Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 1
3,283
Views
44
CrossRef citations to date
0
Altmetric
Research Article

Recent progress on the synthesis, morphology and photocatalytic dye degradation of BiVO4 photocatalysts: A review

, , &

References

  • Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A. Role of Nanomaterials in Water Treatment Applications: A Review. Chem. Eng. J. 2016, 306, 1116–1137. DOI: 10.1016/j.cej.2016.08.053.
  • Trinh, D. T. T.; Khanitchaidecha, W.; Channei, D.; Nakaruk, A. S. Characterization and Environmental Applications of Bismuth Vanadate. Res. Chem. Intermed. 2019, 45(10), 5217–5259. DOI: 10.1007/s11164-019-03912-2.
  • Esplugas, S.; Bila, D. M.; Krause, L. G. T.; Dezotti, M. Ozonation and Advanced Oxidation Technologies to Remove Endocrine Disrupting Chemicals (EDCs) and Pharmaceuticals and Personal Care Products (Ppcps) in Water Effluents. J. Hazard. Mater. 2007, 149(3), 631–642. DOI: 10.1016/j.jhazmat.2007.07.073.
  • Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Liang, J.; Dai, J.; Liu, Z.; Xiong, W.; Wan, J.; Xu, P., et al. Co-Occurrence and Interactions of Pollutants, and Their Impacts on Soil Remediation—A Review. Crit. Rev. Environ. Sci. Technol. 2017. 47, (16), 1528–1553. DOI: 10.1080/10643389.2017.1386951.
  • Mao, M.; Chen, F.; Zheng, C.; Ning, J.; Zhong, Y.; Hu, Y. Facile Synthesis of Porous Bi2O3-BiVO4 P-n Heterojunction Composite Microrods with Highly Efficient Photocatalytic Degradation of Phenol. J. Alloys Compd. 2016, 688, 1080–1087. DOI: 10.1016/j.jallcom.2016.07.128.
  • Odling, G.; Robertson, N. BiVO4 -tio2 Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method. ChemPhysChem. 2016, 17(18), 2872–2880. DOI: 10.1002/cphc.201600443.
  • Naciri, Y.; Ait Ahsaine, H.; Chennah, A.; Amedlous, A.; Taoufyq, A.; Bakiz, B.; Ezahri, M.; Villain, S.; Benlhachemi, A. Facile Synthesis, Characterization and Photocatalytic Performance of Zn3(PO4)2 Platelets toward Photodegradation of Rhodamine B Dye. J. Environ. Chem. Eng. 2018, 6(2), 1840–1847. DOI: 10.1016/j.jece.2018.02.009.
  • Ait Ahsaine, H.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R. Novel Lu-Doped Bi2WO6 Nanosheets: Synthesis, Growth Mechanisms and Enhanced Photocatalytic Activity under UV-Light Irradiation. Ceram. Int. 2016, 42(7), 8552–8558. DOI: 10.1016/j.ceramint.2016.02.082.
  • Ait Ahsaine, H. ;.; El Jaouhari, A.; Slassi, A.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Guinneton, F.; Gavarri, J.-R. Electronic Band Structure and Visible-Light Photocatalytic Activity of Bi2WO6: Elucidating the Effect of Lutetium Doping. RSC Adv. 2016, 6(103), 101105–101114. DOI: 10.1039/C6RA22669H.
  • Ahsaine, H. A.; Slassi, A.; Naciri, Y.; Chennah, A.; Jaramillo‐Páez, C.; Anfar, Z.; Zbair, M.; Benlhachemi, A.; Navío, J. A. Photo/Electrocatalytic Properties of Nanocrystalline ZnO and La–Doped ZnO: Combined DFT Fundamental Semiconducting Properties and Experimental Study. ChemistrySelect. 2018, 3(27), 7778–7791. DOI: 10.1002/slct.201801729.
  • Yin, W.; Wang, W.; Zhou, L.; Sun, S.; Zhang, L. CTAB-Assisted Synthesis of Monoclinic BiVO4 Photocatalyst and Its Highly Efficient Degradation of Organic Dye under Visible-Light Irradiation. J. Hazard. Mater. 2010, 173(1–3), 194–199. DOI: 10.1016/j.jhazmat.2009.08.068.
  • Xia, L.; Bai, J.; Li, J.; Zeng, Q.; Li, L.; Zhou, B. High-Performance BiVO4 Photoanodes Cocatalyzed with an Ultrathin α-Fe2O3 Layer for Photoelectrochemical Application. Appl. Catal. B Environ. 2017, 204, 127–133. DOI: 10.1016/j.apcatb.2016.11.015.
  • Zhang, K.; Deng, J.; Liu, Y.; Xie, S., and Dai, H., Photocatalytic Removal of Organics over BiVO4-Based Photocatalysts. In Semiconductor Photocatalysis - Materials, Mechanisms and Applications; London: IntechOpen, 2016; DOI: 10.5772/62745.
  • Khalid, N. R.; Majid, A.; Tahir, M. B.; Niaz, N. A.; Khalid, S. Carbonaceous-TiO2 Nanomaterials for Photocatalytic Degradation of Pollutants: A Review. Ceram. Int. 2017, 43(17), 14552–14571. DOI: 10.1016/j.ceramint.2017.08.143.
  • Guo, Y.; Qi, P. S., and Liu, Y. Z. A Review on Advanced Treatment of Pharmaceutical Wastewater. IOP Conference Series: Earth and Environmental Science, International Conference on Environmental and Energy Engineering (IC3E 2017) 22–24 March 2017, Suzhou, China, 2017, 63, 012025. 10.1088/1755-1315/63/1/012025.
  • Wu, Q.; Han, R.; Chen, P.; Qi, X.; Yao, W. Novel Synthesis and Photocatalytic Performance of BiVO4 with Tunable Morphologies and Macroscopic Structures. Mater. Sci. Semicond. Process. 2015, 38, 271–277. DOI: 10.1016/j.mssp.2015.04.040.
  • Zhao, Y.; Tao, C.; Xiao, G.; Su, H. Controlled Synthesis and Wastewater Treatment of Ag 2 O/TiO 2 Modified Chitosan-Based Photocatalytic Film. RSC Adv. 2017, 7(18), 11211–11221. DOI: 10.1039/C6RA27295A.
