Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 1
672
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Main catalytic challenges in ethanol chemistry: A review

ORCID Icon & ORCID Icon
Pages 174-213 | Received 11 Nov 2021, Accepted 09 Mar 2022, Published online: 17 May 2022

References

  • Gupta,A.; Verma,J.P. Sustainable Bio-Ethanol Production from Agro-Residues: A Review. Renewable Sustainable Energy Rev. 2015, 41, 550–567. DOI: 10.1016/j.rser.2014.08.032.
  • Witold H.; Tim K, and R, Nuttall, 2019 Five Ways The ESG Creates Value. (McKinsey & Company)
  • Reuters. Net-zero Emissions Targets Adopted by One-fifth of World’s Largest Companies https://www.reuters.com/article/us-global-climate-carbon-business-trfn-idUSKBN2BF2ZX ( accessed 2021 -08−10).
  • USDA-FAS, 2020. United States Agricultural Export Yearbook.
  • Cherubini,F. The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals. Energy Conversion Manage. 2010, 51(7), 1412–1421 DOI: 10.1016/j.enconman.2010.01.015.
  • A. Araújo,Wilson;. Ethanol Industry: Surpassing Uncertainties and Looking Forward. In Global Bioethanol: Evolution, Risks, and Uncertainties Luiz Monteiro Salles-Filho, Sergio, Augusto Barbosa Cortez, Luís, Maria Ferreira Jardim da Silveira, José, C. Trindade, Sergio, da Graça Derengowski Fonseca, Maria; Elsevier Inc: 2016; pp 1–33. doi:10.1016/B978-0-12-803141-4.00001-0
  • Solarte-Toro,J.C.; Cardona Alzate,C.A. Biorefineries as the Base for Accomplishing the Sustainable Development Goals (Sdgs) and the Transition to Bioeconomy: Technical Aspects, Challenges and Perspectives. Bioresour. Technol. 2021, 340(May), 125626. DOI: 10.1016/j.biortech.2021.125626.
  • Filippi,K.; Papapostolou,H.; Alexandri,M.; Vlysidis,A.; Myrtsi,E.D.; Ladakis,D.; Pateraki,C.; Haroutounian,S.A.; Koutinas,A. Integrated Biorefinery Development Using Winery Waste Streams for the Production of Bacterial Cellulose, Succinic Acid and Value-Added Fractions. Bioresour. Technol. 2021, 125989. doi:10.1016/j.biortech.2021.125989.
  • Pereira,B.; Marcondes,W.F.; Carvalho,W.; Arantes,V. High Yield Biorefinery Products from Sugarcane Bagasse: Prebiotic Xylooligosaccharides, Cellulosic Ethanol, Cellulose Nanofibrils and Lignin Nanoparticles. Bioresour. Technol. 2021, 125970. doi:10.1016/j.biortech.2021.125970.
  • IEA. Net Zero by 2050 ARoadmap for the Global Energy Sector, 2021.
  • Ba,B.H.; Prins,C.; Prodhon,C. AGeneric Tactical Planning Model to Supply ABiorefinery with Biomass. Pesquisa Operacional. 2018, 38(1), 1–30. DOI: 10.1590/0101-7438.2018.038.01.0001.
  • Ulonska,K.; König,A.; Klatt,M.; Mitsos,A.; Viell,J. Optimization of Multiproduct Biorefinery Processes under Consideration of Biomass Supply Chain Management and Market Developments. Ind. Eng. Chem. Res. 2018, 57(20), 6980–6991. DOI: 10.1021/acs.iecr.8b00245.
  • Wang,Y.; Ebadian,M.; Sokhansanj,S.; Webb,E.; Lau,A. Impact of the Biorefinery Size on the Logistics of Corn Stover Supply– AScenario Analysis. Appl. Energy. 2017, 198, 360–376. DOI: 10.1016/j.apenergy.2017.03.056.
  • Maung,T.A.; Gustafson,C.R.; Saxowsky,D.M.; Nowatzki,J.; Miljkovic,T.; Ripplinger,D. The Logistics of Supplying Single Vs. Multi-Crop Cellulosic Feedstocks to aBiorefinery in Southeast North Dakota. Appl. Energy. 2013, 109(2013), 229–238. DOI: 10.1016/j.apenergy.2013.04.003.
  • Ekşioǧlu,S.D.; Acharya,A.; Leightley,L.E.; Arora,S. Analyzing the Design and Management of Biomass-to-Biorefinery Supply Chain. Comput Indus Eng. 2009, 57(4), 1342–1352. DOI: 10.1016/j.cie.2009.07.003.
