 1857–1862. DOI: 10.1021/cs502029h.
  • Hargreaves, J. Heterogeneous catalysis with metal nitrides. Coord. Chem. Rev. 2013, 257(13–14), 2015–2031. DOI: 10.1016/j.ccr.2012.10.005.
  • Zaman, S. F.; Pasupulety, N.; Al‐Zahrani, A. A.; Daous, M. A.; Driss, H.; Al‐Shahrani, S. S.; Petrov, L. Influence of alkali metal (Li and Cs) addition to Mo2N catalyst for CO hydrogenation to hydrocarbons and oxygenates. Can. J. Chem. Eng. 2018, 96(8), 1770–1779. DOI: 10.1002/cjce.23144.
  • Koenigsmann, C.; Wong, S. S. Tailoring Chemical Composition To Achieve Enhanced Methanol Oxidation Reaction and Methanol-Tolerant Oxygen Reduction Reaction Performance in Palladium-Based Nanowire Systems. ACS Catal. 2013, 3(9), 2031–2040. DOI: 10.1021/cs400380t.
  • Zhao, Y.; Liu, J.; Liu, C.; Wang, F.; Song, Y. Amorphous CuPt Alloy Nanotubes Induced by Na2S2O3 as Efficient Catalysts for the Methanol Oxidation Reaction. ACS Catal. 2016, 6(7), 4127–4134. DOI: 10.1021/acscatal.6b00540.
  • Tian, X. L.; Wang, L.; Deng, P.; Chen, Y.; Xia, B. Y. Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. J. Energy Chem. 2017, 26(6), 1067–1076. DOI: 10.1016/j.jechem.2017.10.009.
  • Tian, X. L.; Xu, Y. Y.; Zhang, W.; Wu, T.; Xia, B. Y.; Wang, X. Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Lett. 2017, 2(9), 2035–2043. DOI: 10.1021/acsenergylett.7b00593.
  • Yu, F.; Xie, Y.; Tang, H.; Yang, N.; Meng, X.; Wang, X.; Tian, X. L.; Yang, X. Platinum decorated hierarchical porous structures composed of ultrathin titanium nitride nanoflakes for efficient methanol oxidation reaction. Electrochim. Acta. 2018, 264, 216–224. DOI: 10.1016/j.electacta.2018.01.137.
  • Fu, X.; Su, H.; Yin, W.; Huang, Y.; Gu, X. Bimetallic molybdenum nitride Co 3 Mo 3 N: A new promising catalyst for CO 2 reforming of methane. Catal. Sci. Technol. 2017, 7(8), 1671–1678. DOI: 10.1039/C6CY02428A.
  • Monnier, J.; Sulimma, H.; Dalai, A.; Caravaggio, G. Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Appl. Catal., A. 2010, 382(2), 176–180. DOI: 10.1016/j.apcata.2010.04.035.
  • Lu, C.; Chen, C. Structure-strength relations of distinct MoN phases from first-principles calculations. Phys. Rev. Mater. 2020, 4(4), 044002. DOI: 10.1103/PhysRevMaterials.4.044002.
  • Huang, S.-Y.; Ganesan, P.; Popov, B. N. Electrocatalytic Activity and Stability of Titania-Supported Platinum–Palladium Electrocatalysts for Polymer Electrolyte Membrane Fuel Cell. ACS Catal. 2012, 2(5), 825–831. DOI: 10.1021/cs300088n.
  • Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. D. Self-Supported Interconnected Pt Nanoassemblies as Highly Stable Electrocatalysts for Low-Temperature Fuel Cells. Angewandte Chemie. 2012, 124(29), 7325–7328. DOI: 10.1002/ange.201201553.
  • Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134(34), 13934–13937. DOI: 10.1021/ja3051662.