  • Wang, Y.; Long, Y.; Zhang, D. Novel Bifunctional V2O5/BiVO4 Nanocomposite Materials with Enhanced Antibacterial Activity. J. Taiwan Inst. Chem. Eng. 2016, 68, 387–395. DOI: 10.1016/j.jtice.2016.10.001.
  • Liu, B.; Fang, Y.; Li, Z.; Xu, S. Visible-Light Nanostructured Photocatalysts—A Review. J. Nanosci. Nanotechnol. 2015, 15(2), 889–920. DOI: 10.1166/jnn.2015.9784.
  • Balamurugan, M.; Yun, G.; Ahn, K. S.; Kang, S. H. Revealing the Beneficial Effects of FeVO4 Nanoshell Layer on the BiVO4 Inverse Opal Core Layer for Photoelectrochemical Water Oxidation. J. Phys. Chem. 2017, 121, 7625–7634. DOI: 10.1021/acs.jpcc.6b12516.
  • Li, L.; Chu, Y.; Liu, Y.; Dong, L. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres. J. Phys. Chem. C. 2007, 111(5), 2123–2127. DOI: 10.1021/jp066664y.
  • Yan, T.; Tian, J.; Guan, W.; Qiao, Z.; Li, W.; You, J.; Huang, B. Ultra-Low Loading of Ag3PO4 on Hierarchical In2S3 Microspheres to Improve the Photocatalytic Performance: The Cocatalytic Effect of Ag and Ag3PO4. Appl. Catal. B Environ. 2017, 202, 84–94. DOI: 10.1016/j.apcatb.2016.09.017.
  • Zhou, M.; Li, W.; Du, Y.; Kong, D.; Wang, Z.; Meng, Y.; Sun, X.; Yan, T.; Kong, D.; You, J. Hydrothermal Synthesis of Bismuth Ferrite Fenton-like Catalysts and Their Properties. J. Nanopart. Res. 2016, 18(11), 346. DOI: 10.1007/s11051-016-3665-x.
  • Zhang, L.; Wang, H.; Chen, Z.; Wong, P. K.; Liu, J. Bi2WO6 Micro/Nano-Structures: Synthesis, Modifications and Visible-Light-Driven Photocatalytic Applications. Appl. Catal. B Environ. 2011. DOI: 10.1016/j.apcatb.2011.05.008.
  • Wang, M.; Xi, X.; Gong, C.; Zhang, X. L.; Fan, G. Open Porous BiVO4 Nanomaterials: Electrospinning Fabrication and Enhanced Visible Light Photocatalytic Activity. Mater. Res. Bull. 2016, 74, 258–264. DOI: 10.1016/j.materresbull.2015.10.051.
  • Wang, S.; Han, X.; Zhang, Y.; Tian, N.; Ma, T.; Huang, H. Inside‐and‐Out Semiconductor Engineering for CO2 Photoreduction: From Recent Advances to New Trends. Small Struct. 2021, 2(1), 2000061. DOI: 10.1002/sstr.202000061.
  • Regmi, C.; Kshetri, Y. K.; Kim, T.-H.; Pandey, R. P.; Ray, S. K.; Lee, S. W. Fabrication of Ni-Doped BiVO4 Semiconductors with Enhanced Visible-Light Photocatalytic Performances for Wastewater Treatment. Appl. Surf. Sci. 2017, 413, 253–265. DOI: 10.1016/j.apsusc.2017.04.056.
  • Archana, P. S.; Shan, Z.; Pan, S.; Gupta, A. Photocatalytic Water Oxidation at Bismuth Vanadate Thin Film Electrodes Grown by Direct Liquid Injection Chemical Vapor Deposition Method. Int. J. Hydrogen Energy. 2017, 42(12), 8475–8485. DOI: 10.1016/j.ijhydene.2016.12.113.
  • Hunge, Y. M.; Uchida, A.; Tominaga, Y.; Fujii, Y.; Yadav, A. A.; Kang, S.-W.; Suzuki, N.; Shitanda, I.; Kondo, T.; Itagaki, M., et al. Visible Light-Assisted Photocatalysis Using Spherical-Shaped BiVO4 Photocatalyst. Catalysts.2021. 11, (4), 460. DOI: 10.3390/catal11040460.
  • Li, F.; Yang, C.; Li, Q.; Cao, W.; Li, T. The PH-Controlled Morphology Transition of BiVO4 Photocatalysts from Microparticles to Hollow Microspheres. Mater. Lett. 2015, 145, 52–55. DOI: 10.1016/j.matlet.2015.01.043.
  • Lee, D. K.; Choi, K.-S. Enhancing Long-Term Photostability of BiVO4 Photoanodes for Solar Water Splitting by Tuning Electrolyte Composition. Nat. Energy. 2018, 3(1), 53–60. DOI: 10.1038/s41560-017-0057-0.
  • Hu, Y.; Fan, J.; Pu, C.; Li, H.; Liu, E.; Hu, X. Facile Synthesis of Double Cone-Shaped Ag4V2O7/BiVO4 Nanocomposites with Enhanced Visible Light Photocatalytic Activity for Environmental Purification. J. Photochem. Photobiol. A Chem. 2017, 337, 172–183. DOI: 10.1016/j.jphotochem.2016.12.035.
  • Li, G.; Bai, Y.; Zhang, W. F. Difference in Valence Band Top of BiVO4 with Different Crystal Structure. Mater. Chem. Phys. 2012, 136(2–3), 930–934. DOI: 10.1016/j.matchemphys.2012.08.023.
  • Xue, Y.; Wang, X. The Effects of Ag Doping on Crystalline Structure and Photocatalytic Properties of BiVO4. Int. J. Hydrogen Energy. 2015, 40(17), 5878–5888. DOI: 10.1016/j.ijhydene.2015.03.028.