  • Sharma,B.; Larroche,C.; Dussap,C.-G. Comprehensive Assessment of 2G Bioethanol Production. Bioresour. Technol. 2020, 313, 123630. DOI: 10.1016/j.biortech.2020.123630.
  • Vieira,S.; Barros,M.V.; Sydney,A.C.N.; Piekarski,C.M.; de Francisco,A.C.; Vandenberghe,L.P.D.S.; Sydney,E.B. Sustainability of Sugarcane Lignocellulosic Biomass Pretreatment for the Production of Bioethanol. Bioresour. Technol. 2020, 299, 122635. DOI: 10.1016/j.biortech.2019.122635.
  • Yusoff,M.N.A.M.; Zulkifli,N.W.M.; Masum,B.M.; Masjuki,H.H. Feasibility of Bioethanol and Biobutanol as Transportation Fuel in Spark-Ignition Engine: A Review. RSC Adv. 2015, 5(121), 100184–100211. DOI: 10.1039/c5ra12735a.
  • Mohsenzadeh,A.; Zamani,A.; Taherzadeh,M.J. Bioethylene Production from Ethanol: AReview and Techno-Economical Evaluation. Chem. Bio. Eng. Rev. 2017, 4(2), 75–91. DOI: 10.1002/cben.201600025.
  • Dagle,V.L.; Winkelman,A.D.; Jaegers,N.R.; Saavedra-Lopez,J.; Hu,J.; Engelhard,M.H.; Habas,S.E.; Akhade,S.A.; Kovarik,L.; Glezakou,V.A., etal. Single-Step Conversion of Ethanol to n-Butene over Ag-ZrO2/SiO2Catalysts. ACS Catal. 2020, 10(18), 10602–10613. DOI: 10.1021/acscatal.0c02235.
  • Rass-Hansen,J.; Falsig,H.; Jørgensen,B.; Christensen,C.H. Bioethanol: Fuel or Feedstock? J.Chem. Technol. Biotechnol. 2007, 82(4), 329–333. DOI: 10.1002/jctb.1665.
  • Puricelli,S.; Cardellini,G.; Casadei,S.; Faedo,D.; van den Oever,A.E.M.; Grosso,M. AReview on Biofuels for Light-Duty Vehicles in Europe. Renewable Sustainable Energy Rev. 2021, (November 2019), 137, 110398. DOI: 10.1016/j.rser.2020.110398.
  • de Souza Abud,A.K.; de Farias Silva,C.E. Bioethanol in Brazil: Status, Challenges and Perspectives to Improve the Production. Bioethanol Prod Food Crops. 2019, 417–443. doi:10.1016/b978-0-12-813766-6.00021-7.
  • Bórawski,P.; Bełdycka-Bórawska,A.; Szymańska,E.J.; Jankowski,K.J.; Dubis,B.; Dunn,J.W. Development of Renewable Energy Sources Market and Biofuels in the European Union. J.Cleaner Prod. 2019, 228, 467–484. DOI: 10.1016/j.jclepro.2019.04.242.
  • Gallo,J.M.R.; Bueno,J.M.C.; Schuchardt,U. Catalytic Transformations of Ethanol for Biorefineries. J.Braz. Chem. Soc. 2014, 25(12), 2229–2243. DOI: 10.5935/0103-5053.20140272.
  • Sakthivel,P.; Subramanian,K.A.; Mathai,R. Indian Scenario of Ethanol Fuel and Its Utilization in Automotive Transportation Sector. Resour. Conserv. Recycl. 2018, (December 2017), 132, 102–120. DOI: 10.1016/j.resconrec.2018.01.012.
  • REN21, 2021. Renewables 2021 Global Status Report https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf. (Paris: REN21 Secretariat) 978-3-948393-03-8
  • RFA. (2020) RFA.pdf https://ethanolrfa.org/exports-and-trade/ ( accessed 2021 -02−21).
  • Ferreira,A.F. Biorefinery Concept. Lecture Notes in Energy. 2017, 57, 1–20. DOI: 10.1007/978-3-319-48288-0_1.
  • Lovón-Quintana,J.J.; Rodriguez-Guerrero,J.K.; Valença,P.G. Carbonate Hydroxyapatite as aCatalyst for Ethanol Conversion to Hydrocarbon Fuels. Appl. Catal., A. 2017, 542(March), 136–145. DOI: 10.1016/j.apcata.2017.05.020.