  • Yang, P.; Yuan, X.; Hu, H.; Liu, Y.; Zheng, H.; Yang, D.; Chen, L.; Cao, M.; Xu, Y.; Min, Y., et al. Solvothermal Synthesis of Alloyed PtNi Colloidal Nanocrystal Clusters (CNCs) with Enhanced Catalytic Activity for Methanol Oxidation. Adv. Funct. Mater. 2018, 28(1).
  • Bo, Z.; Hu, D.; Kong, J.; Yan, J.; Cen, K. Performance of vertically oriented graphene supported platinum–ruthenium bimetallic catalyst for methanol oxidation. J. Power Sources. 2015, 273, 530–537. DOI: 10.1016/j.jpowsour.2014.09.125.
  • Santoro, C.; Serov, A.; Gokhale, R.; Rojas-Carbonell, S.; Stariha, L.; Gordon, J.; Artyushkova, K.; Atanassov, P. A family of Fe-NC oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: Relationships between surface chemistry and performances. Appl. Catal. B Environ. 2017, 205, 24–33. DOI: 10.1016/j.apcatb.2016.12.013.
  • Tardy, G. M.; Lorant, B.; Loka, M.; Nagy, B.; Laszlo, K. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst. Biotechnol. Lett. 2017, 39(7), 993–999.
  • Mao, R.; Kong, B. D.; Kim, K. W. Thermal transport properties of metal/MoS2 interfaces from first principles. J. Appl. Phys. 2014, 116(3), 3. DOI: 10.1063/1.4890347.
  • Rowley-Neale, S. J.; Smith, G. C.; Banks, C. E. Mass-Producible 2d-MoS2-impregnated screen-printed electrodes that demonstrate efficient electrocatalysis toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces. 2017, 9(27), 22539–22548. DOI: 10.1021/acsami.7b05104.
  • Guardia, L.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Ayan-Varela, M.; Martinez-Alonso, A.; Tascon, J. M. Chemically exfoliated MoS(2) nanosheets as an efficient catalyst for reduction reactions in the aqueous phase. ACS Appl. Mater. Interfaces. 2014, 6(23), 21702–21710. DOI: 10.1021/am506922q.
  • Xing, Z.; Gao, N.; Qi, Y.; Ji, X.; Liu, H. Influence of enhanced carbon crystallinity of nanoporous graphite on the cathode performance of microbial fuel cells. Carbon. 2017, 115, 271–278. DOI: 10.1016/j.carbon.2017.01.014.
  • He, Y.-R.; Du, F.; Huang, Y.-X.; Dai, L.-M.; Li, -W.-W.; Yu, H.-Q. Preparation of microvillus-like nitrogen-doped carbon nanotubes as the cathode of a microbial fuel cell. J. Mater. Chem. A. 2016, 4(5), 1632–1636. DOI: 10.1039/C5TA06673E.
  • Gao, Y.; Wang, L.; Li, G.; Xiao, Z.; Wang, Q.; Zhang, X. Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction. Int. J. Hydrogen Energy. 2018, 43(16), 7893–7902.
  • Türk, K. K.; Kruusenberg, I.; Kibena-Põldsepp, E.; Bhowmick, G. D.; Kook, M.; Tammeveski, K.; Matisen, L.; Merisalu, M.; Sammelselg, V.; Ghangrekar, M. M., et al. Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance. Int. J. Hydrogen Energy. 2018, 43(51), 23027–23035. DOI: 10.1016/j.ijhydene.2018.10.143.
  • Wang, Y.; Wang, B.; Huang, R.; Gao, B.; Kong, F.; Zhang, Q. First-principles study of transition-metal atoms adsorption on MoS2 monolayer. Phys E: Low-dimensional Syst Nanostruct. 2014, 63, 276–282. DOI: 10.1016/j.physe.2014.06.017.
  • Zhang, Y.; Hu, Y.; Li, S.; Sun, J.; Hou, B. Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell. J. Power Sources. 2011, 196(22), 9284–9289. DOI: 10.1016/j.jpowsour.2011.07.069.
  • Kinoshita, K. Electrochemical oxygen technology; John Wiley & Sons, 1992; Vol. 30.
