Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 1
1,763
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications

, , , , , , , & show all

References

  • Prüss-Üstün, A. and Corvalán, C., Preventing Disease Through Healthy Environments, 2, WHO Press, World Health Organization, Geneva, Switzerland. 2016
  • Kober, T.; Schiffer, H.-W.; Densing, M., et al. Global Energy Perspectives to 2060–WEC’s World Energy Scenarios 2019. Energy Strategy Rev. 2020, 31, 100523. DOI: 10.1016/j.esr.2020.100523.
  • Zhang, P.; Lou, X. W. Design of Heterostructured Hollow Photocatalysts for Solar‐to‐Chemical Energy Conversion. Adv.Mate. 2019, 31(29), 1900281. DOI: 10.1002/adma.201900281.
  • Peter, S. C. Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. ACS Energy Lett. 2018, 3(7), 1557–1561. DOI: 10.1021/acsenergylett.8b00878.
  • Weaver, P.; Jansen, L.; Van Grootveld, G., et al. Sustainable Technology Development; Routledge,2017.
  • Farooq, U.; Pandit, A. H.; Phul, R. Recent Advances in Metal Oxide/Sulphide-Based Heterostructure Photocatalysts for Water Splitting and Environmental Remediation. Environ Nanotechnol Water Purif. 2020, 10, 187.
  • Li, Y.; Tsang, S. C. E. Recent Progress and Strategies for Enhancing Photocatalytic Water Splitting. Mater Today Sustainability. 2020, 9, 100032. DOI: 10.1016/j.mtsust.2020.100032.
  • Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K., et al. Photocatalytic Water Splitting with a Quantum Efficiency of Almost Unity. Nature. 2020, 581(7809), 411–414.
  • Shiraishi, Y.; Hashimoto, M.; Chishiro, K.; Moriyama, K.; Tanaka, S.; Hirai, T., et al. Photocatalytic Dinitrogen Fixation with Water on Bismuth Oxychloride in Chloride Solutions for Solar-to-Chemical Energy Conversion. J. Am. Chem. Soc. 2020, 142(16), 7574–7583.
  • Qiu, W. Q.; Luo, Y.-X. L.; Liang, R.-P. L.; Qiu, J.-D., et al. Amorphous/Crystalline Hetero-Phase TiO2-Coated α-Fe2O3</sub> Core–Shell Nanospindles: A High-Performance Artificial Nitrogen Fixation Electrocatalyst. Chemistry. 2020, 26(45), 10226–10229.
  • Xing, P.; Zhang, W.; Chen, L.; Dai, X.; Zhang, J.; Zhao, L.; He, Y., et al. Preparation of a NiO/KNbO3 Nanocomposite via a Photodeposition Method and Its Superior Performance in Photocatalytic N2 Fixation. Sustain. Energy Fuels. 2020, 4(3), 1112–1117.
  • Kim. H, Kim. Y, Mackeyev, Lee. G. S, Kim. H.J, T. Tachikawaet al, , Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: tin porphyrin versus C60 amino-fullerene systems, Environ. Sci. Technol. 46 (2012) 9606–9613.
  • Sannino, D. Visible Light Active Photocatalysts for the Removal of Organic Emerging Contaminants. Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants: Elsevier 2020, 121–139.
  • Kumaravel, V.; Bartlett, J.; Pillai, S. C. Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-added Products. ACS Energy Lett. 2020, 5(2), 486–519. DOI: 10.1021/acsenergylett.9b02585.
  • Gao, Y.; Qian, K.; Xu, B.; Li, Z.; Zheng, J.; Zhao, S.; Ding, F.; Sun, Y.; Xu, Z., et al. Recent Advances in Visible-light-driven Conversion of CO2 by Photocatalysts into Fuels or Value-added Chemicals. Carb. Res. Conv. 2020, 3, 46–59. DOI: 10.1016/j.crcon.2020.02.003.
  • Kohtani, S.; Kawashima, A.; Miyabe, H. Stereoselective Organic Reactions in Heterogeneous Semiconductor Photocatalysis. Front. Chem. 2019, 7, 630. DOI: 10.3389/fchem.2019.00630.
  • Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. nature. 1972, 238(5358), 37–38. DOI: 10.1038/238037a0.
  • Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium Dioxide Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1(1), 1–21. DOI: 10.1016/S1389-5567(00)00002-2.
  • Bhagya, T. C., Arunima Rajan, and S. M. A. Shibli. ”In situ tuning of the bandgap of Sn doped composite for sustained photocatalytic hydrogen generation under visible light irradiation.” International Journal of Hydrogen Energy 46.30 (2021): 16360–16372.
  • Wu, Z.; Yuan, D.; Lin, S., et al. Enhanced Photoelectrocatalytic Activity of Bi2S3–TiO2 Nanotube Arrays Hetero-structure under Visible Light Irradiation. Int. J. Hydrogen Energy. 2020, 45(56), 32012–32021.
  • Rehman, S.; Ullah, R.; Butt, A.; Gohar, N. D., et al. Strategies of Making TiO2 and ZnO Visible Light Active. J. Hazard. Mater. 2009, 170(2–3), 560–569.
  • Basavarajappa, P. S.; Patil, S. B.; Ganganagappa, N.; Reddy, K. R.; Raghu, A. V.; Reddy, C. V., et al. Recent Progress in Metal-doped TiO2, Non-metal Doped/codoped TiO2 and TiO2 Nanostructured Hybrids for Enhanced Photocatalysis. Int. J. Hydrogen Energy. 2020, 45(13), 7764–7778.
  • Shahvaranfard, F.; Ghigna, P.; Minguzzi, A.; Wierzbicka, E.; Schmuki, P.; Altomare, M., et al. Dewetting of PtCu Nanoalloys on TiO2 Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H2 Evolution. ACS Appl. Mater. Interfaces. 2020, 12(34), 38211–38221.
  • Choi, K.; Bang, J.; Kyu Moon, I.; Kim, K.; Oh, J., et al. Enhanced Photoelectrochemical Efficiency and Stability Using Nitrogen-doped TiO2 on a GaAs Photoanode. J. Alloys Compd. 2020, 843, 155973. DOI: 10.1016/j.jallcom.2020.155973.
  • Shan, X.; Wang, Z.; Lin, Y.; Zeng, T.; Zhao, X.; Xu, H.; Liu, Y., et al. Silent Synapse Activation by Plasma-Induced Oxygen Vacancies in TiO2 </sub> Nanowire-Based Memristor. Adv. Electron. Mater. 2020, 6(9), 2000536.
  • Yan, F.; Wu, Y.; Jiang, L.; Xue, X.; Lv, J.; Lin, L.; Yu, Y.; Zhang, J.; Yang, F.; Qiu, Y., et al. Design of C3N4 </sub>-based Hybrid Heterojunctions for Enhanced Photocatalytic Hydrogen Production Activity. ChemSusChem. 2020, 13(5), 876–881.
  • Dehghani, M., and Fadaei, A. Potoccatalytic Oxidation of Oganophosphorus Pesticides Using Zinc Oxide. Res. J. Chem. Environ. 2012, 16, 104–109.
  • Khan, S. H.; Pathak, B. ZnO Based Photocatalytic Degradation of Persistent Pesticides: A Comprehensive Review. Environ. Nanotechnol. Monit. Manage. 2020, 13, 100290. DOI: 10.1016/j.enmm.2020.100290.
  • Hu, J.; Zhang, F.; Yang, Y.; Han, Q.; Li, Z.; Shen, Q.; Zhang, Y.; Zhou, Y.; Zou, Z., et al. In Situ Preparation of Bi2S3 Nanoribbon-anchored BiVO4 Nanoscroll Heterostructures for the Catalysis of Cr(vi) Photoreduction. Catal. Sci. Technol. 2020, 10(12), 3843–3847.
  • Hong, C.; Kim, Y.-I., and Seo, J. H., et al. Comprehensive Study of Growth Mechanism and Photoelectrochemical Activity of BiVO4/Bi2S3 Nanowire Composite. ACS Appl. Mater. Interfaces. 2020, 12(35), 39713–39719.
  • Dai, Y.; Poidevin, C.; Ochoa‐Hernández, C.; Auer, A. A.; Tüysüz, H., et al. A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C–H Bond Activation. Angew. Chem. Int. Ed. 2020, 59(14), 5788–5796.
  • Yan, T.; Li, N.; Wang, L., et al. Bismuth Atom Tailoring of Indium Oxide Surface Frustrated Lewis Pairs Boosts Heterogeneous CO2 Photocatalytic Hydrogenation. nature communication. 2020
  • Sang, Y.; Cao, X.; Dai, G.; Wang, L.; Peng, Y.; Geng, B., et al. Facile One-pot Synthesis of Novel Hierarchical Bi2O3/Bi2S3 Nanoflower Photocatalyst with Intrinsic Pn Junction for Efficient Photocatalytic Removals of RhB and Cr (VI). J. Hazard. Mater. 2020, 381, 120942. DOI: 10.1016/j.jhazmat.2019.120942.
  • Dong, Y.; Ma, A., and Zhang, D., et al. Preparation of High-performance α-Bi2O3 Photocatalysts and Their Photocatalytic Activity. Surface Innovations. 2020, 8(5), 295–303.
  • Huo, X.; Huang, L.-F. Physical Spread and Technical Upshift in the Band Gaps of Visible-light Photocatalytic Bismuth Oxyhalide Solid Solutions. Comput. Mater. Sci. 2020, 184, 109870. DOI: 10.1016/j.commatsci.2020.109870.
  • Wang, L.; Guo, S.; Chen, Y.; Pan, M.; Ang, E. H.; Yuan, Z.-H., et al. A Mechanism Investigation of How the Alloying Effect Improves the Photocatalytic Nitrate Reduction Activity of Bismuth Oxyhalide Nanosheets. ChemPhotoChem. 2020, 4(2), 110–119.
  • Wu, L.; Zhang, Q.; Li, Z., et al. Mechanochemical Syntheses of a Series of Bismuth Oxyhalide Composites to Progressively Enhance the Visible-light Responsive Activities for the Degradation of bisphenol-A. Mater. Sci. Semicond. Process. 2020, 105, 104733. DOI: 10.1016/j.mssp.2019.104733.
  • Singh, S.; Sharma, R.; Khanuja, M. A Review and Recent Developments on Strategies to Improve the Photocatalytic Elimination of Organic Dye Pollutants by BiOX (X= Cl, Br, I, F) Nanostructures. Korean J. Chem. Eng. 2018, 35(10), 1955–1968. DOI: 10.1007/s11814-018-0112-y.
  • Patiphatpanya, P.; Intaphong, P.; Phuruangrat, A., et al. EFFECT OF pH ON PHOTOCATALYTIC ACTIVITIES OF BiOBr NANOMATERIALS SYNTHESIZED BY SONOCHEMICAL METHOD. Digest J Nanomater Biostruct. 2020, 15(1), 115–121.
  • Ganose, A. M.; Cuff, M., and Butler, K. T., et al. Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. chemistry of materials. 2016, 28(7), 1980–1984.
  • Cui, Z.; Song, H.; Ge, S.; He, W.; Liu, Y., et al. Fabrication of BiOCl/BiOBr Hybrid Nanosheets with Enhanced Superoxide Radical Dominating Visible Light Driven Photocatalytic Activity. Appl. Surf. Sci. 2019, 467, 505–513. DOI: 10.1016/j.apsusc.2018.10.181.
  • Lv, J.; Hu, Q.; Cao, C.; Zhao, Y., et al. Modulation of Valence Band Maximum Edge and Photocatalytic Activity of BiOX by Incorporation of Halides. Chemosphere. 2018, 191, 427–437. DOI: 10.1016/j.chemosphere.2017.09.149.
  • Bhachu, D. S.; Moniz, S. J.; Sathasivam, S.; Scanlon, D. O.; Walsh, A.; Bawaked, S. M.; Mokhtar, M.; Obaid, A. Y.; Parkin, I. P.; Tang, J., et al. Bismuth Oxyhalides: Synthesis, Structure and Photoelectrochemical Activity. Chem. Sci. 2016, 7(8), 4832–4841.