  • Thalluri, S. M.; Hernández, S.; Bensaid, S.; Saracco, G.; Russo, N. Green-Synthesized W- and Mo-Doped BiVO4 Oriented along the {0 4 0} Facet with Enhanced Activity for the Sun-Driven Water Oxidation. Appl. Catal. B Environ. 2016, 180, 630–636. DOI: 10.1016/j.apcatb.2015.07.029.
  • Monfort, O.; Pop, L.-C.; Sfaelou, S.; Plecenik, T.; Roch, T.; Dracopoulos, V.; Stathatos, E.; Plesch, G.; Lianos, P. Photoelectrocatalytic Hydrogen Production by Water Splitting Using BiVO 4 Photoanodes. Chem. Eng. J. 2016, 286, 91–97. DOI: 10.1016/j.cej.2015.10.043.
  • Zhang, K.; Liu, Y.; Deng, J.; Xie, S.; Lin, H.; Zhao, X.; Yang, J.; Han, Z.; Dai, H. Fe2O3/3DOM BiVO4: High-Performance Photocatalysts for the Visible Light-Driven Degradation of 4-Nitrophenol. Appl. Catal. B Environ. 2017, 202, 569–579. DOI: 10.1016/j.apcatb.2016.09.069.
  • Bierlein, J. D.; Sleight, A. W. Ferroelasticity in BiVO4. Solid State Commun. 1975, 16(1), 69–70. DOI: 10.1016/0038-1098(75)90791-7.
  • Sun, S.; Wang, W. Advanced Chemical Compositions and Nanoarchitectures of Bismuth Based Complex Oxides for Solar Photocatalytic Application. RSC Adv. 2014, 4(88), 47136–47152. DOI: 10.1039/C4RA06419D.
  • Noor, M.; Al Mamun, M. A.; Matin, M. A.; Islam, M.; Haque, F.; Rahman, S.; Hossain, F.; N, M., and Hakim, M. A. Effect of PH Variation on Structural, Optical and Shape Morphology of BiVO&#x003C;inf>4</Inf>Photocatalysts. In 2018 10th International Conference on Electrical and Computer Engineering (ICECE); Dhaka, Bangladesh: IEEE, 2018; pp 81–84. 10.1109/ICECE.2018.8636721.
  • Jian, Z.; Huang, S.; Cao, Y.; Zhang, Y. Hydrothermal Preparation and Characterization of TiO 2 /Bivo 4 Composite Catalyst and Its Photolysis of Water to Produce Hydrogen. Photochem. Photobiol. 2016, 92(3), 363–370. DOI: 10.1111/php.12575.
  • Park, Y.; McDonald, K. J.; Choi, K.-S. Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation. Chem. Soc. Rev. 2013, 42(6), 2321–2337. DOI: 10.1039/C2CS35260E.
  • Kim, J. H.; Lee, J. S. BiVO4-Based Heterostructured Photocatalysts for Solar Water Splitting: A Review. Energy Environ. Focus. 2014, 3(4), 339–353. DOI: 10.1166/eef.2014.1121.
  • Tokunaga, S.; Kato, H.; Kudo, A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater. 2001, 13(12), 4624–4628. DOI: 10.1021/cm0103390.
  • Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P.-A.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D. Electronic Structure of Monoclinic BiVO4. Chem. Mater. 2014, 26(18), 5365–5373. DOI: 10.1021/cm5025074.
  • Obregón, S.; Colón, G. Excellent Photocatalytic Activity of Yb3+, Er3+ Co-Doped BiVO4 Photocatalyst. Appl. Catal. B Environ. 2014, 152–153, 328–334. DOI: 10.1016/j.apcatb.2014.01.054.
  • Chen, L.; Wang, J.; Meng, D.; Wu, X.; Wang, Y.; Zhong, E. The pH-Controlled {040} Facets Orientation of BiVO4 Photocatalysts with Different Morphologies for Enhanced Visible Light Photocatalytic Performance. Mater. Lett. 2016, 162, 150–153. DOI: 10.1016/j.matlet.2015.09.138.
  • Yue, X.; Cheng, L.; Fan, J.; Xiang, Q. 2D/2D BiVO4/CsPbBr3 S-Scheme Heterojunction for Photocatalytic CO2 Reduction: Insights into Structure Regulation and Fermi Level Modulation. Appl. Catal. B Environ. 2022, 304, 120979. DOI: 10.1016/j.apcatb.2021.120979.
  • Liu, L.; Huang, H.; Chen, Z.; Yu, H.; Wang, K.; Huang, J.; Yu, H.; Zhang, Y. Synergistic Polarization Engineering on Bulk and Surface for Boosting CO2 Photoreduction. Angewandte Chemie. 2021, 133(33), 18451–18456. DOI: 10.1002/ange.202106310.
  • Wang, S.; Han, X.; Zhang, Y.; Tian, N.; Ma, T.; Huang, H. Inside‐and‐Out Semiconductor Engineering for CO2 Photoreduction: From Recent Advances to New Trends. Small Struct. 2021, 2(1), 2000061. DOI: 10.1002/sstr.202000061.
  • Li, D.; Song, H.; Meng, X.; Shen, T.; Sun, J.; Han, W.; Wang, X. Effects of Particle Size on the Structure and Photocatalytic Performance by Alkali-Treated TiO2. Nanomaterials. 2020, 10(3), 546. DOI: 10.3390/nano10030546.
  • Yu, J.; Kudo, A. Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4. Adv. Funct. Mater. 2006, 16(16), 2163–2169. DOI: 10.1002/adfm.200500799.
  • Gu, X.; Luo, Y.; Li, Q.; Wang, R.; Fu, S.; Lv, X.; He, Q.; Zhang, Y.; Yan, Q.; Xu, X., et al. First-Principle Insight into the Effects of Oxygen Vacancies on the Electronic, Photocatalytic, and Optical Properties of Monoclinic BiVO4(001). Front. Chem. 2020, 8, 8. DOI: 10.3389/fchem.2020.601983.
  • Huang, Z.-F.; Pan, L.; Zou, -J.-J.; Zhang, X.; Wang, L. Nanostructured Bismuth Vanadate-Based Materials for Solar-Energy-Driven Water Oxidation: A Review on Recent Progress. Nanoscale. 2014, 6(23), 14044–14063. DOI: 10.1039/C4NR05245E.