  • Deng, L.; Zhou, M.; Liu, C.; Liu, L.; Liu, C.; Dong, S. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells. Talanta. 2010, 81(1–2), 444–448. DOI: 10.1016/j.talanta.2009.12.022.
  • Liu, X.; Zhou, Y.; Zhou, W.; Li, L.; Huang, S.; Chen, S. Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale. 2015, 7(14), 6136–6142. DOI: 10.1039/C5NR00013K.
  • Lv, Z.; Mahmood, N.; Tahir, M.; Pan, L.; Zhang, X.; Zou, -J.-J. Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale. 2016, 8(43), 18250–18269.
  • Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118(10), 4981–5079. DOI: 10.1021/acs.chemrev.7b00776.
  • Su, J.; Ge, R.; Dong, Y.; Hao, F.; Chen, L. Recent progress in single-atom electrocatalysts: Concept, synthesis, and applications in clean energy conversion. J. Mater. Chem. A. 2018, 6(29), 14025–14042. DOI: 10.1039/C8TA04064H.
  • Kou, Z.; Zang, W.; Ma, Y.; Pan, Z.; Mu, S.; Gao, X.; Tang, B.; Xiong, M.; Zhao, X.; Cheetham, A. K. Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: From isolated atoms to clusters and nanoparticles. Nano Energy. 2020, 67, 104288. DOI: 10.1016/j.nanoen.2019.104288.
  • Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule. 2018, 2(7), 1242–1264. DOI: 10.1016/j.joule.2018.06.019.
  • Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49(5), 1414–1448. DOI: 10.1039/c9cs00906j.
  • Zhang, H.; Ma, Z.; Liu, G.; Shi, L.; Tang, J.; Pang, H.; Wu, K.; Takei, T.; Zhang, J.; Yamauchi, Y. Highly active nonprecious metal hydrogen evolution electrocatalyst: Ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Mater. 2016, 8(7), e293–e293. DOI: 10.1038/am.2016.102.
  • Liu, J.; Huang, K.; Tang, H.; Lei, M. Porous and single-crystalline-like molybdenum nitride nanobelts as a non-noble electrocatalyst for alkaline fuel cells and electrode materials for supercapacitors. Int. J. Hydrogen Energy. 2016, 41(2), 996–1001. DOI: 10.1016/j.ijhydene.2015.11.086.
  • Kashfi-Sadabad, R.; Yazdani, S.; Huan, T. D.; Cai, Z.; Pettes, M. T. Role of oxygen vacancy defects in the electrocatalytic activity of substoichiometric molybdenum oxide. J. Phys. Chem. C. 2018, 122(32), 18212–18222. DOI: 10.1021/acs.jpcc.8b03536.
  • Béjar, J.; Álvarez-Contreras, L.; Guerra-Balcázar, M.; Ledesma-García, J.; Arriaga, L. G.; Arjona, N. Synthesis of a small-size metal oxide mixture based on MoOx and NiO with oxygen vacancies as bifunctional electrocatalyst for oxygen reactions. Appl. Surf. Sci. 2020, 509, 144898. DOI: 10.1016/j.apsusc.2019.144898.
  • Thanh, H. V. T.; Pan, C.; Rick, J.; Su, W.; Hwang, B.; Ti, N. Nanostructured Ti0.7Mo 0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2011, 133(30), 11716–11724. DOI: 10.1021/ja2039562.
  • Yüce, A. O.; Farsak, M.; Akgül, F. S.; Tezcan, F.; Telli, E.; Kardaş, G. Electrochemical performance of lithium molybdenum composite catalyst in oxygen reduction reaction. Int. J. Hydrogen Energy. 2015, 40(29), 8889–8896. DOI: 10.1016/j.ijhydene.2015.05.050.
  • Cao, B.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Molybdenum nitrides as oxygen reduction reaction catalysts: structural and electrochemical studies. Inorg. Chem. 2015, 54(5), 2128–2136. DOI: 10.1021/ic5024778.