  • Hou, J.; Tang, J.; Feng, K.; Idrees, F.; Tahir, M.; Sun, X.; Wang, X., et al. The Chemical Precipitation Synthesis of Nanorose-shaped Bi4O5I2 with Highly Visible Light Photocatalytic Performance. Mater. Lett. 2019, 252, 106–109. DOI: 10.1016/j.matlet.2019.05.111.
  • Jiang, T.; Jin, J.; Hou, J.; Tahir, M.; Idrees, F., et al. Bi4O5I2/nitrogen-doped Hierarchical Carbon (NHC) Composites with Tremella-like Structure for High Photocatalytic Performance. Chemosphere. 2019, 229, 426–433. DOI: 10.1016/j.chemosphere.2019.05.043.
  • Li, X.; Han, B.; Wang, X., et al. High Photocatalytic Activity of Rutile TiO2. BiOBr Composites via an in Situ Synthesis Approach. New J Chem. 2020, 44(5), 1905–1911.
  • Zheng, M.; Ma, X.; Hu, J.; Zhang, X.; Li, D.; Duan, W., et al. Novel Recyclable BiOBr/Fe3O4 /RGO Composites with Remarkable Visible-light Photocatalytic Activity. RSC Adv. 2020, 10(34), 19961–19973.
  • Han, A.; Sun, J.; Chuah, G. K., et al. Enhanced P-cresol Photodegradation over BiOBr/Bi2O3 in the Presence of Rhodamine B. RSC Adv. 2016, 7(1), 145–152.
  • Yao, S.; Wang, J.; Zhou, X.; Zhou, S.; Pu, X.; Li, W., et al. One-pot Low-temperature Synthesis of BiOX/TiO2 Hierarchical Composites of Adsorption Coupled with Photocatalysis for Quick Degradation of Colored and Colorless Organic Pollutants. Adv Powder. 2020, 31(5), 1924–1932.
  • Wang, C.; Shen, J.; Chen, R., et al. Self-assembled BiOCl/Ti3C2Tx Composites with Efficient Photo-induced Charge Separation Activity for Photocatalytic Degradation of P-nitrophenol. Appl. Surf. Sci. 2020, 519, 146175. DOI: 10.1016/j.apsusc.2020.146175.
  • Yao, S.; Zheng, R.; Li, R.; Chen, Y.; Zhou, X.; Ning, X.; Zhan, L.; Luo, J., et al. LaCoO3 Acts as a High-efficiency Co-catalyst for Enhancing Visible-light-driven Tetracycline Degradation of BiOI. J. Am. Ceram. Soc. 2020, 103(3), 1709–1721.
  • Bai, Y.; Ye, L.; Wang, L., et al. A Dual-cocatalyst-loaded Au/BiOI/MnOx System for Enhanced Photocatalytic Greenhouse Gas Conversion into Solar Fuels. Environ. Sci. 2016, 3(4), 902–909.
  • Liang, L.; Wang, J.; Wu, R., et al. Preparation of BiOCl1-xIx Solid Solution and Its Visible Light Photocatalytic Performance. J. Mater. Sci.: Mater. Electron. 2020, 31(4), 2817–2825.
  • Gao, M.; Yang, J.; Sun, T., et al. Persian Buttercup-like BiOBrxCl1-x Solid Solution for Photocatalytic Overall CO2 Reduction to CO and O2. Appl. Catal. B. 2019, 243, 734–740.
  • Deng, F.; Luo, Y.; Li, H.; Xia, B.; Luo, X.; Luo, S.; Dionysiou, D. D., et al. Efficient Toxicity Elimination of Aqueous Cr (VI) by Positively-charged BiOClxI1-x, BiOBrxI1-x and BiOClxBr1-x Solid Solution with Internal Hole-scavenging Capacity via the Synergy of Adsorption and Photocatalytic Reduction. J. Hazard. Mater. 2020, 383, 121127. DOI: 10.1016/j.jhazmat.2019.121127.
  • Zhang, G.; Cai, L.; Zhang, Y.; Wei, Y., et al. Bi5+,Bi(3−x)+, and Oxygen Vacancy Induced BiOC lxI <sub>1−x Solid Solution toward Promoting Visible-Light Driven Photocatalytic Activity. Chem. Eur. J. 2018, 24(29), 7434–7444.
  • Jia, X.; Cao, J.; Lin, H., et al. Novel I-BiOBr/BiPO4 Heterostructure: Synergetic Effects of I− Ion Doping and the Electron Trapping Role of Wide-band-gap BiPO4 Nanorods. RSC Adv. 2016, 6(61), 55755–55763.
  • Zhou, S.; Shi, T.; Chen, Z.; Kilin, D.; Shui, L.; Jin, M.; Yi, Z.; Yuan, M.; Li, N.; Yang, X., et al. First-Principles Study of Optoelectronic Properties of the Noble Metal (Ag and Pd) Doped BiOX (X= F, Cl, Br, and I) Photocatalytic System. Catalysts. 2019, 9(2), 198.
  • Khazaee, Z.; Mahjoub, A. R.; Khavar, A. H. C.; Srivastava, V.; Sillanpää, M., et al. Preparation of phosphorus-modified BiOx as Versatile Catalyst for Enhanced Photo-reduction of Cr(VI) and Oxidation of Organic Dyes. Solar Energy. 2020, 207, 1282–1299. DOI: 10.1016/j.solener.2020.07.068.
  • Peng, Y.; Kan, P.; Zhang, Q.; Zhou, Y., et al. Oxygen Vacancy Enhanced Photoreduction Cr (VI) on Few-Layers BiOBr Nanosheets. Catalysts. 2019, 9(6), 558.
  • Cui, D.; Xu, K.; Dong, X.; Lv, D.; Dong, F.; Hao, W.; Du, Y.; Chen, J., et al. Controlled Hydrogenation into Defective Interlayer Bismuth Oxychloride via Vacancy Engineering. Commun. Chem. 2020, 3(1), 1–8.
  • Ren, X.; Yao, J.; Cai, L.; Li, J.; Cao, X.; Zhang, Y.; Wang, B.; Wei, Y., et al. Band Gap Engineering of BiOI via Oxygen Vacancies Induced by Graphene for Improved Photocatalysis. New J. Chem. 2019, 43(3), 1523–1530.
  • Huang, H.; Liu, C.; Ou, H., et al. Self-sacrifice Transformation for Fabrication of type-I and type-II Heterojunctions in Hierarchical BixOyIz/g-C3N4 for Efficient Visible-light Photocatalysis. Appl. Surf. Sci. 2019, 470, 1101–1110. DOI: 10.1016/j.apsusc.2018.11.193.
  • Jia, X.; Cao, J.; Lin, H.; Zhang, M.; Guo, X.; Chen, S., et al. Transforming type-I to type-II Heterostructure Photocatalyst via Energy Band Engineering: A Case Study of I-BiOCl/I-BiOBr. Appl. Catal. B Environ. 2017, 204, 505–514. DOI: 10.1016/j.apcatb.2016.11.061.
  • Niu, S.; Zhang, R.; Zhang, Z.; Zheng, J.; Jiao, Y.; Guo, C., et al. In Situ Construction of the BiOCl/Bi2 Ti2O7 Heterojunction with Enhanced Visible-light Photocatalytic Activity. Inorg. Chem. Front. 2019, 6(3), 791–798.
  • Ren, X.; Wu, K.; Qin, Z.; Zhao, X.; Yang, H., et al. The Construction of Type II Heterojunction of Bi2WO6/BiOBr Photocatalyst with Improved Photocatalytic Performance. J. Alloys Compd. 2019, 788, 102–109. DOI: 10.1016/j.jallcom.2019.02.211.
  • Wu, K.; Qin, Z.; Zhang, X.; Guo, R.; Ren, X.; Pu, X., et al. Z-scheme BiOCl/Bi–Bi2O3 Heterojunction with Oxygen Vacancy for Excellent Degradation Performance of Antibiotics and Dyes. J. Mater. Sci. 2020, 55(9), 4017–4029.
  • Raizada, P.; Thakur, P.; Sudhaik, A.; Singh, P.; Thakur, V. K.; Hosseini-Bandegharaei, A., et al. Fabrication of Dual Z-scheme Photocatalyst via Coupling of BiOBr/Ag/AgCl Heterojunction with P and S Co-doped g-C3N4 for Efficient Phenol Degradation. Arabian J. Chem. 2020, 13(3), 4538–4552.
  • Habibi-Yangjeh, A.; Feizpoor, S.; Seifzadeh, D., et al. Improving Visible-light-induced Photocatalytic Ability of TiO2 through Coupling with Bi3O4Cl and Carbon Dot Nanoparticles. Sep. Purif. Technol. 2020, 238, 116404. DOI: 10.1016/j.seppur.2019.116404.
  • Li, H.; Deng, F.; Zheng, Y., et al. Visible-light-driven Z-scheme rGO/Bi2S3–BiOBr Heterojunctions with Tunable Exposed BiOBr (102) Facets for Efficient Synchronous Photocatalytic Degradation of 2-nitrophenol and Cr (Vi) Reduction. Environ. Sci. 2019, 6(12), 3670–3683.
  • Hu, X.; Wang, G.; Wang, J.; Hu, Z.; Su, Y., et al. Step-scheme NiO/BiOI Heterojunction Photocatalyst for Rhodamine Photodegradation. Appl. Surf. Sci. 2020, 511, 145499. DOI: 10.1016/j.apsusc.2020.145499.
  • Jia, X.; Han, Q.; Liu, H.; Li, S.; Bi, H., et al. A Dual Strategy to Construct Flowerlike S-scheme BiOBr/BiOAc1-xBrx Heterojunction with Enhanced Visible-light Photocatalytic Activity. Chem. Eng. J. 2020, 399, 125701. DOI: 10.1016/j.cej.2020.125701.
  • Wang, Y.; Wang, K.; Wang, J., et al. Sb2WO6/BiOBr 2D Nanocomposite S-scheme Photocatalyst for NO Removal. J. Mater. Sci. Technol. 2020.
  • Dou, L.; Jin, X.; Chen, J.; Zhong, J.; Li, J.; Zeng, Y.; Duan, R., et al. One-pot Solvothermal Fabrication of S-scheme OVs-Bi2O3/Bi2SiO5 Microsphere Heterojunctions with Enhanced Photocatalytic Performance toward Decontamination of Organic Pollutants. Appl. Surf. Sci. 2020, 527, 146775. DOI: 10.1016/j.apsusc.2020.146775.
  • Zhang, Y.; Sun, K.; Wu, D., et al. Localized Surface Plasmon Resonance Enhanced Photocatalytic Activity via MoO2/BiOBr Nanohybrids under Visible and NIR Light. Chemcatchem. 2019, 11(10), 2546–2553.
  • Zhang, D.; Tan, G.; Wang, M.; Li, B.; Dang, M.; Ren, H.; Xia, A., et al. The Enhanced Photocatalytic Activity of Ag-OVs-(001) BiOCl by Separating Secondary Excitons under Double SPR Effects. Appl. Surf. Sci. 2020, 526, 146689. DOI: 10.1016/j.apsusc.2020.146689.
  • Yang, B.; Ma, Z.; Li, Q., et al. Regulation of Surface Plasmon Resonance and Oxygen Vacancy Defects in Chlorine Doped Bi–BiO2-x for Imidacloprid Photocatalytic Degradation. New J. Chem. 2020, 44(3), 1090–1096.
  • Lu, H.; Ju, T.; She, H., et al. Microwave-assisted Synthesis and Characterization of BiOI/BiF3 P–n Heterojunctions and Its Enhanced Photocatalytic Properties. J. Mater. Sci. 2020, 31(16), 13787–13795.