  • Liu,D.; Liu,Y.; Goh,E.Y.L.; Chu,C.J.Y.; Gwie,C.G.; Chang,J.; Borgna,A. Catalytic Conversion of Ethanol over ZSM-11 Based Catalysts. Appl. Catal., A. 2016, 523, 118–129. DOI: 10.1016/j.apcata.2016.05.030.
  • van der Borght,K.; Galvita,V.V.; Marin,G.B. Reprint of “Ethanol to Higher Hydrocarbons over Ni, Ga, Fe-Modified ZSM-5: Effect of Metal Content. Appl. Catal., A. 2015, 504, 621–630. DOI: 10.1016/j.apcata.2015.06.034.
  • Sousa,Z.S.B.; Veloso,C.O.; Henriques,C.A.; Teixeira da Silva,V. Ethanol Conversion into Olefins and Aromatics over HZSM-5 Zeolite: Influence of Reaction Conditions and Surface Reaction Studies. J.Mol. Catal. A: Chem. 2016, 422, 266–274. DOI: 10.1016/j.molcata.2016.03.005.
  • Vennestrøm,P.N.R.; Osmundsen,C.M.; Christensen,C.H.; Taarning,E. Beyond Petrochemicals: The Renewable Chemicals Industry. Angewandte Chemie - IntEd. 2011, 50(45), 10502–10509. DOI: 10.1002/anie.201102117.
  • Kazmi,A.; Clark,J. Biomass to Chemicals. Comprehensive Renewable Energy. 2012, 5, 395–410. DOI: 10.1016/B978-0-08-087872-0.00526-6.
  • Machado,C.F.R.; Araújo,O.D.Q.F.; de Medeiros,J.L.; Alves,R.M.D.B. Carbon Dioxide and Ethanol from Sugarcane Biorefinery as Renewable Feedstocks to Environment-Oriented Integrated Chemical Plants. J.Cleaner Prod. 2018, 172, 1232–1242. DOI: 10.1016/j.jclepro.2017.10.234.
  • Tran,Q.N.; Gimello,O.; Tanchoux,N.; Ceretti,M.; Albonetti,S.; Paulus,W.; Bonelli,B.; Renzo,F. Transition Metal B-Site Substitutions in LaAlO3 Perovskites Reorient Bio-Ethanol Conversion Reactions. Catalysts. di, 2021, 1–17. https://doi.org/10.3390/catal11030344.
  • Ramasamy,K.K.; Gray,M.; Job,H.; Smith,C.; Wang,Y. Tunable Catalytic Properties of Bi-Functional Mixed Oxides in Ethanol Conversion to High Value Compounds. Catal. Today. 2016, 269, 82–87. DOI: 10.1016/j.cattod.2015.11.045.
  • Yue,C.J.; Chen,H.L.; Gu,L.P.; Zheng,J.W.; Zhuang,Y.F. Synthesis of Crotonic Acid from Ethanol by Sequential Catalysis. Sustainable Chem. Pharm. 2020, 17(July), 100288. DOI: 10.1016/j.scp.2020.100288.
  • Santhanaraj,D.; Ruiz,M.P.; Komarneni,M.R.; Pham,T.; Li,G.; Resasco,D.E.; Faria,J. Synthesis of α,β- and β-Unsaturated Acids and Hydroxy Acids by Tandem Oxidation, Epoxidation, and Hydrolysis/Hydrogenation of Bioethanol Derivatives. Angewandte Chemie - IntEd. 2020, 59(19), 7456–7460. DOI: 10.1002/anie.202002049.
  • Phung,T.K.; Busca,G. Diethyl Ether Cracking and Ethanol Dehydration: Acid Catalysis and Reaction Paths. Chem. Eng. J. 2015, 272, 92–101. DOI: 10.1016/j.cej.2015.03.008.
  • Phung,T.K.; Busca,G. Ethanol Dehydration on Silica-Aluminas: Active Sites and Ethylene/Diethyl Ether Selectivities. Catal. Commun. 2015, 68, 110–115. DOI: 10.1016/j.catcom.2015.05.009.
  • de Oliveira,T.K.R.; Rosset,M.; Perez-Lopez,O.W. Ethanol Dehydration to Diethyl Ether over Cu-Fe/ZSM-5 Catalysts. Catal. Commun. 2018, 104, 32–36. DOI: 10.1016/j.catcom.2017.10.013.