  • Malathi, A.; Madhavan, J. Synthesis and Characterization of CuS/CdS Photocatalyst with Enhanced Visible Light-Photocatalytic Activity. J. Nano. Res. 2017, 48, 49–61. 1 0.4028/w ww.s cientific.net/JNanoR.48.49.
  • Zhu, Z.; Zhang, L.; Li, J.; Du, J.; Zhang, Y.; Zhou, J. Synthesis and Photocatalytic Behavior of BiVO4 with Decahedral Structure. Ceram. Int. 2013, 39(7), 7461–7465. DOI: 10.1016/j.ceramint.2013.02.093.
  • M, A.; J, M.; Ashokkumar, M.; Arunachalam, P. A Review on BiVO4 Photocatalyst: Activity Enhancement Methods for Solar Photocatalytic Applications. Appl. Catal., A. 2018, 555, 47–74. DOI: 10.1016/j.apcata.2018.02.010.
  • Hu, J.; Cao, Y.; Wang, K.; Jia, D. Green Solid-State Synthesis and Photocatalytic Hydrogen Production Activity of Anatase TiO2 Nanoplates with Super Heat-Stability. RSC Adv. 2017, 7(20), 11827–11833. DOI: 10.1039/C6RA27160J.
  • Neppolian, B.; Wang, Q.; Jung, H.; Choi, H. Ultrasonic-Assisted Sol-Gel Method of Preparation of TiO2 Nano-Particles: Characterization, Properties and 4-Chlorophenol Removal Application. Ultrason. Sonochem. 2008, 15(4), 649–658. DOI: 10.1016/j.ultsonch.2007.09.014.
  • Liu, C. J.; Xu, Y. H. S. Characterization and Photocatalytic Activities of Bismuth Vanadate by Facile Co-Precipitation Method. Adv. Mater. Res. 2010, 148–149, 1469–1472. https://doi.org/10.4028/www.scientific.net/AMR.148-149.1469.
  • Fan, T.; Chen, C.; Tang, Z. Hydrothermal Synthesis of Novel BiFeO3/BiVO4 Heterojunctions with Enhanced Photocatalytic Activities under Visible Light Irradiation. RSC Adv. 2016, 6(12), 9994–10000. DOI: 10.1039/C5RA26500B.
  • Guo, L.; Wang, D. J.; Fu, F.; Qiang, X. D.; Yang, Y. Microwave-Assisted Hydrothermal Synthesis of Ag/BiVO4 Architecture with Enhanced Photocatalytic Activities. Adv. Mater. Res. 2012, 490–495, 3464–3467. 1 0.4028/w ww.s cientific.net/AMR.490-495.3464.
  • Lee, K. H.; Jung, H. J.; Lee, J. H.; Kim, K.; Lee, B.; Nam, D.; Kim, C. M.; Jung, M.-H.; Hur, N. H. Facile Solid-State Synthesis of Oxidation-Resistant Metal Nanoparticles at Ambient Conditions. Solid State Sciences, 2018, 79, 38–47. 10.1016/j.solidstatesciences.2018.03.008.
  • Lang, J.; Wang, J.; Zhang, Q.; Li, X.; Han, Q.; Wei, M.; Sui, Y.; Wang, D.; Yang, J. Chemical Precipitation Synthesis and Significant Enhancement in Photocatalytic Activity of Ce-Doped ZnO Nanoparticles. Ceram. Int. 2016, 42(12), 14175–14181. DOI: 10.1016/j.ceramint.2016.06.042.
  • Unni, M.; Uhl, A. M.; Savliwala, S.; Savitzky, B. H.; Dhavalikar, R.; Garraud, N.; Arnold, D. P.; Kourkoutis, L. F.; Andrew, J. S.; Rinaldi, C. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen. ACS Nano. 2017, 11(2), 2284–2303. DOI: 10.1021/acsnano.7b00609.
  • Lu, X.; Huang, X.; Xie, S.; Zheng, D.; Liu, Z.; Liang, C.; Tong, Y.-X. Facile Electrochemical Synthesis of Single Crystalline CeO2 Octahedrons and Their Optical Properties. Langmuir. 2010, 26(10), 7569–7573. DOI: 10.1021/la904882t.
  • Sivakumar, V.; Suresh, R.; Giribabu, K.; Narayanan, V. BiVO4 Nanoparticles: Preparation, Characterization and Photocatalytic Activity. Cogent Chem. 2015, 1(1), 1074647. DOI: 10.1080/23312009.2015.1074647.
  • Liang, Z.; Cao, Y.; Qin, H.; Jia, D. Low-Heating Solid-State Chemical Synthesis of Monoclinic Scheelite BiVO4 with Different Morphologies and Their Enhanced Photocatalytic Property under Visible Light. Mater. Res. Bull. 2016, 84, 397–402. DOI: 10.1016/j.materresbull.2016.08.038.
  • Chen, L.; Wang, J.; Meng, D.; Xing, Y.; Wang, C.; Li, F.; Wang, Y.; Wu, X. Enhanced Photocatalytic Activity of Hierarchically Structured BiVO4 Oriented along {040} Facets with Different Morphologies. Mater. Lett. 2015, 147, 1–3. DOI: 10.1016/j.matlet.2015.02.021.
  • Zhou, L.; Wang, W.; Zhang, L.; Xu, H.; Zhu, W. Single-Crystalline BiVO4 Microtubes with Square Cross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property. J. Phys. Chem. C. 2007, 111(37), 13659–13664. DOI: 10.1021/jp065155t.
  • Zhou, L.; Wang, W.; Xu, H. Controllable Synthesis of Three-Dimensional Well-Defined BiVO4 Mesocrystals via a Facile Additive-Free Aqueous Strategy. Cryst. Growth Des. 2008, 8(2), 728–733. DOI: 10.1021/cg0705761.
  • Hosseini, S. G.; Safshekan, S. S. Characterization and Application of BiVO4 Photoanode for Photoelectrochemical Oxidation of Chlorate. Chin. J. Catal. 2017, 38(4), 710–716. DOI: 10.1016/S1872-2067(17)62788-8.