  • Yosefi, L.; Mjacbe, H. Fabrication of Nanostructured Flowerlike p-BiOI/p-NiO Heterostructure and Its Efficient Photocatalytic Performance in Water Treatment under Visible-light Irradiation. Appl. Catal. B. 2018, 220, 367–378.
  • Wu, H.; Yuan, C.; Chen, R., et al. Mechanisms of Interfacial Charge Transfer and Photocatalytic NO Oxidation on BiOBr/SnO2 Pn Heterojunctions. ACS Appl Mater. 2020.
  • Hojamberdiev, M.; Kadirova, Z. C.; Zahedi, E.; Onna, D.; Claudia Marchi, M.; Zhu, G.; Matsushita, N.; Hasegawa, M.; Aldabe Bilmes, S.; Okada, K., et al. Tuning the Morphological Structure, Light Absorption, and Photocatalytic Activity of Bi2WO6 and Bi2WO6-BiOCl through Cerium Doping. Arabian J. Chem. 2020, 13(1), 2844–2857.
  • Li, P.; Cao, W.; Zhu, Y.; Teng, Q.; Peng, L.; Jiang, C.; Feng, C.; Wang, Y., et al. NaOH-induced Formation of 3D Flower-sphere BiOBr/Bi4O5Br2 with Proper-oxygen Vacancies via In-situ Self-template Phase Transformation Method for Antibiotic Photodegradation. Sci. Total Environ. 2020, 715, 136809. DOI: 10.1016/j.scitotenv.2020.136809.
  • Hou, J.; Dai, D.; Wei, R.; Wu, X.; Wang, X.; Tahir, M.; Zou, -J.-J., et al. Narrowing the Band Gap of BiOCl for the Hydroxyl Radical Generation of Photocatalysis under Visible Light. ACS Sustain. Chem. Eng. 2019, 7(19), 16569–16576.
  • Huang, Q.; Liu, Y.; Cai, T.; Xia, X., et al. Simultaneous Removal of Heavy Metal Ions and Organic Pollutant by BiOBr/Ti3C2 Nanocomposite. J. Photochem. Photobiol. 2019, 375, 201–208. DOI: 10.1016/j.jphotochem.2019.02.026.
  • Zhang, G.; Sewell, C. D.; Zhang, P.; Mi, H.; Lin, Z., et al. Nanostructured Photocatalysts for Nitrogen Fixation. Nano Energy. 2020, 71, 104645. DOI: 10.1016/j.nanoen.2020.104645.
  • Matysiak, W.; Tański, T.; Smok, W.; Polishchuk, O., et al. Synthesis of Hybrid Amorphous/crystalline SnO2 1D Nanostructures: Investigation of Morphology, Structure and Optical Properties. Sci. Rep. 2020, 10(1), 1–10.
  • Zhang, M.; Zhao, K.; Xiong, J.; Wei, Y.; Han, C.; Li, W.; Cheng, G., et al. A 1D/2D WO3 Nanostructure Coupled with A Nanoparticulate CuO Cocatalyst for Enhancing Solar-driven CO2 Photoreduction: The Impact of the Crystal Facet. Sustain. Energy Fuels. 2020, 4(5), 2593–2603.
  • Liu, P.; Yin, L.; Feng, L., et al. Controllable Preparation of Ultrathin 2D BiOBr Crystals for High-performance Ultraviolet Photodetector. Sci. China Mater. 2020, 1–9. DOI:10.1007/s40843-019-1261-1.
  • Han, L.; Li, B.; Wen, H., et al. Photocatalytic Degradation of Mixed Pollutants in Aqueous Wastewater Using Mesoporous 2D/2D TiO2 (B)-biobr Heterojunction. J. Mater. Sci. Technol. 2020.
  • Han, L.; Guo, Y.; Lin, Z.; Huang, H., et al. 0D to 3D Controllable Nanostructures of BiOBr via a Facile and Fast Room-temperature Strategy. Colloids Surf. A. 2020, 603, 125233. DOI: 10.1016/j.colsurfa.2020.125233.
  • Feng, S.-H.; G-h, L. Hydrothermal and Solvothermal Syntheses. Modern Inorg Synth Chem: Elsevier. 2017, 73–104.
  • Gan, Y. X.; Jayatissa, A. H.; Yu, Z., et al. Hydrothermal Synthesis of Nanomaterials. Hindawi. 2020.
  • Wang, X.; Chen, X. Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Elsevier, 2018.
  • de Jong Kpjsosc Deposition Precipitation, 2009; pp 111–134.
  • Geus, J. Production and Thermal Pretreatmewt of Supported Catalysts. In Studies in Surface Science and Catalysis, Elsevier: 1983; Vol. 16, pp 1–33.
  • Geus, J.; Van Dillen Ajpo, S. C. 4.6 Preparation of Supported Catalysts by Deposition-Precipitation, 1999; pp 460.
  • De Jong, K. Deposition Precipitation onto Pre-shaped Carrier Bodies. Possibilities and Limitations. In Studies in Surface Science and Catalysis, Elsevier: 1991; Vol. 63, pp 19–36.
  • Patnaik, P. Dean’s Analytical Chemistry Handbook; McGraw-Hill Education, 2004.
  • Harvey, D. Modern Analytical Chemistry; McGraw-Hill New York, 2000; Vol. 1.
  • Chang, C.-L.; Lin, W.-C.; Jia, C.-Y.; Ting, L.-Y.; Jayakumar, J.; Elsayed, M. H.; Yang, Y.-Q.; Chan, Y.-H.; Wang, W.-S.; Lu, C.-Y., et al. Low-toxic Cycloplatinated Polymer Dots with Rational Design of Acceptor Co-monomers for Enhanced Photocatalytic Efficiency and Stability. Appl. Catal. B Environ. 2020, 268, 118436. DOI: 10.1016/j.apcatb.2019.118436.
  • Fang, Z.; Xing, Q.; Fernandez, D.; Zhang, X.; Yu, G., et al. A Mini Review on Two-dimensional Nanomaterial Assembly. Nano Res. 2020, 13(5), 1179–1190.
  • Mazza, M. F.; Cabán-Acevedo, M.; Wiensch, J. D.; Thompson, A. C.; Lewis, N. S., et al. Defect-Seeded Atomic Layer Deposition of Metal Oxides on the Basal Plane of 2D Layered Materials. Nano Lett. 2020, 20(4), 2632–2638.
  • Cui, Y.; Peng, L.; Sun, L.; Qian, Q.; Huang, Y., et al. Two-dimensional Few-layer group-III Metal Monochalcogenides as Effective Photocatalysts for Overall Water Splitting in the Visible Range. J. Mater. Chem. A. 2018, 6(45), 22768–22777.
  • Hu, Z.; Ding, Y.; Hu, X.; Zhou, W.; Yu, X.; Zhang, S., et al. Recent Progress in 2D Group IV–IV Monochalcogenides: Synthesis, Properties and Applications. Nanotechnology. 2019, 30(25), 252001.
  • Hou, J.; Tu, X.; Wu, X.; Shen, M.; Wang, X.; Wang, C.; Cao, C.; Pang, H.; Wang, G., et al. Remarkable Cycling Durability of Lithium-sulfur Batteries with Interconnected Mesoporous Hollow Carbon Nanospheres as High Sulfur Content Host. Chem. Eng. J. 2020, 401, 126141. DOI: 10.1016/j.cej.2020.126141.
  • Shifa, T. A.; Wang, F.; Cheng, Z.; He, P.; Liu, Y.; Jiang, C.; Wang, Z.; He, J., et al. High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and Their Photocatalytic Activity. Adv. Funct. Mater. 2018, 28(18), 1800548.
  • Cheng, Z.; Sendeku, M. G.; Liu, Q. Layered Metal Phosphorous Trichalcogenides Nanosheets: Facile Synthesis and Photocatalytic Hydrogen Evolution. Nanotechnology. 2020, 31(13), 135405. DOI: 10.1088/1361-6528/ab646d.
  • Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S., et al. Single-atom Platinum Confined by the Interlayer Nanospace of Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution. Nano Energy. 2020, 69, 104409. DOI: 10.1016/j.nanoen.2019.104409.
  • Zhao, G.; Wang, A.; He, W.; Xing, Y.; Xu, X., et al. 2D New Nonmetal Photocatalyst of Sulfur‐Doped h‐BN Nanosheeets with High Photocatalytic Activity. Adv. Mater. Interfaces. 2019, 6(7), 1900062.
  • Tiwari, D.; Alibhai, D.; Cherns, D.; Fermin, D. J., et al. Crystal and Electronic Structure of Bismuth Thiophosphate, BiPS4 : An Earth-Abundant Solar Absorber. Chem. Mater. 2020, 32(3), 1235–1242.
  • Bresolin, B.-M.; Park, Y.; Bahnemann, D. W. Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts. 2020, 10(6), 709. DOI: 10.3390/catal10060709.
  • Khan, M. M.; Pradhan, D.; Sohn, Y. Nanocomposites for Visible Light-induced Photocatalysis; Springer, 2017.
  • Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y., et al. Steering Charge Kinetics in Photocatalysis: Intersection of Materials Syntheses, Characterization Techniques and Theoretical Simulations. Chem. Soc. Rev. 2015, 44(10), 2893–2939.
  • Stevanovic, A.; Yates, J. J. T. Probe of NH3 and CO Adsorption on the Very Outermost Surface of a Porous TiO2 Adsorbent Using Photoluminescence Spectroscopy. Langmuir. 2012, 28(13), 5652–5659. DOI: 10.1021/la205032j.
  • Yoshihara, T.; Katoh, R.; Furube, A.; Tamaki, Y.; Murai, M.; Hara, K.; Murata, S.; Arakawa, H.; Tachiya, M., et al. Identification of Reactive Species in Photoexcited Nanocrystalline TiO2 Films by Wide-Wavelength-Range (400− 2500 Nm) Transient Absorption Spectroscopy. J. Phys. Chem. B. 2004, 108(12), 3817–3823.
  • Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D. W.; Pan, J. H., et al. Charge Carrier Trapping, Recombination and Transfer during TiO2 Photocatalysis: An Overview. Catal. Today. 2019, 335, 78–90. DOI: 10.1016/j.cattod.2018.10.053.
  • Hou, J.; Zhang, T.; Jiang, T.; Wu, X.; Zhang, Y.; Tahir, M.; Hussain, A.; Luo, M.; Zou, J.; Wang, X., et al. Fast Preparation of Oxygen Vacancy-rich 2D/2D Bismuth Oxyhalides-reduced Graphene Oxide Composite with Improved Visible-light Photocatalytic Properties by Solvent-free Grinding. J. Cleaner Prod. 2021, 328, 129651. DOI: 10.1016/j.jclepro.2021.129651.
  • Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., et al. Single-atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule. 2018, 2(7), 1242–1264.
  • Konstantinou, I. K.; Albanis, T. A. TiO2-assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Appl. Catal. B Environ. 2004, 49(1), 1–14. DOI: 10.1016/j.apcatb.2003.11.010.
  • Saravanan, R.; Gupta, V. K.; Narayanan, V.; Stephen, A., et al. Comparative Study on Photocatalytic Activity of ZnO Prepared by Different Methods. J. Mol. Liq. 2013, 181, 133–141. DOI: 10.1016/j.molliq.2013.02.023.
  • Miao, T. J.; Tang, J. Characterization of Charge Carrier Behavior in Photocatalysis Using Transient Absorption Spectroscopy. J. Chem. Phys. 2020, 152(19), 194201. DOI: 10.1063/5.0008537.
  • Li, X.; Lyu, X.; Zhao, X., et al. Enhanced Photocatalytic H2 Evolution over In2S3 via Decoration with GO and Fe2P Co-catalysts. Int. J. Hydrogen Energy. 2021.
  • Hou, J.; Jiang, T.; Wei, R.; Idrees, F.; Bahnemann, D., et al. Ultrathin-layer Structure of BiOI Microspheres Decorated on N-doped Biochar with Efficient Photocatalytic Activity. Front. Chem. 2019, 7, 378. DOI: 10.3389/fchem.2019.00378.