  • Wu,X.; Cai,X.; Zhang,Q.; Bi,P.; Meng,Q.; Pi,Y.; Wang,T. Upgrading of Aqueous Bioethanol to Higher Alcohols over NiSn/MgAlO Catalyst. ACS Sustain. Chem. Eng. 2021, 9(33), 11269–11279. DOI: 10.1021/acssuschemeng.1c04305.
  • Komanoya,T.; Nakajima,K.; Kitano,M.; Hara,M. Synergistic Catalysis by Lewis Acid and Base Sites on ZrO2 for Meerwein-Ponndorf-Verley Reduction. J.Phys. Chem. C. 2015, 119(47), 26540–26546. DOI: 10.1021/acs.jpcc.5b08355.
  • Matheus,C.R.V.; Chagas,L.H.; Gonzalez,G.G.; Falabella Aguiar,E.S.; Appel,L.G. The Synthesis of Propene from Ethanol: AMechanistic Study. ACS Catal. 2018, 8(8), 7667–7678. DOI: 10.1021/acscatal.8b01727.
  • Biswas,P.; Kunzru,D. Steam Reforming of Ethanol for Production of Hydrogen over Ni/CeO2-ZrO2 Catalyst: Effect of Support and Metal Loading. Int. J.Hydrogen Energy. 2007, 32(8), 969–980. DOI: 10.1016/j.ijhydene.2006.09.031.
  • Jalowiecki-Duhamel,L.; Pirez,C.; Capron,M.; Dumeignil,F.; Payen,E. Hydrogen Production from Ethanol Steam Reforming over Cerium and Nickel Based Oxyhydrides. Int. J.Hydrogen Energy. 2010, 35(23), 12741–12750. DOI: 10.1016/j.ijhydene.2009.08.080.
  • Zanchet,D.; Santos,J.B.O.; Damyanova,S.; Gallo,J.M.R.; Bueno,J.M.C. Toward Understanding Metal-Catalyzed Ethanol Reforming. ACS Catal. 2015, 5(6), 3841–3863. DOI: 10.1021/cs5020755.
  • Pontes Bittencourt,R.C. Method for Preparing aSteam Reforming Catalyst, Catalyst and Related Use. Jul 15, 2021. WO2021138728A1
  • Batchu,R.; Galvita,V.V.; Alexopoulos,K.; van der Borght,K.; Poelman,H.; Reyniers,M.F.; Marin,G.B. Role of Intermediates in Reaction Pathways from Ethene to Hydrocarbons over H-ZSM-5. Appl. Catal., A. 2017, 538, 207–220. DOI: 10.1016/j.apcata.2017.03.013.
  • Iwamoto,M.; Kasai,K.; Haishi,T. Conversion of Ethanol into Polyolefin Building Blocks: Reaction Pathways on Nickel Ion-Loaded Mesoporous Silica. ChemSusChem. 2011, 4(8), 1055–1058. DOI: 10.1002/cssc.201100168.
  • Oikawa,H.; Shibata,Y.; Inazu,K.; Iwase,Y.; Murai,K.; Hyodo,S.; Kobayashi,G.; Baba,T. Highly Selective Conversion of Ethene to Propene over SAPO-34 as aSolid Acid Catalyst. Appl. Catal., A. 2006, 312(1–2), 181–185. DOI: 10.1016/j.apcata.2006.06.045.
  • Srinivasan,P.D.; Khivantsev,K.; Tengco,J.M.M.; Zhu,H.; Bravo-Suárez,J.J. Enhanced Ethanol Dehydration on Γ-al2o3 Supported Cobalt Catalyst. J.Catal. 2019, 373, 276–296. DOI: 10.1016/j.jcat.2019.03.024.
  • Irena/Iea-Etsap. ; , 2013 Production of Bio-Ethylene Technology Brief .
  • Zhang,M.; Yu,Y. Dehydration of Ethanol to Ethylene. Ind. Eng. Chem. Res. 2013, 52(28), 9505–9514. DOI: 10.1021/ie401157c.
  • Li,X.; Kant,A.; He,Y.; Thakkar,H.V.; Atanga,M.A.; Rezaei,F.; Ludlow,D.K.; Rownaghi,A.A. Light Olefins from Renewable Resources: Selective Catalytic Dehydration of Bioethanol to Propylene over Zeolite and Transition Metal Oxide Catalysts. Catal. Today. 2016, 276, 62–77. DOI: 10.1016/j.cattod.2016.01.038.