  • Huang, X.; Xu, F.; Hou, H.; Hou, J.; Wang, Y.; Zhou, S. Stimuli-responsive nitric oxide generator for light-triggered synergistic cancer photothermal/gas therapy. Nano Res. 2019, 12(6), 1361–1370. DOI: 10.1007/s12274-019-2307-x.
  • Zhang, K.; Zhang, L.; Chen, X.; He, X.; Wang, X.; Dong, S.; Han, P.; Zhang, C.; Wang, S.; Gu, L. Mesoporous cobalt molybdenum nitride: A highly active bifunctional electrocatalyst and its application in lithium–O2 batteries. J. Phys. Chem. C. 2013, 117(2), 858–865. DOI: 10.1021/jp310571y.
  • Yin, Z.; Sun, Y.; Jiang, Y.; Yan, F.; Zhu, C.; Chen, Y. Hierarchical Cobalt-Doped Molybdenum–Nickel Nitride Nanowires as Multifunctional Electrocatalysts. ACS Appl. Mater. Interfaces. 2019, 11(31), 27751–27759. DOI: 10.1021/acsami.9b06543.
  • Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Kaskel, S.; Chou, S.; Park, H. S.; Zhang, Q. Alloy anodes for rechargeable alkali-metal batteries: Progress and challenge. ACS Mater. Lett. 2019, 1(2), 217–229. DOI: 10.1021/acsmaterialslett.9b00118.
  • Jayabal, S.; Saranya, G.; Wu, J.; Liu, Y.; Geng, D.; Meng, X. Understanding the high-electrocatalytic performance of two-dimensional MoS 2 nanosheets and their composite materials. J. Mater. Chem. A. 2017, 5(47), 24540–24563. DOI: 10.1039/C7TA08327K.
  • Zhang, H.; Tian, Y.; Zhao, J.; Cai, Q.; Chen, Z. Small dopants make big differences: Enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N–and P–doping. Electrochim. Acta. 2017, 225, 543–550. DOI: 10.1016/j.electacta.2016.12.144.
  • Liu, C.; Dong, H.; Ji, Y.; Hou, T.; Li, Y. Origin of the catalytic activity of phosphorus doped MoS 2 for oxygen reduction reaction (ORR) in alkaline solution: A theoretical study. Sci. Rep. 2018, 8(1), 1–9. DOI: 10.1038/s41598-017-17765-5.
  • Chuong, N. D.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Hierarchical heterostructures of ultrasmall Fe2O3-encapsulated MoS2/N-graphene as an effective catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces. 2018, 10(29), 24523–24532. DOI: 10.1021/acsami.8b06485.
  • Mao, J.; Liu, P.; Du, C.; Liang, D.; Yan, J.; Song, W. Tailoring 2D MoS 2 heterointerfaces for promising oxygen reduction reaction electrocatalysis. J. Mater. Chem. A. 2019, 7(15), 8785–8789. DOI: 10.1039/C9TA01321K.
  • Shou, P.; Yu, Z.; Wu, Y.; Feng, Q.; Zhou, B.; Xing, J.; Liu, C.; Tu, J.; Akakuru, O. U.; Ye, Z. Zn2+ Doped Ultrasmall Prussian Blue Nanotheranostic Agent for Breast Cancer Photothermal Therapy under MR Imaging Guidance. Adv. Healthcare Mater. 2020, 9(1), 1900948. DOI: 10.1002/adhm.201900948.
  • Liu, H.; Ge, J.; Ma, E.; Yang, L. Advanced biomaterials for biosensor and theranostics. In Biomaterials in translational medicine; Elsevier, 2019; pp 213–255.
  • Vinoth, R.; Patil, I. M.; Pandikumar, A.; Kakade, B. A.; Huang, N. M.; Dionysios, D. D.; Neppolian, B. Synergistically enhanced electrocatalytic performance of an N-doped graphene quantum dot-decorated 3D MoS2–graphene nanohybrid for oxygen reduction reaction. Acs Omega. 2016, 1(5), 971–980. DOI: 10.1021/acsomega.6b00275.