  • Wang, Z.; Qiao, W.; Yuan, M., et al. Nanostructuring Bridges Semiconductor-Cocatalyst Interfacial Electron Transfer: Realizing Light-Intensity-Independent Energy Utilization and Efficient Sunlight-Driven Photocatalysis. J. Phys. Chem. Lett. 2020.
  • Meng, A.; Yu, J. Surface Heterojunction of Photocatalysts. In Interface Science and Technology, Elsevier: 2020; Vol. 31, pp 161–191.
  • Liang, M.; Borjigin, T.; Zhang, Y.; Liu, B.; Liu, H.; Guo, H., et al. Controlled Assemble of Hollow Heterostructured g-C3N4@ CeO2 with Rich Oxygen Vacancies for Enhanced Photocatalytic CO2 Reduction. Appl. Catal. B Environ. 2019, 243, 566–575. DOI: 10.1016/j.apcatb.2018.11.010.
  • Mir, S. H.; Jennings, B. D.; Akinoglu, G. E.; Selkirk, A.; Gatensby, R.; Mokarian‐Tabari, P., et al. Enhanced Dye Degradation through Multi‐Particle Confinement in A Porous Silicon Substrate: A Highly Efficient. Low Band Gap Photocatalyst. Adv Optical Mater. 2021, 9(11), 2002238.
  • Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F., et al. Fast Photoelectron Transfer in (Cring)–c3n4 Plane Heterostructural Nanosheets for Overall Water Splitting. J. Am. Chem. Soc. 2017, 139(8), 3021–3026.
  • Zhang, D.; Guo, Y.; Zhao, Z. Porous Defect-modified Graphitic Carbon Nitride via a Facile One-step Approach with Significantly Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Appl. Catal. B Environ. 2018, 226, 1–9. DOI: 10.1016/j.apcatb.2017.12.044.
  • Zada, A.; Humayun, M.; Raziq, F.; Zhang, X.; Qu, Y.; Bai, L.; Qin, C.; Jing, L.; Fu, H., et al. Exceptional Visible-Light-Driven Cocatalyst-Free Photocatalytic Activity of g-C3N4 by Well Designed Nanocomposites with Plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6(21), 1601190.
  • Mo, Z.; Xu, H.; She, X.; Song, Y.; Yan, P.; Yi, J.; Zhu, X.; Lei, Y.; Yuan, S.; Li, H., et al. Constructing Pd/2D-C3N4 Composites for Efficient Photocatalytic H2 Evolution through Nonplasmon-induced Bound Electrons. Appl. Surf. Sci. 2019, 467, 151–157. DOI: 10.1016/j.apsusc.2018.10.115.
  • Shi, X.; Fujitsuka, M.; Kim, S.; Majima, T., et al. Faster Electron Injection and More Active Sites for Efficient Photocatalytic H2 Evolution in g-C3N4 /Mos2 Hybrid. Small. 2018, 14(11), 1703277.
  • Chen, T.; Song, C.; Fan, M.; Hong, Y.; Hu, B.; Yu, L.; Shi, W., et al. In-situ Fabrication of CuS/ g-C3N4 Nanocomposites with Enhanced Photocatalytic H2-production Activity via Photoinduced Interfacial Charge Transfer. Int. J. Hydrogen Energy. 2017, 42(17), 12210–12219.
  • Jiang, L.; Wang, K.; Wu, X.; Zhang, G.; Yin, S., et al. Amorphous Bimetallic Cobalt Nickel Sulfide Cocatalysts for Significantly Boosting Photocatalytic Hydrogen Evolution Performance of Graphitic Carbon Nitride: Efficient Interfacial Charge Transfer. ACS Appl. Mater. Interfaces. 2019, 11(30), 26898–26908.
  • Sharma, K.; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Singh, P., et al. Recent Advances in Enhanced Photocatalytic Activity of Bismuth Oxyhalides for Efficient Photocatalysis of Organic Pollutants in Water: A Review. J. Ind. Eng. Chem. 20 19, 2019, 78, 1–20. DOI: 10.1016/j.jiec.2019.06.022.
  • Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z., et al. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9(12), 2489.
  • Cao, F.; Wang, J.; Wang, Y.; Zhou, J.; Li, S.; Qin, G.; Fan, W., et al. An in Situ Bi-decorated BiOBr Photocatalyst for Synchronously Treating Multiple Antibiotics in Water. Nanoscale Adv. 2019, 1(3), 1124–1129.
  • Sun, Y.; Zhao, Z.; Zhang, W.; Gao, C.; Zhang, Y.; Dong, F., et al. Plasmonic Bi Metal as Cocatalyst and Photocatalyst: The Case of Bi/(BiO)2CO3 and Bi Particles. J. Colloid Interface Sci. 2017, 485, 1–10. DOI: 10.1016/j.jcis.2016.09.018.
  • Fan, W.; Li, C.; Bai, H.; Zhao, Y.; Luo, B.; Li, Y.; Ge, Y.; Shi, W.; Li, H., et al. An in Situ Photoelectroreduction Approach to Fabricate Bi/BiOCl Heterostructure Photocathodes: Understanding the Role of Bi Metal for Solar Water Splitting. J. Mater. Chem. A. 2017, 5(10), 4894–4903.
  • Namdarian, A.; Tabrizi, A. G.; Arsalani, N., et al. Synthesis of PANi Nanoarrays Anchored on 2D BiOCl Nanoplates for Photodegradation of Congo Red in Visible Light Region. 2020, 81, 228–236.
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W., et al. Two‐dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv.Mate. 2011, 23(37), 4248–4253.
  • Li, Z.; Zhang, H.; Wang, L.; Meng, X.; Shi, J.; Qi, C.; Zhang, Z.; Feng, L.; Li, C., et al. 2D/2D BiOBr/Ti3C2 Heterojunction with Dual Applications in Both Water Detoxification and Water Splitting. J. Photochem. Photobiol. A Chem. 2020, 386, 112099. DOI: 10.1016/j.jphotochem.2019.112099.
  • Liu, J.; Wang, G.; Li, B., et al. A High-efficiency Mediator-free Z-scheme Bi2MoO6/AgI Heterojunction with Enhanced Photocatalytic Performance, 2021, 147227.
  • C-l, Y. U.; F-f, C. A. O.; Shu, Q.; Yu-Long, B.; Zhi-Peng, X.; Jimmy C, Y. U.; Kai, Y., et al. Preparation, Characterization and Photocatalytic Performance of Ag/BiOX (X= Cl, Br, I) Composite Photocatalysts. Acta Physico-Chimica Sinica. 2012, 28(3), 647–653.
  • Yu, C.; Cao, F.; Li, G.; Wei, R.; Yu, J. C.; Jin, R.; Fan, Q.; Wang, C., et al. Novel Noble Metal (Rh, Pd, Pt)/BiOX (Cl, Br, I) Composite Photocatalysts with Enhanced Photocatalytic Performance in Dye Degradation. Sep. Purif. Technol. 2013, 120, 110–122. DOI: 10.1016/j.seppur.2013.09.036.
  • Huang, C.; Hu, J.; Cong, S.; Zhao, Z.; Qiu, X., et al. Hierarchical BiOCl Microflowers with Improved Visible-light-driven Photocatalytic Activity by Fe (III) Modification. Appl. Catal. B Environ. 2015, 174, 105–112. DOI: 10.1016/j.apcatb.2015.03.001.
  • Liu, J.; Li, D.; Li, R.; Wang, Y.; Wang, Y.; Fan, C., et al. PtO/Pt4+-BiOCl with Enhanced Photocatalytic Activity: Insight into the Defect-filled Mechanism. Chem. Eng. J. 2020, 395, 123954. DOI: 10.1016/j.cej.2019.123954.
  • Jin, X.; Ye, L.; Xie, H.; Chen, G., et al. Bismuth-rich Bismuth Oxyhalides for Environmental and Energy Photocatalysis. Coord. Chem. Rev. 2017, 349, 84–101. DOI: 10.1016/j.ccr.2017.08.010.
  • Hou, J.; Wei, R.; Wu, X.; Tahir, M.; Wang, X.; Butt, F. K.; Cao, C., et al. Lantern-like Bismuth Oxyiodide Embedded Typha-based Carbon via in Situ Self-template and Ion Exchange–recrystallization for High-performance photocatalysis.Dalton. Dalton Transactions (Cambridge, England : 2003). 2018, 47(19), 6692–6701.
  • Liu, T.; Wang, Y. Synergistic Effect of Iodine Doping and Platinum Loading on Boosting the Visible Light Photocatalytic Activity of BiOBr. Inorg. Chem. Commun. 2020, 114, 107846. DOI: 10.1016/j.inoche.2020.107846.
  • Obeid, M. M.; Stampfl, C.; Bafekry, A., et al. First-principles Investigation of Nonmetal Doped Single-layer BiOBr as a Potential Photocatalyst with a Low Recombination Rate. Phys Chem. 2020, 22(27), 15354–15364.
  • Liu, H.; Gao, S.-W.; Cai, J.-S.; He, C.-L.; Mao, -J.-J.; Zhu, T.-X.; Chen, Z.; Huang, J.-Y.; Meng, K.; Zhang, K.-Q., et al. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-based Substrates. Materials. 2016, 9(3), 124.
  • Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K., et al. Photocatalyst Releasing Hydrogen from Water. Nature. 2006, 440(7082), 295–295.
  • Liu, Z.; Niu, J.; Feng, P., et al. Solvothermal Synthesis of Bi24O31ClxBr10-x Solid Solutions with Enhanced Visible Light Photocatalytic Property. Ceram. Int. 2015, 41(3), 4608–4615.
  • Lu, J.; Meng, Q.; Lv, H., et al. Synthesis of Visible-light-driven BiOBrxI1-x Solid Solution Nanoplates by Ultrasound-assisted Hydrolysis Method with Tunable Bandgap and Superior Photocatalytic Activity. J. Alloys Compd. 2018, 732, 167–177. DOI: 10.1016/j.jallcom.2017.10.175.
  • Xu, J.; Teng, Y.; Teng, F.; Landi, S.; Tonazzini, I.; Cecchini, M.; Piazza, V.; Gemmi, M. Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency. Sci. Rep. 2016, 6(1), 1–9. DOI: 10.1038/s41598-016-0001-8.
  • Jia, T.; Wu, J.; Ji, Z., et al. Surface Defect Engineering of Fe-doped Bi7O9I3 Microflowers for Ameliorating Charge-carrier Separation and Molecular Oxygen Activation. Appl. Catal. B. 2021, 284, 119727. DOI: 10.1016/j.apcatb.2020.119727.
  • Wang, H.; Yong, D.; Chen, S.; Jiang, S.; Zhang, X.; Shao, W.; Zhang, Q.; Yan, W.; Pan, B.; Xie, Y., et al. Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation. J. Am. Chem. Soc. 2018 Feb 7, 140(5), 1760–1766. PubMed PMID: 29319310. 10.1021/jacs.7b10997.
  • Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X., et al. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc. 2011, 133(41), 16414–16417.
  • Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y., et al. Vacancy Associates Promoting Solar-driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets. J. Am. Chem. Soc. 2013, 135(28), 10411–10417.
  • S-q, G.; X-h, Z.; H-j, Z.; Gu, B.-C.; Chen, W.; Liu, L.; Alvarez, P. J. J., et al. Improving Photocatalytic Water Treatment through Nanocrystal Engineering: Mesoporous Nanosheet-assembled 3D BiOCl Hierarchical Nanostructures that Induce Unprecedented Large Vacancies. Environ. Sci. Technol. 2018, 52(12), 6872–6880.
  • Wang, L.; Lv, D.; Dong, F.; Wu, X.; Cheng, N.; Scott, J.; Xu, X.; Hao, W.; Du, Y., et al. Boosting Visible-light-driven Photo-oxidation of BiOCl by Promoted Charge Separation via Vacancy Engineering. ACS Sustainable Chem. Eng. 2019, 7(3), 3010–3017.