  • Iwamoto,M. Selective Catalytic Conversion of Bio-Ethanol to Propene: AReview of Catalysts and Reaction Pathways. Catal. Today. 2015, 242(PB), 243–248. DOI: 10.1016/j.cattod.2014.06.031.
  • Iwamoto,M.; Kosugi,Y. Highly Selective Conversion of Ethene to Propene and Butenes on Nickel Ion-Loaded Mesoporous Silica Catalysts Highly Selective Conversion of Ethene to Propene and Butenes on Nickel Ion-Loaded Mesoporous Silica Catalysts. Society. 2007, 1–4. doi:10.1021/jp066989e.
  • Hayashi,F.; Tanaka,M.; Lin,D.; Iwamoto,M. Surface Structure of Yttrium-Modified Ceria Catalysts and Reaction Pathways from Ethanol to Propene. J.Catal. 2014, 316, 112–120. DOI: 10.1016/j.jcat.2014.04.017.
  • Xu,L.; Zhao,R.; Zhang,W. One-Step High-Yield Production of Renewable Propene from Bioethanol over Composite ZnCeOx Oxide and HBeta Zeolite with Balanced Brönsted/Lewis Acidity. Appl. Catal. BEnviron. July 2020, 279, 119389. DOI: 10.1016/j.apcatb.2020.119389.
  • Iwamoto,M.; Mizuno,S.; Tanaka,M. Direct and Selective Production of Propene from Bio-Ethanol on Sc-Loaded In2O3 Catalysts. Chemistry - AEuropean Journal. Chemistry (Weinheim an der Bergstrasse, Germany). 2013, 19(22), 7214–7220. DOI: 10.1002/chem.201203977.
  • Xue,F.; Miao,C.; Yue,Y.; Hua,W.; Gao,Z. Direct Conversion of Bio-Ethanol to Propylene in High Yield over the Composite of In2O3 and Zeolite Beta. Green Chem. 2017, 19(23), 5582–5590. DOI: 10.1039/c7gc02400b.
  • Sun,J.; Zhu,K.; Gao,F.; Wang,C.; Liu,J.; Peden,C.H.F.; Wang,Y. Direct Conversion of Bio-ethanol to Isobutene on Nanosized Zn XZr YOZMixed Oxides with Balanced Acid–Base Sites. J.Am. Chem. Soc. 2011, 133(29), 11096–11099. DOI: 10.1021/ja204235v.
  • Zonetti,P.C.; Bridi,V.L.; Gonzalez,G.G.; Moreira,C.R.; Alves,O.C.; de Avillez,R.R.; Appel,L.G. Isobutene from Ethanol: Describing the Synergy between In2O3 and m-ZrO2. ChemCatChem. 2019, 11(16), 4011–4020. DOI: 10.1002/cctc.201900633.
  • Liu,F.; Men,Y.; Wang,J.; Huang,X.; Wang,Y.; An,W. The Synergistic Effect to Promote the Direct Conversion of Bioethanol into Isobutene over Ternary Multifunctional CrxZnyZrzOn Catalysts. ChemCatChem. 2017, 9(10), 1758–1764. DOI: 10.1002/cctc.201700154.
  • Rorrer,J.E.; Toste,F.D.; Bell,A.T. Mechanism and Kinetics of Isobutene Formation from Ethanol and Acetone over Zn XZr YO Z. ACS Catal. 2019, 9(12), 10588–10604. DOI: 10.1021/acscatal.9b03045.
  • Liu,C.; Sun,J.; Kevin,M.; Colin,S.; Padmesh,V., and Wang,Y. May 8, 2014. WO2014070354A1 Stable mixed oxide catalysts for direct conversion of ethanol to isobutene and process for making Washington State University, Archer Daniels Midland Company
  • Sushkevich,V.L.; Ivanova,I.I. Mechanistic Study of Ethanol Conversion into Butadiene over Silver Promoted Zirconia Catalysts. Appl. Catal. BEnviron. 2017, 215, 36–49. DOI: 10.1016/j.apcatb.2017.05.060.
  • Makshina,E.V.; Dusselier,M.; Janssens,W.; Degrève,J.; Jacobs,P.A.; Sels,B.F. Review of Old Chemistry and New Catalytic Advances in the On-Purpose Synthesis of Butadiene. Chem. Soc. Rev. 2014, 43(22), 7917–7953. DOI: 10.1039/c4cs00105b.