  • Huang, H.; Liu, L.; Zhang, Y.; Tian, N. Novel BiIO4/BiVO4 Composite Photocatalyst with Highly Improved Visible-Light-Induced Photocatalytic Performance for Rhodamine B Degradation and Photocurrent Generation. RSC Adv. 2015, 5(2), 1161–1167. DOI: 10.1039/C4RA12916D.
  • Kim, T. W.; Ping, Y.; Galli, G. A.; Choi, K.-S. Simultaneous Enhancements in Photon Absorption and Charge Transport of Bismuth Vanadate Photoanodes for Solar Water Splitting. Nat. Commun. 2015, 6(1), 8769. DOI: 10.1038/ncomms9769.
  • Deebasree, J. P.; Maheskumar, V.; Vidhya, B. Investigation of the Visible Light Photocatalytic Activity of BiVO4 Prepared by Sol Gel Method Assisted by Ultrasonication. Ultrason. Sonochem. 2018, 45, 123–132. DOI: 10.1016/j.ultsonch.2018.02.002.
  • Tzanakis, I.; Lebon, G. S. B.; Eskin, D. G.; Pericleous, K. A. Characterizing the Cavitation Development and Acoustic Spectrum in Various Liquids. Ultrason. Sonochem. 2017, 34, 651–662. DOI: 10.1016/j.ultsonch.2016.06.034.
  • Ma, J.-S.; Lin, L.-Y.; Chen, Y.-S. Facile Solid-State Synthesis for Producing Molybdenum and Tungsten Co-Doped Monoclinic BiVO4 as the Photocatalyst for Photoelectrochemical Water Oxidation. Int. J. Hydrogen Energy. 2019, 44(16), 7905–7914. DOI: 10.1016/j.ijhydene.2019.02.077.
  • Duy Nguyen, T.; Cao, V. D.; Huu Nguyen, V.; Xuan Nong, L.; Duy Luu, T.; Vo, D.-V. N.; Do, S. T.; Duc Lam, T. Synthesized BiVO4 Was by the Co-Precipitation Method for Rhodamine B Degradation under Visible Light. IOP Conf. Ser. Mater. Sci. Eng. 2019, 542(1), 012058. DOI: 10.1088/1757-899X/542/1/012058.
  • Pham, P. T. D.; Bui, P. Q. T.; Nong, L. X.; Nguyen, V. H.; Bach, L. G.; Vu, H. T.; Nguyen, H. T., and Nguyen, T. D. Synthesis of the BIVO4 Nanoparticle as an Efficient Photocatalyst to Activate Hydrogen Peroxide for the Degradation of Methylene Blue under Visible Light Irradiation. IOP Conference Series: Materials Science and Engineering, The 3rd International Conference on New Material and Chemical Industry 17–19 November 2018, Sanya, China; 2019, 479, 012036. DOI: 10.1088/1757-899X/479/1/012036.
  • Lin, Y.; Lu, C.; Wei, C. Microstructure and Photocatalytic Performance of BiVO4 Prepared by Hydrothermal Method. J. Alloys Compd. 2019, 781, 56–63. DOI: 10.1016/j.jallcom.2018.12.071.
  • Xia, L.; Li, J.; Bai, J.; Li, L.; Chen, S.; Zhou, B. BiVO4 Photoanode with Exposed (040) Facets for Enhanced Photoelectrochemical Performance. Nano-Micro Lett. 2018, 10(1), 11. DOI: 10.1007/s40820-017-0163-3.
  • Ganeshbabu, M.; Kannan, N.; Venkatesh, P. S.; Paulraj, G.; Jeganathan, K.; MubarakAli, D. Synthesis and Characterization of BiVO4 Nanoparticles for Environmental Applications. RSC Adv. 2020, 10(31), 18315–18322. DOI: 10.1039/D0RA01065K.
  • Chen, S.-H.; Jiang, Y.-S.; Lin, H. Easy Synthesis of BiVO4 for Photocatalytic Overall Water Splitting. ACS Omega. 2020, 5(15), 8927–8933. DOI: 10.1021/acsomega.0c00699.
  • Dabodiya, T. S.; Selvarasu, P.; Murugan, A. V. Tetragonal to Monoclinic Crystalline Phases Change of BiVO 4 via Microwave-Hydrothermal Reaction: In Correlation with Visible-Light-Driven Photocatalytic Performance. Inorg. Chem. 2019, 58(8), 5096–5110. DOI: 10.1021/acs.inorgchem.9b00193.
  • Li, Y.; Yang, B.; Liu, B. Synthesis of BiVO4 Nanoparticles with Tunable Oxygen Vacancy Level: The Phenomena and Mechanism for Their Enhanced Photocatalytic Performance. Ceram. Int. 2021, 47(7), 9849–9855. DOI: 10.1016/j.ceramint.2020.12.126.
  • Tan, H. L.; Suyanto, A.; De Denko, A. T.; Saputera, W. H.; Amal, R.; Osterloh, F. E.; Ng, Y. H. Enhancing the Photoactivity of Faceted BiVO 4 via Annealing in Oxygen‐Deficient Condition. Particle Particle Syst. Charact. 2017, 34(4), 1600290. DOI: 10.1002/ppsc.201600290.
  • Helal, A.; El-Sheikh, S. M.; Yu, J.; Eid, A. I.; El-Haka, S. A.; Samra, S. E. Novel Synthesis of BiVO4 Using Homogeneous Precipitation and Its Enhanced Photocatalytic Activity. J. Nanopart. Res. 2020, 22(6), 132. DOI: 10.1007/s11051-020-04861-3.
  • Zhang, L.; Chen, D.; Jiao, X. Monoclinic Structured BiVO4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. J. Phys. Chem. B. 2006, 110(6), 2668–2673. DOI: 10.1021/jp056367d.
  • Lu, Y.; Luo, Y.-S.; Xiao, H.-M.; Fu, S.-Y. Novel Core–Shell Structured BiVO4 Hollow Spheres with an Ultra-High Surface Area as Visible-Light-Driven Catalyst. CrystEngComm. 2014, 16(27), 6059–6065. DOI: 10.1039/C4CE00379A.