  • Maihemllti, M.; Okitsu, K.; Talifur, D., et al. In Situ Self-assembled S-scheme BiOBr/pCN Hybrid with Enhanced Photocatalytic Activity for Organic Pollutant Degradation and CO2 Reduction. 2021:149828.
  • Serpone, N.; Borgarello, E.; Grätzel, M. Visible Light Induced Generation of Hydrogen from H2S in Mixed Semiconductor Dispersions; Improved Efficiency through Inter-particle Electron Transfer. J. Chem. Soc., Chem. Commun. 1984, 6(6), 342–344. DOI: 10.1039/C39840000342.
  • Bedja, I.; Kamat, P. V. Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2-capped SnO2 Nanocrystallites. J. Phys. Chem. 2002, 99(22), 9182–9188. DOI: 10.1021/j100022a035.
  • Chang, C.; Yang, H.-C.; Gao, N.; Lu, S.-Y., et al. Core/shell p-BiOI/n-β-Bi2O3 Heterojunction Array with Significantly Enhanced Photoelectrochemical Water Splitting Efficiency. J. Alloys Compd. 2018, 738, 138–144. DOI: 10.1016/j.jallcom.2017.12.145.
  • Liu, C.; Zhou, J.; Su, J.; Guo, L., et al. Turning the Unwanted Surface Bismuth Enrichment to Favourable BiVO4/BiOCl Heterojunction for Enhanced Photoelectrochemical Performance. Appl. Catal. B Environ. 2019, 241, 506–513. DOI: 10.1016/j.apcatb.2018.09.060.
  • Zhen, W.; Liu, Y.; Jia, X.; Wu, L.; Wang, C.; Jiang, X., et al. Reductive Surfactant-assisted One-step Fabrication of a BiOI/BiOIO3 Heterojunction Biophotocatalyst for Enhanced Photodynamic Theranostics Overcoming Tumor Hypoxia. Nanoscale Horizons. 2019, 4(3), 720–726.
  • Huang, D.; Chen, S.; Zeng, G., et al. Artificial Z-scheme Photocatalytic System: What Have Been Done and Where to Go? Coord. Chem. Rev. 2019, 385, 44–80.
  • Moniz, S. J.; Shevlin, S. A.; Martin, D. J.; Guo, Z.-X.; Tang, J., et al. Visible-light Driven Heterojunction Photocatalysts for Water Splitting–a Critical Review. Energy Environ. Sci. 2015, 8(3), 731–759.
  • Wang, R.; Wu, J.; Mao, X.; Wang, J.; Liu, Q.; Qi, Y.; He, P.; Qi, X.; Liu, G.; Guan, Y., et al. Bi Spheres Decorated g-C3N4/BiOI Z-scheme Heterojunction with SPR Effect for Efficient Photocatalytic Removal Elemental Mercury. Appl. Surf. Sci. 2021, 556, 149804. DOI: 10.1016/j.apsusc.2021.149804.
  • Yang, Y.; Zeng, Z.; Zhang, C.; Huang, D.; Zeng, G.; Xiao, R.; Lai, C.; Zhou, C.; Guo, H.; Xue, W., et al. Construction of Iodine Vacancy-rich BiOI/Ag@ AgI Z-scheme Heterojunction Photocatalysts for Visible-light-driven Tetracycline Degradation: Transformation Pathways and Mechanism Insight. Chem. Eng. J. 2018, 349, 808–821. DOI: 10.1016/j.cej.2018.05.093.
  • Ye, L.; Liu, J.; Gong, C.; Tian, L.; Peng, T.; Zan, L., et al. Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X= Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-scheme Bridge. ACS Catal. 2012, 2(8), 1677–1683.
  • Ning, S.; Lin, H.; Tong, Y.; Zhang, X.; Lin, Q.; Zhang, Y.; Long, J.; Wang, X., et al. Dual Couples Bi Metal Depositing and Ag@ AgI Islanding on BiOI 3D Architectures for Synergistic Bactericidal Mechanism of E. Coli under Visible Light. Appl. Catal. B Environ. 2017, 204, 1–10. DOI: 10.1016/j.apcatb.2016.11.006.
  • Ran, M.-Y.; Zhou, S.-H.; Wei, W.; Song, B.-J.; Shi, Y.-F.; Wu, X.-T.; Lin, H.; Zhu, Q.-L., et al. Quaternary Chalcohalides CdSnSX2 (X = Cl or Br) with Neutral Layers: Syntheses, Structures, and Photocatalytic Properties. Inorg. Chem. 2021, 60(5), 3431–3438.
  • Shi, J.; Zheng, B.; Mao, L.; Cheng, C.; Hu, Y.; Wang, H.; Li, G.; Jing, D.; Liang, X., et al. MoO3/g-C3N4 Z-scheme (S-scheme) System Derived from MoS2/melamine Dual Precursors for Enhanced Photocatalytic H2 Evolution Driven by Visible Light. Int. J. Hydrogen Energy. 2021, 46(3), 2927–2935.
  • Wu, X.; Zhang, Q.; Su, C. J. F. Bi2MoO6/Bi2S3 S-scheme Heterojunction for Efficient Photocatalytic Oxygen Evolution. FlatChem. 2021, 27, 100244. DOI: 10.1016/j.flatc.2021.100244.
  • Mei, F.; Dai, K.; Zhang, J.; Li, W.; Liang, C., et al. Construction of Ag SPR-promoted Step-scheme Porous g-C3N4/Ag3VO4 Heterojunction for Improving Photocatalytic Activity. Appl. Surf. Sci. 2019, 488, 151–160. DOI: 10.1016/j.apsusc.2019.05.257.
  • Gao, X.; Gao, K., and Fu, F., et al. Synergistic Introducing of Oxygen Vacancies and Hybrid of Organic Semiconductor: Realizing Deep Structure Modulation on Bi5O7I for High-efficiency Photocatalytic Pollutant Oxidation. Appl. Catal. B Environ. 2019, 265, 15 May 2020, 118562.
  • Wang, J.; Zhang, Q.; Deng, F.; Luo, X.; Dionysiou, D. D., et al. Rapid Toxicity Elimination of Organic Pollutants by the Photocatalysis of Environment-friendly and Magnetically Recoverable Step-scheme SnFe2O4/ZnFe2O4 Nano-heterojunctions. Chem. Eng. J. 2020, 379, 122264. DOI: 10.1016/j.cej.2019.122264.
  • Xu, Q.; Ma, D.; Yang, S.; Tian, Z.; Cheng, B.; Fan, J., et al. Novel g-C3N4/ g-C3N4 S-scheme Isotype Heterojunction for Improved Photocatalytic Hydrogen Generation. Appl. Surf. Sci. 2019, 495, 143555. DOI: 10.1016/j.apsusc.2019.143555.
  • Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J., et al. Ultrathin 2D/2D WO3/ g-C3N4 Step-scheme H2-production Photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565. DOI: 10.1016/j.apcatb.2018.11.011.
  • Cheng, H.; Wu, J.; Tian, F.; Zhao, L.; Ji, Z.; Li, F.; Li, Q.; Guan, Z.; Zhou, T., et al. In-situ Crystallization for Fabrication of BiOI/Bi4O5I2 Heterojunction for Enhanced Visible-light Photocatalytic Performance. Mater. Lett. 2018, 232, 191–195. DOI: 10.1016/j.matlet.2018.08.119.
  • Bao, S.; Liang, H.; Li, C., and Bai, J., et al. A Heterostructure BiOCl nanosheets/TiO2 Hollow-tubes Composite for Visible Light-driven Efficient Photodegradation Antibiotic. J. Photochem. Photobiol. Chem 2020,397, 112590. DOI: 10.1016/j.jphotochem.2020.112590.
  • Sedaghati, N.; Habibi-Yangjeh, A.; Pirhashemi, M.; Vadivel, S., et al. Boosted Visible-light Photocatalytic Performance of TiOx-2 Decorated by BiOI and AgBr Nanoparticles. J. Photochem. Photobiol. Chem 2019,384, 112066. DOI: 10.1016/j.jphotochem.2019.112066.
  • Zhu, S.-R.; Qi, Q.; Zhao, W.-N.; Wu, M.-K.; Fang, Y.; Tao, K.; Yi, F.-Y.; Han, L., et al. Hierarchical Core–shell SiO2@PDA@BiOBr Microspheres with Enhanced Visible-light-driven Photocatalytic Performance. Dalton Trans. 2017, 46(34), 11451–11458.
  • Wen, X.-J.; Niu, C.-G.; Zhang, L.; Zeng, G.-M., et al. Novel P–n Heterojunction BiOI/CeO2 Photocatalyst for Wider Spectrum Visible-light Photocatalytic Degradation of Refractory Pollutants. Dalton Trans. 2017, 46(15), 4982–4993.
  • Wang, L.; Jin, P.; Duan, S., et al. Accelerated Fenton-like Kinetics by Visible-light-driven Catalysis over Iron (Iii) Porphyrin Functionalized Zirconium MOF: Effective Promotion on the Degradation of Organic Contaminants. Environ. Sci.: Nano. 2019, 6(8), 2652–2661.
  • Wang, L.; Jin, P.; Huang, J.; She, H.; Wang, Q., et al. Integration of Copper(II)-Porphyrin Zirconium Metal–Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO2 Reduction. ACS Sustainable Chem. Eng. 2019, 7(18), 15660–15670.
  • Tang, Y.; Zhang, D.; Pu, X., et al. Snowflake-like Cu2S/Zn0.5Cd0.5S P–n Heterojunction Photocatalyst for Enhanced Visible Light Photocatalytic H2 Evolution Activity. J. Taiwan Inst. Chem. Eng. 2019, 96, 487–495.
  • Sun, M.-H.; Huang, S.-Z.; Chen, L.-H., et al. Applications of Hierarchically Structured Porous Materials from Energy Storage and Conversion, Catalysis, Photocatalysis, Adsorption, Separation, and Sensing to Biomedicine. Chem. Soc. Rev. 2016, 45(12), 3479–3563.
  • Shenoy, S.; Kjcpl, S. Bismuth Oxybromide Nanoplates Embedded on Activated Charcoal as Effective Visible Light Driven Photocatalyst. Chem. Phys. Lett. 2020, 749, 137435. DOI: 10.1016/j.cplett.2020.137435.
  • Bai, Y.; Yang, P.; Wang, L., et al. Ultrathin Bi4O5Br2 Nanosheets for Selective Photocatalytic CO2 Conversion into CO. Chem. Eng. J. 2019, 360, 473–482. DOI: 10.1016/j.cej.2018.12.008.
  • Ma, Y.; Lv, C.; Hou, J.; Yuan, S.; Wang, Y.; Xu, P.; Gao, G.; Shi, J., et al. 3D Hollow Hierarchical Structures Based on 1D BiOCl Nanorods Intersected with 2D Bi2WO6 Nanosheets for Efficient Photocatalysis under Visible Light. Nanomaterials. 2019, 9(3), 322.
  • Gao, S.; Guo, C.; Hou, S., et al. Photocatalytic Removal of Tetrabromobisphenol A by Magnetically Separable Flower-like BiOBr/BiOI/Fe3O4 Hybrid Nanocomposites under Visible-light Irradiation. J. Hazard. Mater. 2017, 331, 1–12. DOI: 10.1016/j.jhazmat.2017.02.030.
  • Su, X.; Yang, J.; Yu, X., et al. In Situ Grown Hierarchical 50% BiOCl/BiOI Hollow Flowerlike Microspheres on Reduced Graphene Oxide Nanosheets for Enhanced Visible-light Photocatalytic Degradation of Rhodamine B. Appl. Surf. Sci. 2018, 433, 502–512. DOI: 10.1016/j.apsusc.2017.09.258.
  • Zhang, Y.; Li, W.; Sun, Z., et al. In-situ Synthesis of Heterostructured BiVO4/BiOBr Core-shell Hierarchical Mesoporous Spindles with Highly Enhanced Visible-light Photocatalytic Performance. J. Alloys Compd. 2017, 713, 78–86. DOI: 10.1016/j.jallcom.2017.04.176.