  • Chagas,L.H.; Matheus,C.R.V.; Zonetti,P.C.; Appel,L.G. Butadiene from Ethanol Employing Doped T-ZrO 2. Mol. Catal. 2018, August 2017, 1–8 doi:10.1016/j.mcat.2018.01.018
  • Sushkevich,V.L.; Ivanova,I.I.; Ordomsky,V.V.; Taarning,E. Design of a Metal-Promoted Oxide Catalyst for the Selective Synthesis of Butadiene from Ethanol. ChemSusChem. 2014, 7(9), 2527–2536. DOI: 10.1002/cssc.201402346.
  • Sushkevich,V.L.; Ivanova,I.I.; Tolborg,S.; Taarning,E. Meerwein-Ponndorf-Verley-Oppenauer Reaction of Crotonaldehyde with Ethanol over Zr-Containing Catalysts. J.Catal. 2014, 316, 121–129. DOI: 10.1016/j.jcat.2014.04.019.
  • Pomalaza,G.; Capron,M.; Ordomsky,V.; Dumeignil,F. Recent Breakthroughs in the Conversion of Ethanol to Butadiene. Catalysts. 2016, 6(12), 12. DOI: 10.3390/catal6120203.
  • Ochoa,J.V.; Bandinelli,C.; Vozniuk,O.; Chieregato,A.; Malmusi,A.; Recchi,C.; Cavani,F. An Analysis of the Chemical, Physical and Reactivity Features of MgO-SiO2 Catalysts for Butadiene Synthesis with the Lebedev Process. Green Chem. 2016, 18(6), 1653–1663. DOI: 10.1039/c5gc02194d.
  • Cheong,J.L.; Shao,Y.; Tan,S.J.R.; Li,X.; Zhang,Y.; Lee,S.S. Highly Active and Selective Zr/MCF Catalyst for Production of 1,3-Butadiene from Ethanol in aDual Fixed Bed Reactor System. ACS Sustain. Chem. Eng. 2016, 4(9), 4887–4894. DOI: 10.1021/acssuschemeng.6b01193.
  • Ivanova,I.I.; Smirnov,A.V., and Sushkevich,V.L. Single-stage Method of Butadiene Production. Feb 05, 2020. ETB Catalytic Technologies LLC EP3604260A1.
  • Lewandowski,M.; Ochenduszko,A., and Jones,M. Process for the Production of 1, 3-butadiene. , Mar 24, 2016 US20160082417A Synthos S.A.
  • Young M,K. Process for Making Acetaldehyde and aCatalyst Therefor. Carbide and Carbon Chemicals Corp. US1977750A, Oct 23, 1934.
  • Young,K.; M, Process for Making Acetaldehyde and aCatalyst Therefor. Carbide and Carbon Chemicals Corp. US1977750A, Oct23, 1934.
  • Garbarino,G.; Riani,P.; Villa García,M.; Finocchio,E.; Sanchez Escribano,V.; Busca,G. AStudy of Ethanol Dehydrogenation to Acetaldehyde over Copper/Zinc Aluminate Catalysts. Catal. Today. 2020, December 2018, 354, 167–175. DOI: 10.1016/j.cattod.2019.01.002.
  • Rodrigues,C.P.; Zonetti,P.D.C.; Appel,L.G. Chemicals from Ethanol: The Acetone Synthesis from Ethanol Employing Ce0.75Zr0.25O2, ZrO2 and Cu/ZnO/Al2O3. Chem. Cent. J. 2017, 11(1), 30. DOI: 10.1186/s13065-017-0249-5.
  • de Lima,A.F.F.; Zonetti,P.C.; Rodrigues,C.P.; Appel,L.G. The First Step of the Propylene Generation from Renewable Raw Material: Acetone from Ethanol Employing CeO2 Doped by Ag. Catal. Today. 2017, 279, 252–259. DOI: 10.1016/j.cattod.2016.04.038.
  • Silva-Calpa,L.D.R.; Zonetti,P.C.; de Oliveira,D.C.; de Avillez,R.R.; Appel,L.G. Acetone from Ethanol Employing ZnxZr1−xO2−y. Catal. Today. 2017, 289, 264–272. DOI: 10.1016/j.cattod.2016.09.011.
  • Rodrigues,C.P.; Zonetti,P.C.; Silva,C.G.; Gaspar,A.B.; Appel,L.G. Chemicals from Ethanol - the Acetone One-Pot Synthesis. Appl. Catal., A. 2013, 458, 111–118. DOI: 10.1016/j.apcata.2013.03.028.