  • Regmi, Y. N.; Waetzig, G. R.; Duffee, K. D.; Schmuecker, S. M.; Thode, J. M.; Leonard, B. M. Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. J. Mater. Chem. A. 2015, 3(18), 10085–10091. DOI: 10.1039/C5TA01296A.
  • Luo, Y.; Wang, Z.; Fu, Y.; Jin, C.; Wei, Q.; Yang, R. In situ preparation of hollow Mo 2 C–C hybrid microspheres as bifunctional electrocatalysts for oxygen reduction and evolution reactions. J. Mater. Chem. A. 2016, 4(32), 12583–12590. DOI: 10.1039/C6TA04654A.
  • Zhang, Y.; Li, C.; Chen, Z.; Ni, Y.; Kong, F.; Kong, A.; Shan, Y. Ionic liquid-derived moc nanocomposites with ordered mesoporosity as efficient pt-free electrocatalyst for hydrogen evolution and oxygen reduction. Catal. Lett. 2017, 147(1), 253–260. DOI: 10.1007/s10562-016-1914-3.
  • Huang, K.; Bi, K.; Liang, C.; Lin, S.; Wang, W.; Yang, T.; Liu, J.; Zhang, R.; Fan, D.; Wang, Y. Graphite carbon-supported Mo 2 C nanocomposites by a single-step solid state reaction for electrochemical oxygen reduction. Plos one. 2015, 10(9), e0138330. DOI: 10.1371/journal.pone.0138330.
  • Yang, H.; Liu, J.; Wang, J.; Poh, C. K.; Zhou, W.; Lin, J.; Shen, Z. Electrocatalytically active graphene supported MMo carbides (MNi, Co) for oxygen reduction reaction. Electrochim. Acta. 2016, 216, 246–252. DOI: 10.1016/j.electacta.2016.09.023.
  • Wang, H.; Sun, C.; Cao, Y.; Zhu, J.; Chen, Y.; Guo, J.; Zhao, J.; Sun, Y.; Zou, G. Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon. 2017, 114, 628–634. DOI: 10.1016/j.carbon.2016.12.081.
  • Song, Y.-J.; Ren, J.-T.; Yuan, G.; Yao, Y.; Liu, X.; Yuan, Z.-Y. Facile synthesis of Mo2C nanoparticles on N-doped carbon nanotubes with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions. J. Energy Chem. 2019, 38, 68–77. DOI: 10.1016/j.jechem.2019.01.002.
  • Elbaz, L.; Phillips, J.; Artyushkova, K.; More, K.; Brosha, E. L. Evidence of high electrocatalytic activity of molybdenum carbide supported platinum nanorafts. J. Electrochem. Soc. 2015, 162(9), H681. DOI: 10.1149/2.0991509jes.
  • Krishnamurthy, C. B.; Lori, O.; Elbaz, L.; Grinberg, I. First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction. J. Phys. Chem. Lett. 2018, 9(9), 2229–2234. DOI: 10.1021/acs.jpclett.8b00949.
  • Li, S.; Wang, R.; Yang, X.; Wu, J.; Meng, H.; Xu, H.; Ren, Z. Binary metal phosphides with MoP and FeP embedded in P, N-doped graphitic carbon as electrocatalysts for oxygen reduction. ACS Sustainable Chem. Eng. 2019, 7(13), 11872–11884. DOI: 10.1021/acssuschemeng.9b02473.
  • Sharma, K.; Hui, D.; Kim, N. H.; Lee, J. H. Facile synthesis of N-doped graphene supported porous cobalt molybdenum oxynitride nanodendrites for the oxygen reduction reaction. Nanoscale. 2019, 11(3), 1205–1216. DOI: 10.1039/C8NR06780E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.