  • Dong, G.; Ho, W.; MCA, W. C. Selective Photocatalytic N2 Fixation Dependent on g-C3 N4 Induced by Nitrogen Vacancies. J. Mater. Chem. A. 2015, 3(46), 23435–23441.
  • Zhao, Y.; Zhao, Y.; Waterhouse, G. I., et al. Layered‐double‐hydroxide Nanosheets as Efficient Visible‐light‐driven Photocatalysts for Dinitrogen Fixation. Advanced. 2017, 29(42), 1703828.
  • Zeng, W.; Li, J.; Feng, L., et al. Synthesis of Large‐area Atomically Thin BiOI Crystals with Highly Sensitive and Controllable Photodetection. Adv. Funct. Mater. 2019, 29(16), 1900129.
  • Wang, Z.; Chu, Z.; Dong, C., et al. Ultrathin BiOX (X= Cl, Br, I) Nanosheets with Exposed {001} Facets for Photocatalysis. Acs Appl. Nano Mater. 2020, 3(2), 1981–1991.
  • Ge, C.; Huang, H.; Wang, Y.; Zhao, H.; Zhang, P.; Zhang, Q., et al. Near-Infrared Luminescent Osmium (II) Complexes with an Intrinsic RNA-Targeting Capability for Nucleolus Imaging in Living Cells. ACS Appl Bio Mater. 2018, 1(5), 1587–1593.
  • Yu, J.; Bjacbe, W. Effect of Calcination Temperature on Morphology and Photoelectrochemical Properties of Anodized Titanium Dioxide Nanotube Arrays. Appl. Catal. B Environ. 2010, 94(3–4), 295–302. DOI: 10.1016/j.apcatb.2009.12.003.
  • Zhang, Q.; Gao, L.; Jjacbe, G. Effects of Calcination on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis. Appl. Catal. B Environ. 2000, 26(3), 207–215. DOI: 10.1016/S0926-3373(00)00122-3.
  • S-m, F.; G-s, L.; Xing, W.; FAN, C.-M.; LIU, J.-X.; Zhang, X.-C.; LI, R., et al. Effect of Calcination Temperature on Microstructure and Photocatalytic Activity of BiOX (X= Cl, Br). Trans. Nonferrous Met. Soc. China. 2020, 30(3), 765–773.
  • Gu, S.; Wang, L.; Mao, X.; Yang, L.; Wang, C., et al. Selective Adsorption of Pb (II) from Aqueous Solution by Triethylenetetramine-grafted polyacrylamide/vermiculite. Materials. 2018, 11(4), 514.
  • Yu, C.; Zhou, W.; Yu, J.; Cao, F.; Li, X., et al. Thermal Stability, Microstructure and Photocatalytic Activity of the Bismuth Oxybromide Photocatalyst. Chin. J. Chem. 2012, 30(3), 721–726.
  • Su, X.; Wu Djmsi, S. P. Facile Construction of the Phase Junction of BiOBr and Bi4O5Br2 Nanoplates for Ciprofloxacin Photodegradation. Mater. Sci. Semicond. Process. 2018, 80, 123–130. DOI: 10.1016/j.mssp.2018.02.034.
  • Zhang, G.; Xu, Y.; He, C.; Zhang, P.; Mi, H., et al. Oxygen-doped Crystalline Carbon Nitride with Greatly Extended Visible-light-responsive Range for Photocatalytic H2 Generation. Appl. Catal. B Environ. 2021, 283, 119636. DOI: 10.1016/j.apcatb.2020.119636.
  • Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z., et al. An Orthophosphate Semiconductor with Photooxidation Properties under Visible-light Irradiation. Nat. Mater. 2010, 9(7), 559–564.
  • Hosogi, Y.; Shimodaira, Y.; Kato, H., et al. Role of Sn2+ in the Band Structure of SnM2O6 and Sn2M2O7 (M= Nb and Ta) and Their Photocatalytic Properties. Nat. Mater. 2008, 20(4), 1299–1307.
  • Kim, H. G.; Hwang, D. W.; Lee, J. S. An Undoped, Single-phase Oxide Photocatalyst Working under Visible Light. ACS. 2004, 126(29), 8912–8913. DOI: 10.1021/ja049676a.
  • Yang, J.; Xie, T.; Zhu, Q., et al. Boosting the Photocatalytic Activity of BiOX under Solar Light via Selective Crystal Facet Growth. J. Mater. 2020, 8(7), 2579–2588.
  • Mao, D.; Ding, S.; Meng, L.; Dai, Y.; Sun, C.; Yang, S.; He, H., et al. One-pot Microemulsion-mediated Synthesis of Bi-rich Bi4O5Br2 with Controllable Morphologies and Excellent Visible-light Photocatalytic Removal of Pollutants. Appl. Catal. B Environ. 2017, 207, 153–165. DOI: 10.1016/j.apcatb.2017.02.010.
  • Li, H.; Shang, J.; Zhu, H.; Yang, Z.; Ai, Z.; Zhang, L., et al. Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl. ACS Catal. 2016, 6(12), 8276–8285.
  • Raether, H. Surface Plasmons (Ser. In Springer-Verlag Tracts in Modern Physics), Springer-Verlag: New York, 1988; Vol. 111, 91–114.
  • Rwjtl, W.; Edinburgh, M. D. P.; Science Jo, X. L. I. I. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. 1902, 4(21), 396–402.
  • Snopok, B. J. T.; Chemistry, E. Theory and Practical Application of Surface Plasmon Resonance for Analytical Purposes. 2012, 48(5), 283–306.
  • Wang, P.; Huang, B.; Dai, Y.; Whangbo, M.-H., et al. Plasmonic Photocatalysts: Harvesting Visible Light with Noble Metal Nanoparticles. Physical Chemistry Chemical Physics : PCCP. 2012, 14(28), 9813–9825.
  • Watanabe, K.; Menzel, D.; Nilius, N.; Freund, H.-J., et al. Photochemistry on Metal Nanoparticles. Chem. Rev. 2006, 106(10), 4301–4320.
  • Schmucker, A. L.; Harris, N.; Banholzer, M. J.; Blaber, M. G.; Osberg, K. D.; Schatz, G. C.; Mirkin, C. A., et al. Correlating Nanorod Structure with Experimentally Measured and Theoretically Predicted Surface Plasmon Resonance. ACS Nano. 2010, 4(9), 5453–5463.
  • Oh, J.; Chang, Y. W.; Kim, H. J.; Yoo, S.; Kim, D. J.; Im, S.; Park, Y. J.; Kim, D.; Yoo, K.-H., et al. Carbon Nanotube-based Dual-mode Biosensor for Electrical and Surface Plasmon Resonance Measurements. Nano Lett. 2010, 10(8), 2755–2760.
  • Wang, P.; Huang, B.; Qin, X., et al. Ag@ AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light. ACS Appl Mater. 2008, 47(41), 7931–7933.
  • Li, X.; Zhang, W.; Li, J.; Jiang, G.; Zhou, Y.; Lee, S.; Dong, F., et al. Transformation Pathway and Toxic Intermediates Inhibition of Photocatalytic NO Removal on Designed Bi Metal@ Defective Bi2O2SiO3. Appl. Catal. B. 2019, 241, 187–195. DOI: 10.1016/j.apcatb.2018.09.032.
  • Shi, X.; Wang, P.; Wang, L.; Bai, Y.; Xie, H.; Zhou, Y.; Wang, J. A.; Li, Z.; Qu, L.; Shi, M., et al. Few Layered BiOBr with Expanded Interlayer Spacing and Oxygen Vacancies for Efficient Decomposition of Real Oil Field Produced Wastewater. ACS Sustain. Chem. Eng. 2018, 6(11), 13739–13746.
  • Wang, M.; Wang, B.; Huang, F., and Lin, Z., et al. Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. Angewandte Chemie International Edition. 2019, 58(23), 7526–7536. DOI: 10.1002/anie.201811709
  • Al Jitan, S.; Palmisano, G.; Garlisi, C. J. C. Synthesis and Surface Modification of TiO2-based Photocatalysts for the Conversion of CO2. Catalysts. 2020, 10(2), 227. DOI: 10.3390/catal10020227.
  • Li, B.; Cui, Y.; Feng, Y.; Wu, C.; Yan, Y.; Meng, M., et al. Study of Enhanced Photocatalytic Performance Mechanisms Towards a New binary-Bi Heterojunction with Spontaneously Formed Interfacial Defects. Appl. Surf. Sci. 2020, 532, 147412. DOI: 10.1016/j.apsusc.2020.147412.
  • Liang, Q.; Liu, X.; Zeng, G.; Liu, Z.; Tang, L.; Shao, B.; Zeng, Z.; Zhang, W.; Liu, Y.; Cheng, M., et al. Surfactant-assisted Synthesis of Photocatalysts: Mechanism, Synthesis, Recent Advances and Environmental Application. Chem. Eng. J. 2019, 372, 429–451. DOI: 10.1016/j.cej.2019.04.168.
  • Yang, J.; Liang, Y.; Li, K.; Zhu, Y.; Liu, S.; Xu, R.; Zhou, W., et al. Design of 3D Flowerlike BiOClxBr1-x Nanostructure with High Surface Area for Visible Light Photocatalytic Activities. J. Alloys Compd. 2017, 725, 1144–1157. DOI: 10.1016/j.jallcom.2017.07.213.
  • Xie, J.; Lü, X.; Chen, M., et al. The Synthesis, Characterization and Photocatalytic Activity of V (V), Pb (II), Ag (I) and Co (Ii)-doped Bi2O3. Dyes and Pigments. 2008, 77(1), 43–47.
  • Zhai, L.-F.; Sun, Y.-M.; Guo, H.-Y.; Sun, M., et al. Surface Modification of Graphite Support as an Effective Strategy to Enhance the Electro-Fenton Activity of Fe3O4/Graphite Composites in Situ Fabricated from Acid Mine Drainage Using an Air-Cathode Fuel Cell. ACS Sustain. Chem. Eng. 2019, 7(9), 8367–8374.
  • Liu, K.; Tong, Z.; Muhammad, Y., et al. Synthesis of Sodium Dodecyl Sulfate Modified BiOBr/magnetic Bentonite Photocatalyst with Three-dimensional Parterre like Structure for the Enhanced Photodegradation of Tetracycline and Ciprofloxacin. Chem. Eng. J. 2020, 388, 124374. DOI: 10.1016/j.cej.2020.124374.
  • Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O., et al. Development of an Efficient Photocatalytic System for CO2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies. J. Am. Chem. Soc. 2008, 130(6), 2023–2031.
  • Liu, X.; Inagaki, S.; Gong Heterogeneous Molecular Systems for Photocatalytic CO2 Reduction with Water Oxidation. Angewandte Chemie Int. 2016, 55(48), 14924–14950.
  • Bo, Y.; Gao, C.; Xiong, Y. J. N. Recent Advances in Engineering Active Sites for Photocatalytic CO2 Reduction. Nanoscale. 2020, 12(23), 12196–12209. DOI: 10.1039/D0NR02596H.
  • Bai, S.; Zhang, N.; Gao, C., et al. Defect Engineering in Photocatalytic Materials. Nano Energy. 2018, 53, 296–336.
  • Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G., et al. Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction. Joule. 2018, 2(12), 2551–2582.
  • Di, J.; Zhu, C.; Ji, M.; Duan, M.; Long, R.; Yan, C.; Gu, K.; Xiong, J.; She, Y.; Xia, J., et al. Defect-Rich Bi12O17Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction. Angewandte Chemie Int. 2018, 57(45), 14847–14851.
  • Kong, X. Y.; B-j, N.; Tan, K. H.; Chen, X.; Wang, H.; Mohamed, A. R.; Chai, S.-P., et al. Simultaneous Generation of Oxygen Vacancies on Ultrathin BiOBr Nanosheets during Visible-light-driven CO2 Photoreduction Evoked Superior Activity and Long-term Stability. Catal. Today. 2018, 314, 20–27. DOI: 10.1016/j.cattod.2018.04.018.