  • Masuda,T.; Tago,T.; Tsuboi,H., and Yanase,T. , Sep 9, 2008. Process for Production of Acetone from Bioethanol WO2009110413A1 METAWATER Co. Ltd., National University Corporation Hokkaido University.
  • Feng,W.; Lihua,L.; Jie,X.; Shushuang,L.; Zhixin,Z.; Yehong,W.; Chaofeng,Z., and Jian,Z. Method of Preparing 2-Pentanone from Ethanol. Mar 08, 2017. CN106478386A Dalian Institute of Chemical Physics of CAS.
  • He,D.; Ding,Y.; Chen,W.; Lu,Y.; Luo,H. One-Step Synthesis of 2-Pentanone from Ethanol over K-Pd/MnO x-ZrO 2-ZnO Catalyst. J.Mol. Catal. A: Chem. 2005, 226(1), 89–92. DOI: 10.1016/j.molcata.2004.08.002.
  • Wei,L.; Zeng,C.Y.; Xie,H.J.; Wu,Y.Q. Study on the Formation of 2-Pentanone from Ethanol over K-CuZrO2 Catalysts. Ranliao Huaxue Xuebao/J Fuel Chem Techno. 2021, 49(1), 80–87. DOI: 10.1016/S1872-5813(21)60008-7.
  • Ling,W., and Chunjuan,D. Jan 17, 2019. Composite Catalyst for Synthesizing 2-Pentanone from Ethanol and Preparation Method Thereof CN110694626A Taiyuan College.
  • Gonzalez,G.G.; Zonetti,P.C.; Silveira,E.B.; Mendes,F.M.T.; de Avillez,R.R.; Rabello,C.R.K.; Zotin,F.M.Z.; Appel,L.G. Two Mechanisms for Acetic Acid Synthesis from Ethanol and Water. J.Catal. 2019, 380(xxxx), 343–351. DOI: 10.1016/j.jcat.2019.09.031.
  • Reis,P.P.P.; Zonetti,P.C.; Passos,F.B.; Appel,L.G. Acetic Acid Synthesis from Ethanol: Describing the Synergy between PdO and m-ZrO2. Catal. Lett. 2017, 147(4), 821–827. DOI: 10.1007/s10562-017-2001-0.
  • Rabello,C.R.K.; Junior,M.G.; Siqueira,B.G.; de Menezes,R.B.; Appel,L.G.; Gaspar,A.B.; Letichevsky,S., and Zonetti,P.C. Process For Producing Acetic Acid From Ethanol. Apr 18, 2013. Petroleo Brasileiro S.A. – Petrobras, Instituto Nacional De Tecnologia – Int. WO2013053032A1.
  • Freitas,I.C.; Damyanova,S.; Oliveira,D.C.; Marques,C.M.P.; Bueno,J.M.C. Effect of Cu Content on the Surface and Catalytic Properties of Cu/ZrO 2 Catalyst for Ethanol Dehydrogenation. J.Mol. Catal. A: Chem. 2014, 381, 26–37. DOI: 10.1016/j.molcata.2013.09.038.
  • Inui,K.; Kurabayashi,T.; Sato,S. Direct Synthesis of Ethyl Acetate from Ethanol Carried Out under Pressure. J.Catal. 2002, 212(2), 207–215. DOI: 10.1006/jcat.2002.3769.
  • Doherty,M.F.; Gadewar,S.B.; Norton,R.E., and Vicente,B.C. Ethyl Acetate Production. Aug 8, 2012. Greenyug, Llc. WO2013116492A1.
  • Santacesaria,E.; Carotenuto,G.; Tesser,R.; Di Serio,M. Ethanol Dehydrogenation to Ethyl Acetate by Using Copper and Copper Chromite Catalysts. Chem. Eng. J. 2012, 179, 209–220. DOI: 10.1016/j.cej.2011.10.043.
  • Carotenuto,G.; Martino,D.S.; Elio,S., and Tesser,R. Process For The Production Of Ethyl-Acetate From Ethanol. Sep 9, 2011. Eurochem Engineering S.R.L. WO2011104738A2.
  • Ndaba,B.; Chiyanzu,I.; Marx,S. N-Butanol Derived from Biochemical and Chemical Routes: A Review. Biotechnol. Rep. 2015, 8, 1–9. DOI: 10.1016/j.btre.2015.08.001.