  • Cheng, Y.; Chen, J.; Yan, X.; Zheng, Z.; Xue, Q. Preparation of Porous BiVO4 Fibers by Electrospinning and Their Photocatalytic Performance under Visible Light. RSC Adv. 2013, 3(43), 20606. DOI: 10.1039/c3ra43396j.
  • Sun, S.; Wang, W.; Zhou, L.; Xu, H. Efficient Methylene Blue Removal over Hydrothermally Synthesized Starlike BiVO4. Ind. Eng. Chem. Res. 2009, 48(4), 1735–1739. DOI: 10.1021/ie801516u.
  • Kang, D.; Park, Y.; Hill, J. C.; Choi, K.-S. Preparation of Bi-Based Ternary Oxide Photoanodes BiVO4, Bi2WO6, and Bi2Mo3O12 Using Dendritic Bi Metal Electrodes. J. Phys. Chem. Lett. 2014, 5(17), 2994–2999. DOI: 10.1021/jz501544k.
  • Ke, D.; Peng, T.; Ma, L.; Cai, P.; Jiang, P. Photocatalytic Water Splitting for O2 Production under Visible-Light Irradiation on BiVO4 Nanoparticles in Different Sacrificial Reagent Solutions. Appl. Catal., A. 2008, 350(1), 111–117. DOI: 10.1016/j.apcata.2008.08.003.
  • Zhao, W.; Liu, Y.; Wei, Z.; Yang, S.; He, H.; Sun, C. Fabrication of a Novel P–n Heterojunction Photocatalyst n-BiVO4@p-MoS2 with Core–Shell Structure and Its Excellent Visible-Light Photocatalytic Reduction and Oxidation Activities. Appl. Catal. B Environ. 2016, 185, 242–252. DOI: 10.1016/j.apcatb.2015.12.023.
  • Ohtani, B Great Challenges in Catalysis and Photocatalysis. Front. Chem. 2017, 5, 5. DOI: 10.3389/fchem.2017.00079.
  • Wang, J. L.; XU, L. J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42(3), 251–325. DOI: 10.1080/10643389.2010.507698.
  • Pingmuang, K.; Chen, J.; Kangwansupamonkon, W.; Wallace, G. G.; Phanichphant, S.; Nattestad, A. Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes. Sci. Rep. 2017, 7(1), 8929. DOI: 10.1038/s41598-017-09514-5.
  • Monfort, O.; Plesch, G. Bismuth Vanadate-Based Semiconductor Photocatalysts: A Short Critical Review on the Efficiency and the Mechanism of Photodegradation of Organic Pollutants. Environ. Sci. Pollut. Res. 2018, 25(20), 19362–19379. DOI: 10.1007/s11356-018-2437-9.
  • Diaz-Angulo, J.; Gomez-Bonilla, I.; Jimenez-Tohapanta, C.; Mueses, M.; Pinzon, M.; Machuca-Martinez, F. Visible-Light Activation of TiO2 by Dye-Sensitization for Degradation of Pharmaceutical Compounds. Photochem. Photobiol. Sci. 2019, 18(4), 897–904. DOI: 10.1039/C8PP00270C.
  • Reginato, G.; Zani, L.; Calamante, M.; Mordini, A.; Dessì, A. Dye‐Sensitized Heterogeneous Photocatalysts for Green Redox Reactions. Eur. J. Inorg. Chem. 2020, 2020(11–12), 899–917. DOI: 10.1002/ejic.201901174.
  • Mitoraj, D.; Lamdab, U.; Kangwansupamonkon, W.; Pacia, M.; Macyk, W.; Wetchakun, N.; Beranek, R. Revisiting the Problem of Using Methylene Blue as a Model Pollutant in Photocatalysis: The Case of InVO4/BiVO4 Composites. J. Photochem. Photobiol. A Chem. 2018, 366, 103–110. DOI: 10.1016/j.jphotochem.2018.02.023.
  • Martínez-de la Cruz, A.; Pérez, U. M. G. Photocatalytic Properties of BiVO4 Prepared by the Co-Precipitation Method: Degradation of Rhodamine B and Possible Reaction Mechanisms under Visible Irradiation. Mater. Res. Bull. 2010, 45(2), 135–141. DOI: 10.1016/j.materresbull.2009.09.029.
  • Basavalingaiah, K. R.; Udayabhanu,; Harishkumar,; Nagaraju, S.; Chikkahanumantharayappa, G. Uniform Deposition of Silver Dots on Sheet like BiVO4 Nanomaterials for Efficient Visible Light Active Photocatalyst Towards Methylene Blue Degradation. FlatChem. 2020, 19, 100142. DOI: 10.1016/j.flatc.2019.100142.
  • Meng, X.; Zhang, L.; Dai, H.; Zhao, Z.; Zhang, R.; Liu, Y. Surfactant-Assisted Hydrothermal Fabrication and Visible-Light-Driven Photocatalytic Degradation of Methylene Blue over Multiple Morphological BiVO4 Single-Crystallites. Mater. Chem. Phys. 2011, 125(1–2), 59–65. DOI: 10.1016/j.matchemphys.2010.08.071.
  • Zhang, X. F.; Du, L. L.; Dong, X. L.; Zhang, X. X.; Ma, C.; Ma, H. C.; Xue, M.; Shi, F. Preparation of Porous BiVO4 and Its Photocatalytic Degradation of MB under Simulated Sunlight. Adv. Mater. Res. 2012, 610–613, 560–563. 1 0.4028/w ww.s cientific.net/AMR.610-613.560.
  • Li, J.-Q.; Guo, Z.-Y.; Liu, H.; Du, J.; Zhu, Z.-F. Two-Step Hydrothermal Process for Synthesis of F-Doped BiVO4 Spheres with Enhanced Photocatalytic Activity. J. Alloys Compd. 2013, 581, 40–45. DOI: 10.1016/j.jallcom.2013.06.141.
  • Ma, L.; Li, W.-H.; Luo, J.-H. Solvothermal Synthesis and Characterization of Well-Dispersed Monoclinic Olive-like BiVO4 Aggregates. Mater. Lett. 2013, 102–103, 65–67. DOI: 10.1016/j.matlet.2013.03.111.