  • Zhang, H.; Zhao, L.; Wang, L., et al. Fabrication of Oxygen-vacancy-rich black-BiOBr/BiOBr Heterojunction with Enhanced Photocatalytic Activity. J. Mater. Sci. 2020.
  • Xue, X.; Chen, R.; Chen, H., et al. Oxygen Vacancy Engineering Promoted Photocatalytic Ammonia Synthesis on Ultrathin Two-dimensional Bismuth Oxybromide Nanosheets. Nano Lett. 2018, 18(11), 7372–7377.
  • Liao, J.; Li, K.; Ma, H., et al. Oxygen Vacancies on the BiOCl Surface Promoted Photocatalytic Complete NO Oxidation via Superoxide Radicals. Chin. Chem. Lett. 2020.
  • Chen, F.; Ma, Z.; Ye, L., et al. Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO2 Photoreduction on BiOIO3 Single Crystals. Adv.Mate. 2020, 32(11), 1908350.
  • Abu Sharib, A. S.; Mrjs, A. Stress-Induced Lattice Imperfections: The Principal Motive in Enhancing Some Physico-Chemical and Electrical Properties of Some Quartz Varieties. Silicon. 2020, 1–13.
  • Liu, J.; Zhang,; Zhang, J. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chemical Reviews. 2020, 120(4), 2123–2170. DOI: 10.1021/acs.chemrev.9b00443.
  • Xin, C.; Jing, Y.; Yang-Long Surface Modification of Magnetic Nanoparticles in Biomedicine. Chin. Phys. B. 2015, 24(1), 014704. DOI: 10.1088/1674-1056/24/1/014704.
  • Chen, F.; Ma, T.; Zhang, T.; Zhang, Y.; Huang, H., et al. Atomic‐Level Charge Separation Strategies in Semiconductor‐Based Photocatalysts. Adv.Mate. 2021, 33(10), 2005256.
  • Luo, J.; Zhang, S.; Sun, M.; Yang, L.; Luo, S.; Crittenden, J. C., et al. A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS nano. 2019, 13(9), 9811–9840.
  • Li, Z.; Xiao, C.; Zhu, H.; Xie, Y., et al. Defect Chemistry for Thermoelectric Materials. Journal of the American Chemical. 2016, 138(45), 14810–14819. DOI: 10.1021/jacs.6b08748
  • Chen, S.; Wang, H.; Kang, Z.; Köhler, J.; Zeller, S.; Voigtsberger, J.; Schlott, N.; Henrichs, K.; Sann, H.; Trinter, F., et al. Oxygen Vacancy Associated Single-electron Transfer for Photofixation of CO 2 to Long-chain Chemicals. Nat. Commun. 2019, 10(1), 1–8.
  • Liu, Y.; Lv, P.; Zhou, W.; Hong, J., et al. Built-In Electric Field Hindering Photogenerated Carrier Recombination in Polar Bilayer SnO/BiOX (X= Cl, Br, I) for Water Splitting. J. Phys. Chem. C. 2020, 124(18), 9696–9702.
  • Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., et al. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature. 2008, 453(7195), 638–641.
  • Li, M.; Huang, H.; Yu, S.; Tian, N.; Zhang, Y., et al. Facet, Junction and Electric Field Engineering of Bismuth‐Based Materials for Photocatalysis. ChemCatChem. 2018, 10(20), 4477–4496.
  • Chen, Y.; Li, J.; Liang,; Liang, Y. Synthesis and Photocatalytic Activity of BiOBr with Different Exposed Facets and Morphology. Russ. J. Phys. Chem. A. 2019, 93(7), 1406–1410. DOI: 10.1134/S0036024419070318.
  • Wang, Y.; He, J.; Zhu, Y.; Zhang, H.; Yang, C.; Wang, K.; Wu, S.-C.; Chueh, Y.-L.; Jiang, W., et al. Hierarchical Bi-doped BiOBr Microspheres Assembled from Nanosheets with (001) Facet Exposed via Crystal Facet Engineering toward Highly Efficient Visible Light Photocatalysis. Appl. Surf. Sci. 2020, 514, 145927. DOI: 10.1016/j.apsusc.2020.145927.
  • Zhang, H.; Yang, Y.; Zhou, Z.; Zhao, Y.; Liu, L., et al. Enhanced Photocatalytic Properties in BiOBr Nanosheets with Dominantly Exposed (102) Facets. J. Phys. Chem. C. 2014, 118(26), 14662–14669.
  • Shi, M.; Li, G.; Li, J.; Jin, X.; Tao, X.; Zeng, B.; Pidko, E. A.; Li, R.; Li, C., et al. Intrinsic Facet‐Dependent Reactivity of Well‐Defined BiOBr Nanosheets on Photocatalytic Water Splitting. Angewandte Chemie. 2020, 59(16), 6590–6595.
  • GAJCr, S. Modern Surface Science and Surface Technologies: An Introduction. Chem. Rev. 1996, 96(4), 1223–1236. DOI: 10.1021/cr950234e.
  • Li, X.; Yu, J.; Jaroniec Hierarchical Photocatalysts. Chem. Soc. Rev. 2016, 45(9), 2603–2636. DOI: 10.1039/c5cs00838g.
  • Rahman, M. Z.; Kibria, M. G.; Mullins Metal-free Photocatalysts for Hydrogen Evolution. Chem. Soc. Rev. 2020, 49(6), 1887–1931. DOI: 10.1039/c9cs00313d.
  • Zhou, C.; Jiang, C.; Wang, R.; Chen, J.; Wang, G., et al. SPR-Effect Enhanced Semimetallic Bi0/p-BiOI/n-CdS Photocatalyst with Spatially Isolated Active Sites and Improved Carrier Transfer Kinetics for H2 Evolution. Ind. Eng. Chem. Res. 2020, 59(17), 8183–8194.
  • Lee, G.-J.; Chien, Y.-W.; Anandan, S., et al. Fabrication of Metal-doped BiOI/MOF Composite Photocatalysts with Enhanced Photocatalytic Performance. Int. J. Hydrogen Energy. 2020.
  • Li, S.; Mei-Feng, W.; Guo, T.; Zheng, -L.-L.; Wang, D.; Mu, Y.; Xing, Q.-J.; Zou, J.-P., et al. Chlorine-mediated Photocatalytic Hydrogen Production Based on Triazine Covalent Organic Framework. Appl. Catal. B. 2020, 272, 118989. DOI: 10.1016/j.apcatb.2020.118989.
  • Park, Y.-K.; Kim, B.-J.; Jeong, S.; Jeon, K.-J.; Chung, K.-H.; Jung, S.-C., et al. Characteristics of Hydrogen Production by Photocatalytic Water Splitting Using Liquid Phase Plasma over Ag-doped TiO2 Photocatalysts. Environ. Res. 2020, 109630. DOI:10.1016/j.envres.2020.109630.
  • Bentour, H.; El Yadari, M.; El Kenz, A.; Benyoussef, A., et al. DFT Study of Electronic and Optical Properties of (S–mn) Co-doped SrTiO3 for Enhanced Photocatalytic Hydrogen Production. Solid State Commun. 2020, 312, 113893. DOI: 10.1016/j.ssc.2020.113893.
  • Liu, W.; Li, Q.; Yang, X.; Chen, X.; Xu, X., et al. Synthesis of SiC/BiOCl Composites and Its Efficient Photocatalytic Activity. Catalysts. 2020, 10(8), 946.
  • Ye, L.; Jin, X.; Leng, Y.; Su, Y.; Xie, H.; Liu, C., et al. Synthesis of Black Ultrathin BiOCl Nanosheets for Efficient Photocatalytic H2 Production under Visible Light Irradiation. J. Power Sources. 2015, 293, 409–415. DOI: 10.1016/j.jpowsour.2015.05.101.
  • Wu, J.; Xie, Y.; Ling, Y.; Si, J.; Li, X.; Wang, J.; Ye, H.; Zhao, J.; Li, S.; Zhao, Q., et al. One-step Synthesis and Gd3+ Decoration of BiOBr Microspheres Consisting of Nanosheets toward Improving Photocatalytic Reduction of CO2 into Hydrocarbon Fuel. Chem. Eng. J. 2020, 400, 125944. DOI: 10.1016/j.cej.2020.125944.
  • Sánchez-Rodríguez, D.; Jasso-Salcedo, A. B.; Hedin, N.; Church, T. L.; Aizpuru, A.; Escobar-Barrios, V. A., et al. Semiconducting Nanocrystalline Bismuth Oxychloride (Biocl) for Photocatalytic Reduction of CO2. Catalysts. 2020, 10(9), 998.
  • Maimaitizi, H.; Abulizi, A.; Kadeer, K.; Talifu, D.; Tursun, Y., et al. In Situ Synthesis of Pt and N Co-doped Hollow Hierarchical BiOCl Microsphere as an Efficient Photocatalyst for Organic Pollutant Degradation and Photocatalytic CO2 Reduction. Appl. Surf. Sci. 2020, 502, 144083. DOI: 10.1016/j.apsusc.2019.144083.
  • Zhang, N.; Li, L.; Shao, Q.; Zhu, T.; Huang, X.; Xiao, X., et al. Fe-doped BiOCl Nanosheets with Light-switchable Oxygen Vacancies for Photocatalytic Nitrogen Fixation. ACS Appl. Energy Mater. 2019, 2(12), 8394–8398.
  • Lan, M.; Zheng, N.; Dong, X.; Hua, C.; Ma, H.; Zhang, X., et al. Bismuth-rich Bismuth Oxyiodide Microspheres with Abundant Oxygen Vacancies as an Efficient Photocatalyst for Nitrogen Fixation. Dalton Trans. 2020, 49(26), 9123–9129.
  • Xue, X.; Chen, R.; Yan, C., et al. Efficient Photocatalytic Nitrogen Fixation under Ambient Conditions Enabled by the Heterojunctions of N-type Bi2MoO6 and Oxygen-vacancy-rich P-type BiOBr. Nanoscale. 2019, 11(21), 10439–10445.
  • Liu, Y.; Hu, Z.; Yu Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets. Chem. Mater. 2020, 32(4), 1488–1494. DOI: 10.1021/acs.chemmater.9b04448.
  • Li, X.; Xiong, J.; Gao, X.; Ma, J.; Chen, Z.; Kang, B.; Liu, J.; Li, H.; Feng, Z.; Huang, J., et al. Novel BP/BiOBr S-scheme Nano-heterojunction for Enhanced Visible-light Photocatalytic Tetracycline Removal and Oxygen Evolution Activity. J. Hazard. Mater. 2020, 387, 121690. DOI: 10.1016/j.jhazmat.2019.121690.
  • Lv, M.; Jin, S.; Wang, H., et al. Plasma Modified BiOCl/sulfonated Graphene Microspheres as Efficient Photo-compensated Electrocatalysts for the Oxygen Evolution Reaction. Catal. Sci. Technol. 2020, 10(14), 4786–4793.
  • Arumugasamy, S. K.; Govindaraju, S.; Kjicf, Y. Manganese Ions Conjugated on Layered Bismuth Oxyhalides for High-performance Pseudocapacitors and Efficient Oxygen Evolution Catalysts. Inorg. Chem. 2020, 7(22), 4412–4423.
  • Gao, Y.; Qian, K.; Xu, B.; Li, Z.; Zheng, J.; Zhao, S.; Ding, F.; Sun, Y.; Xu, Z., et al. Recent Advances in Visible-light-driven Conversion of CO2 by Photocatalysts into Fuels or Value-added Chemicals. Carbon Resour. 2020, 3, 46–59.
  • Zhu, Z.; Li, X.; Qu, Y., et al. A Hierarchical Heterostructure of CdS QDs Confined on 3D ZnIn2S4 with Boosted Charge Transfer for Photocatalytic CO2 Reduction. Nano Res. 2020, 1–10.