  • Earley,J.H.; Bourne,R.A.; Watson,M.J.; Poliakoff,M. Continuous Catalytic Upgrading of Ethanol to N-Butanol and >c4 Products over Cu/CeO2 Catalysts in Supercritical CO2. Green Chem. 2015, 17(5), 3018–3025. DOI: 10.1039/c4gc00219a.
  • Scalbert,J.; Thibault-Starzyk,F.; Jacquot,R.; Morvan,D.; Meunier,F. Ethanol Condensation to Butanol at High Temperatures over aBasic Heterogeneous Catalyst: How Relevant Is Acetaldehyde Self-Aldolization? J.Catal. 2014, 311, 28–32. DOI: 10.1016/j.jcat.2013.11.004.
  • Marcu,I.C.; Tanchoux,N.; Fajula,F.; Tichit,D.; Pd,A.; Mn,F.; Cu,S. Catalytic Conversion of Ethanol into Butanol over M-Mg-Al Mixed Oxide Catalysts (M = Yb) Obtained from LDH Precursors. Catal. Lett. 2013, 143(1), 23–30. DOI: 10.1007/s10562-012-0935-9.
  • Ghaziaskar,H.S.; Xu,C.C. One-Step Continuous Process for the Production of 1-Butanol and 1-Hexanol by Catalytic Conversion of Bio-Ethanol at Its Sub-/Supercritical State. RSC Adv. 2013, 3(13), 4271–4280. DOI: 10.1039/c3ra00134b.
  • Nikolaev,S.A.; Tsodikov,M.V.; Chistyakov,A.V.; Chistyakova,P.A.; Ezzhelenko,D.I.; Shilina,M.I. PdCu Nanoalloy Supported on Alumina: AStable and Selective Catalyst for the Conversion of Bioethanol to Linear α-Alcohols. Catal. Today. 2020, May doi:10.1016/j.cattod.2020.06.061
  • Nezam,I.; Peereboom,L.; Miller,D.J. Continuous Condensed-Phase Ethanol Conversion to Higher Alcohols: Experimental Results and Techno-Economic Analysis. J.Cleaner Prod. 2019, 209, 1365–1375. DOI: 10.1016/j.jclepro.2018.10.276.
  • Carvalho,D.L.; de Avillez,R.R.; Rodrigues,M.T.; Borges,L.E.P.; Appel,L.G. Mg and Al Mixed Oxides and the Synthesis of N-Butanol from Ethanol. Appl. Catal., A. 2012, 415-416, 96–100. DOI: 10.1016/j.apcata.2011.12.009.
  • Sun,Z.; Vasconcelos,A.C.; Bottari,G.; Stuart,M.C.A.; Bonura,G.; Cannilla,C.; Frusteri,F.; Barta,K. Efficient Catalytic Conversion of Ethanol to 1-Butanol via the Guerbet Reaction over Copper- and Nickel-Doped Porous. ACS Sustain. Chem. Eng. 2017, 5(2), 1738–1746. DOI: 10.1021/acssuschemeng.6b02494.
  • Bukhanko,N.; Samikannu,A.; Larsson,W.; Shchukarev,A.; Leino,A.R.; Kordás,K.; Wärnå,J.; Mikkola,J.P. Continuous Gas-Phase Synthesis of 1-Ethyl Chloride from Ethyl Alcohol and Hydrochloric Acid over Al2O3-Based Catalysts: The “Green” Route. ACS Sustain. Chem. Eng. 2013, 1(8), 883–893. DOI: 10.1021/sc300171m.
  • Ying,Z.; Zehua,Y.; Wei,L.; Qi,Z., and Yao,Y. Jan 18, 2017. Technology for the synthesys of ethyl chloride (一种合成氯乙烷的工艺) Central South University of Forestry and Technology CN106336341A.
  • MO,C.J.; AE,K.I., and Jong,S.Y. Oct 20, 2015. Heterogeneous Catalysts for Ethylene Production via Ethanol Dehydration and Production Method of Ethylene Using Same otte Chemical Co., Ltd. KR20150117378A.
  • Hayashi,F.; Iwamoto,M. Yttrium-Modified Ceria as aHighly Durable Catalyst for the Selective Conversion of Ethanol to Propene and Ethene. ACS Catal. 2013, 3(1), 14–17. DOI: 10.1021/cs3006956.
  • Yunjie,D.; Daiping,H.; Weimiao,C., and Hongyuan,L. Catalyst in Use for Synthesizing 2-Pentanone from Ethanol. Jun 14, 2006 Dalian Institute of Chemical Physics of CAS CN1259298C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.