  • Fan, H.; Wang, D.; Wang, L.; Li, H.; Wang, P.; Jiang, T.; Xie, T. Hydrothermal Synthesis and Photoelectric Properties of BiVO4 with Different Morphologies: An Efficient Visible-Light Photocatalyst. Appl. Surf. Sci. 2011, 257(17), 7758–7762. DOI: 10.1016/j.apsusc.2011.04.025.
  • Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121(49), 11459–11467. DOI: 10.1021/ja992541y.
  • Pham, M. Q.; Ngo, T. M.; Nguyen, V. H.; Nong, L. X.; Vo, D.-V. N.; Van Tran, T.; Nguyen, T.-D.; Bui, X.-T.; Nguyen, T. D. Facile Solvothermal Synthesis of Highly Active Monoclinic Scheelite BiVO4 for Photocatalytic Degradation of Methylene Blue under White LED Light Irradiation. Arabian J. Chem. 2020, 13(11), 8388–8394. DOI: 10.1016/j.arabjc.2020.05.029.
  • Lu, Y.; Luo, Y.-S.; Kong, D.-Z.; Zhang, D.-Y.; Jia, Y.-L.; Zhang, X.-W. Large-Scale Controllable Synthesis of Dumbbell-like BiVO4 Photocatalysts with Enhanced Visible-Light Photocatalytic Activity. J. Solid State Chem. 2012, 186, 255–260. DOI: 10.1016/j.jssc.2011.12.003.
  • Wang, X.; Li, G.; Ding, J.; Peng, H.; Chen, K. Facile Synthesis and Photocatalytic Activity of Monoclinic BiVO4 Micro/Nanostructures with Controllable Morphologies. Mater. Res. Bull. 2012, 47(11), 3814–3818. DOI: 10.1016/j.materresbull.2012.04.082.
  • Sun, J.; Chen, G.; Wu, J.; Dong, H.; Xiong, G. Bismuth Vanadate Hollow Spheres: Bubble Template Synthesis and Enhanced Photocatalytic Properties for Photodegradation. Appl. Catal. B Environ. 2013, 132–133, 304–314. DOI: 10.1016/j.apcatb.2012.12.002.
  • Hu, L.; Dong, S.; Li, Y.; Pi, Y.; Wang, J.; Wang, Y.; Sun, J. Controlled Fabrication of Monoclinic BiVO4 Rod-like Structures for Natural-Sunlight-Driven Photocatalytic Dye Degradation. J. Taiwan Inst. Chem. Eng. 2014, 45(5), 2462–2468. DOI: 10.1016/j.jtice.2014.04.022.
  • Hu, Y.; Li, D.; Sun, F.; Wang, H.; Weng, Y.; Xiong, W.; Shao, Y. One-Pot Template-Free Synthesis of Heterophase BiVO4 Microspheres with Enhanced Photocatalytic Activity. RSC Adv. 2015, 5(68), 54882–54889. DOI: 10.1039/C5RA09785A.
  • Jiang, H.; DAI, H.; Meng, X.; Zhang, L.; Deng, J.; JI, K. Morphology-Dependent Photocatalytic Performance of Monoclinic BiVO4 for Methyl Orange Degradation under Visible-Light Irradiation. Chin. J. Catal. 2011, 32(6–8), 939–949. DOI: 10.1016/S1872-2067(10)60215-X.
  • Jiang, H.; Dai, H.; Meng, X.; Zhang, L.; Deng, J.; Liu, Y.; Au, C. T. Hydrothermal Fabrication and Visible-Light-Driven Photocatalytic Properties of Bismuth Vanadate with Multiple Morphologies And/or Porous Structures for Methyl Orange Degradation. J Environ Sci. 2012, 24(3), 449–457. DOI: 10.1016/S1001-0742(11)60793-6.
  • Ying, Y.; Tao, F.; Hong, T.; Wang, L. Controlled Fabrication of Bismuth Vanadium Oxide Hierarchical Microtubes with Enhanced Visible Light Photocatalytic Activity. Mater. Sci. Semicond. Process. 2015, 32, 82–89. DOI: 10.1016/j.mssp.2015.01.009.
  • Liu, S.; Tang, H.; Zhou, H.; Dai, G.; Wang, W. Photocatalytic Performance of Sandwich-like BiVO 4 Sheets by Microwave Assisted Synthesis. Appl. Surf. Sci. 2017, 391, 542–547. DOI: 10.1016/j.apsusc.2016.06.184.
  • Aghakhaninejad, S.; Rahimi, R.; Zargari, S. Application of BiVO4 Nanocomposite for Photodegradation of Methyl Orange. Proceedings. 2018, 9(1), 52. DOI: 10.3390/ecsoc-22-05666.
  • Kumar, S.; Ojha, A. K. In-Situ Synthesis of Reduced Graphene Oxide Decorated with Highly Dispersed Ferromagnetic CdS Nanoparticles for Enhanced Photocatalytic Activity under UV Irradiation. Mater. Chem. Phys. 2016, 171, 126–136. DOI: 10.1016/j.matchemphys.2015.12.008.
  • Samsudin, M. F. R.; Sufian, S.; Hameed, B. H. Epigrammatic Progress and Perspective on the Photocatalytic Properties of BiVO4-Based Photocatalyst in Photocatalytic Water Treatment Technology: A Review. J. Mol. Liq. 2018, 268, 438–459. DOI: 10.1016/j.molliq.2018.07.051.
  • Yin, W.; Wang, W.; Shang, M.; Zhou, L.; Sun, S.; Wang, L. BiVO4 Hollow Nanospheres: Anchoring Synthesis, Growth Mechanism, and Their Application in Photocatalysis. Eur. J. Inorg. Chem. 2009, 2009(29–30), 4379–4384. DOI: 10.1002/ejic.200900614.
  • Liu, G.; Liu, S.; Lu, Q.; Sun, H.; Xu, F.; Zhao, G. Synthesis of Monoclinic BiVO4 Microribbons by Sol–Gel Combined with Electrospinning Process and Photocatalytic Degradation Performances. J. Sol-Gel Sci. Technol. 2014, 70(1), 24–32. DOI: 10.1007/s10971-014-3269-9.