  • He, J.; Janáky Recent Advances in Solar-driven Carbon Dioxide Conversion: Expectations Vs. Reality. ACS Energy Lett. 2020, 5(6), 1996–2014. DOI: 10.1021/acsenergylett.0c00645.
  • Hu, Y.; Zhan, F.; Wang, Q.; Sun, Y.; Yu, C.; Zhao, X.; Wang, H.; Long, R.; Zhang, G.; Gao, C., et al. Tracking Mechanistic Pathway of Photocatalytic CO2 Reaction at Ni Sites Using Operando, Time-Resolved Spectroscopy.JACS. Journal of the American Chemical Society. 2020, 142(12), 5618–5626.
  • Li, F.; MacFarlane, D. R.; Zhang, J. J. N. Recent Advances in the Nanoengineering of Electrocatalysts for CO2 Reduction. Nanoscale. 2018, 10(14), 6235–6260. DOI: 10.1039/C7NR09620H.
  • Fang, H.; Chen, W.; Wu, L., et al. Stable and Antisintering Tungsten Carbides with Controllable Active Phase for Selective Cleavage of Aryl Ether C–O Bonds. ACS Appl Mater. 2021, 13(7), 8274–8284.
  • Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J., et al. Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie. 2018, 57(26), 7610–7627.
  • Yan, D.; Li, H.; Chen, C.; Zou, Y.; Wang, S., et al. Defect Engineering Strategies for Nitrogen Reduction Reactions under Ambient Conditions. Small Methods. 2019, 3(6), 1800331.
  • Fu, F.; Shen, H.; Sun, X.; Xue, W.; Shoneye, A.; Ma, J.; Luo, L.; Wang, D.; Wang, J.; Tang, J., et al. Synergistic Effect of Surface Oxygen Vacancies and Interfacial Charge Transfer on Fe (Iii)/bi2moo6 for Efficient Photocatalysis. Appl. Catal. B. 2019, 247, 150–162. DOI: 10.1016/j.apcatb.2019.01.056.
  • Bi, Y.; Wang, Y.; Dong, X.; Zheng, N.; Ma, H.; Zhang, X., et al. Efficient Solar-driven Conversion of Nitrogen to Ammonia in Pure Water via Hydrogenated Bismuth Oxybromide. RSC Adv. 2018, 8(39), 21871–21878.
  • Yates, R. J.; Harrison, R. J.; Loi, A.; Steel, E. J.; Edwards, T. J.; Nutt, B. J.; Porqueddu, C.; Gresta, F.; Howieson, J. G., et al. Sourcing Rhizobium Leguminosarum Biovar Viciae Strains from Mediterranean Centres of Origin to Optimize Nitrogen Fixation in Forage Legumes Grown on Acid Soils. Grass Forage Sci. 2021, 76(1), 33–43.
  • Li, H.; Mao, C.; Shang, H.; Yang, Z.; Ai, Z.; Zhang, L., et al. New Opportunities for Efficient N2 Fixation by Nanosheet Photocatalysts. Nanoscale. 2018, 10(33), 15429–15435.
  • Chen, X.; Li, N.; Kong, Z.; Ong, W.-J.; Zhao, X., et al. Photocatalytic Fixation of Nitrogen to Ammonia: State-of-the-art Advancements and Future Prospects. Mater. Horiz. 2018, 5(1), 9–27.
  • Liu, S.; Wang, Y.; Wang, S., et al. Photocatalytic Fixation of Nitrogen to Ammonia by Single Ru Atom Decorated TiO2 Nanosheets. ACS Sustain. Chem. Eng. 2019, 7(7), 6813–6820.
  • Rong, X.; Mao, Y.; Xu, J.; Zhang, X.; Zhang, L.; Zhou, X.; Qiu, F.; Wu, Z., et al. Bi2Te3 Sheet Contributing to the Formation of Flower-like BiOCl Composite and Its N2 Photofixation Ability Enhancement. Catal. Commun. 2018, 116, 16–19. DOI: 10.1016/j.catcom.2018.07.018.
  • Vecino, X.; Reig, M.; Bhushan, B.; Gibert, O.; Valderrama, C.; Cortina, J. L., et al. Liquid Fertilizer Production by Ammonia Recovery from Treated Ammonia-rich Regenerated Streams Using Liquid-liquid Membrane Contactors. Chem. Eng. J. 2019, 360, 890–899. DOI: 10.1016/j.cej.2018.12.004.
  • Shen, Z.; Li, F.; Lu, J., et al. Enhanced N2 Photofixation Activity of Flower-like BiOCl by in Situ Fe (III) Doped as an Activation Center. J. Colloid Interface Sci. 2020.
  • Huang, W.; Hua, X.; Zhao, Y., et al. Enhancement of Visible-light-driven Photocatalytic Performance of BiOBr Nanosheets by Co2+ Doping. J. Mater. Sci. 2019, 30(16), 14967–14976.
  • Wang, J.; Zhong, H.; Qin, Y.; Zhang, X.-B., et al. An Efficient Three‐dimensional Oxygen Evolution Electrode. Angewandte Chemie. 2013, 52(20), 5248–5253.
  • Lee, S. W.; Carlton, C.; Risch, M.; Surendranath, Y.; Chen, S.; Furutsuki, S.; Yamada, A.; Nocera, D. G.; Shao-Horn, Y., et al. The Nature of Lithium Battery Materials under Oxygen Evolution Reaction condition.JACS. Journal of the American Chemical Society. 2012, 134(41), 16959–16962.
  • Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H., et al. High-performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water oxidation.Science. Science (New York, N.Y.). 2013, 342(6160), 836–840.
  • Zhang, G.; Lan, Z.-A.; Lin, L.; Lin, S.; Wang, X., et al. Overall Water Splitting by Pt/g-C3N4 Photocatalysts without Using Sacrificial Agents. Chem. Sci. 2016, 7(5), 3062–3066.
  • Liu, W.; Xu, S.; Guan, S., et al. Confined Synthesis of Carbon Nitride in a Layered Host Matrix with Unprecedented Solid‐state Quantum Yield and Stability. Adv.Mate. 2018, 30(2), 1704376.
  • Zhao, C.; Tian, L.; Zou, Z.; Chen, Z.; Tang, H.; Liu, Q.; Lin, Z., and Yang, X., et al. Revealing and Accelerating Interfacial Charge Carrier Dynamics in Z-scheme Heterojunctions for Highly Efficient Photocatalytic Oxygen Evolution. Applied Catalysis B; Environment 2020,268, 118445. DOI: 10.1016/j.apcatb.2019.118445.
  • Ma, W.; Zhang, Y.; Li, Y., et al. The Formation of Uniform Straw-like β-FeOOH Nanostructures with Superior Catalytic Performance for the Degradation of Rhodamine B. J Nanopart. 2021, 23(1), 1–9.
  • Nkwachukwu, O. V.; Arotiba Perovskite Oxide–Based Materials for Photocatalytic and Photoelectrocatalytic Treatment of Water. Front. Chem. 2021, 9. DOI: 10.3389/fchem.2021.634630.
  • Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Chang, W.; Sun, T.; Shen, C.; Wei, G., et al. Construction of Porous-hydrangea BiOBr/BiOI Nn Heterojunction with Enhanced Photodegradation of Tetracycline Hydrochloride under Visible Light. J. Alloys Compd. 2021, 864, 158784. DOI: 10.1016/j.jallcom.2021.158784.
  • Li, J.; Chen, R.; Cui, W.; Dong, X.; Wang, H.; Kim, K.-H.; Chu, Y.; Sheng, J.; Sun, Y.; Dong, F., et al. Synergistic Photocatalytic Decomposition of a Volatile Organic Compound Mixture: High Efficiency, Reaction Mechanism, and Long-term Stability. ACS Catal. 2020, 10(13), 7230–7239.
  • Yuan, C.; Chen, R.; Wang, J.; Wu, H.; Sheng, J.; Dong, F.; Sun, Y., et al. La-doping Induced Localized Excess Electrons on (Bio)2co3 for Efficient Photocatalytic NO Removal and Toxic Intermediates Suppression. J. Hazard. Mater. 2020, 400, 123174. DOI: 10.1016/j.jhazmat.2020.123174.
  • Wang, Y.; Liu, Y.; Shi Removal of Nitric Oxide from Flue Gas Using Novel Microwave-activated Double Oxidants System. Chem. Eng. J. 2020, 393, 124754. DOI: 10.1016/j.cej.2020.124754.
  • Yuan, C.; Cui, W.; Sun, Y.; Wang, J.; Chen, R.; Zhang, J.; Zhang, Y.; Dong, F., et al. Inhibition of the Toxic Byproduct during Photocatalytic NO Oxidation via La Doping in ZnO. Chin. Chem. Lett. 2020, 31(3), 751–754.
  • Chen, P.; Liu, H.; Sun, Y.; Li, J.; Cui, W.; Wang, L.; Zhang, W.; Yuan, X.; Wang, Z.; Zhang, Y., et al. Bi Metal Prevents the Deactivation of Oxygen Vacancies in Bi2O2CO3 for Stable and Efficient Photocatalytic NO Abatement. Appl. Catal. B. 2020, 264, 118545. DOI: 10.1016/j.apcatb.2019.118545.
  • Wang, J.; Asakura, Y.; SJJohm, Y. Synthesis of Zinc Germanium Oxynitride Nanotube as a Visible-light Driven Photocatalyst for NOx Decomposition through Ordered Morphological Transformation from Zn2GeO4 Nanorod Obtained by Hydrothermal Reaction. J. Hazard. Mater. 2020, 396, 122709. DOI: 10.1016/j.jhazmat.2020.122709.
  • Cui, W.; Li, J.; Chen, L.; Dong, X.; Wang, H.; Sheng, J.; Sun, Y.; Zhou, Y.; Dong, F., et al. Nature-inspired CaCO3 Loading TiO2 Composites for Efficient and Durable Photocatalytic Mineralization of Gaseous Toluene. Sci. Bull. 2020, 65(19), 1626–1634.
  • Zhou, Z.; Li, Y.; Li, M.; Li, Y.; Zhan, S., et al. Efficient Removal for Multiple Pollutants via Ag2O/BiOBr Heterojunction: A Promoted Photocatalytic Process by Valid Electron Transfer Pathway. Chin. Chem. Lett. 2020, 31(10), 2698–2704.
  • Mera, A. C.; Martínez-de la Cruz, A.; Pérez-Tijerina, E., et al. Nanostructured BiOI for Air Pollution Control: Microwave-assisted Synthesis, Characterization and Photocatalytic Activity toward NO Transformation under Visible Light Irradiation. Mater Sci Semicond. 2018, 88, 20–27.
  • Nava-Núñez, M. Y.; Jimenez-Relinque, E.; Grande, M.; Martínez-de la Cruz, A.; Castellote, M., et al. Photocatalytic BiOX Mortars under Visible Light Irradiation: Compatibility, NOx Efficiency and Nitrate Selectivity. Catalysts. 2020, 10(2), 226.
  • Geng, Q.; Xie, H.; Cui, W.; Sheng, J.; Tong, X.; Sun, Y.; Li, J.; Wang, Z.; Dong, F., et al. Optimizing the Electronic Structure of BiOBr Nanosheets via Combined Ba Doping and Oxygen Vacancies For. Promoted Photocatalysis.J Phys Chem C. 2021, 125(16), 8597–8605.
  • Hussain, A.; Hou, J.; Tahir, M., et al. Fine-tuning Internal Electric Field of BiOBr for Suppressed Charge recombination.Enviromental Chemical Engineering. 2020, 104766.
  • Cui, Y.; Wang, T.; Liu, J.; Hu, L.; Nie, Q.; Tan, Z.; Yu, H., et al. Enhanced Solar Photocatalytic Degradation of Nitric Oxide Using Graphene Quantum Dots/bismuth Tungstate Composite Catalysts. Chem. Eng. J. 2021, 420, 129595. DOI: 10.1016/j.cej.2021.129595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.