  • Suwanchawalit, C.; Buddee, S.; Wongnawa, S. Triton X-100 Induced Cuboid-like BiVO4 Microsphere with High Photocatalytic Performance. J Environ Sci. 2017, 55, 257–265. DOI: 10.1016/j.jes.2016.04.030.
  • Chen, F.; Zhang, X.; Tang, Y.; Wang, X.; Shu, K. Facile and Rapid Synthesis of a Novel Spindle-like Heterojunction BiVO4 Showing Enhanced Visible-Light-Driven Photoactivity. RSC Adv. 2020, 10(9), 5234–5240. DOI: 10.1039/C9RA07891F.
  • Wei, J.; Wang, X.; Yang, H.; Mao, Y., and Zhu, L. Solvothermal Synthesis and Characterization of Peanut-like BiVO4. IOP Conference Series: Materials Science and Engineering, International Conference on Applied Mechanics, Materials and Civil Engineering (ICAMMCE2020) 20-21 September 2020, Shanghai, China; 2020, 964, 012017. DOI: 10.1088/1757-899X/964/1/012017.
  • Liu, Z.; Lu, Q.; Wang, C.; Liu, J.; Liu, G. Preparation of Bamboo-Shaped BiVO4 Nanofibers by Electrospinning Method and the Enhanced Visible-Light Photocatalytic Activity. J. Alloys Compd. 2015, 651, 29–33. DOI: 10.1016/j.jallcom.2015.08.125.
  • Obregón, S.; Caballero, A.; Colón, G. Hydrothermal Synthesis of BiVO4: Structural and Morphological Influence on the Photocatalytic Activity. Appl. Catal. B Environ. 2012, 117–118, 59–66. DOI: 10.1016/j.apcatb.2011.12.037.
  • Lu, Y.; Luo, Y.-S.; Xiao, H.-M.; Fu, S.-Y. Novel Core–Shell Structured BiVO4 Hollow Spheres with an Ultra-High Surface Area as Visible-Light-Driven Catalyst. CrystEngComm. 2014, 16(27), 6059–6065. DOI: 10.1039/C4CE00379A.
  • Liu, S.; Tang, H.; Zhou, H.; Dai, G.; Wang, W. Photocatalytic Performance of Sandwich-like BiVO 4 Sheets by Microwave Assisted Synthesis. Appl. Surf. Sci. 2017, 391, 542–547. DOI: 10.1016/j.apsusc.2016.06.184.
  • Zong, L.; Cui, P.; Qin, F.; Zhao, K.; Wang, Z.; Yu, R. Heterostructured Bismuth Vanadate Multi-Shell Hollow Spheres with High Visible-Light-Driven Photocatalytic Activity. Mater. Res. Bull. 2017, 86, 44–50. DOI: 10.1016/j.materresbull.2016.09.031.
  • Ma, W.; Li, Z.; Liu, W. Hydrothermal Preparation of BiVO4 Photocatalyst with Perforated Hollow Morphology and Its Performance on Methylene Blue Degradation. Ceram. Int. 2015, 41(3), 4340–4347. DOI: 10.1016/j.ceramint.2014.11.123.
  • Han, M.; Chen, X.; Sun, T.; Tan, O. K.; Tse, M. S. Synthesis of Mono-Dispersed m-BiVO4 Octahedral Nano-Crystals with Enhanced Visible Light Photocatalytic Properties. CrystEngComm. 2011, 13(22), 6674. DOI: 10.1039/c1ce05539a.
  • Bavykin, D. V.; Redmond, K. E.; Nias, B. P.; Kulak, A. N.; Walsh, F. C. The Effect of Ionic Charge on the Adsorption of Organic Dyes onto Titanate Nanotubes. Aust. J. Chem. 2010, 63(2), 270. DOI: 10.1071/CH09326.
  • Wetchakun, N.; Chainet, S.; Phanichphant, S.; Wetchakun, K. Efficient Photocatalytic Degradation of Methylene Blue over BiVO4/TiO2 Nanocomposites. Ceram. Int. 2015, 41(4), 5999–6004. DOI: 10.1016/j.ceramint.2015.01.040.
  • Wang, X.; Zhou, J.; Zhao, S.; Chen, X.; Yu, Y. Synergistic Effect of Adsorption and Visible-Light Photocatalysis for Organic Pollutant Removal over BiVO4/Carbon Sphere Nanocomposites. Appl. Surf. Sci. 2018, 453, 394–404. DOI: 10.1016/j.apsusc.2018.05.073.
  • Zou, L.; Wang, H.; Wang, X. High Efficient Photodegradation and Photocatalytic Hydrogen Production of CdS/BiVO 4 Heterostructure through Z -scheme Process. ACS Sustainable Chem. Eng. 2017, 5(1), 303–309. DOI: 10.1021/acssuschemeng.6b01628.
  • Vidya, J.; John Bosco, A.; Haribaaskar, K.; Balamurugan, P. Polyaniline - BiVO4 Nanocomposite as an Efficient Adsorbent for the Removal of Methyl Orange from Aqueous Solution. Mater. Sci. Semicond. Process. 2019, 103, 104645. DOI: 10.1016/j.mssp.2019.104645.
  • Onwudiwe, D. C.; Phadi, B. M.; Oyewo, O. A. Ce2O3/BiVO4 Embedded in RGO as Photocatalyst for the Degradation of Methyl Orange under Visible Light Irradiation. J. 2021, 4(2), 154–168. DOI: 10.3390/j4020013.
  • Nguyen, T. D.; Nguyen, V.-H.; Nanda, S.; Vo, D.-V. N.; Nguyen, V. H.; Van Tran, T.; Nong, L. X.; Nguyen, T. T.; Bach, L.-G.; Abdullah, B., et al. BiVO4 Photocatalysis Design and Applications to Oxygen Production and Degradation of Organic Compounds: A Review. Environ. Chem. Lett. 2020. 18, (6), 1779–1801. DOI: 10.1007/s10311-020-01039-0.
  • Gu, X.; Luo, Y.; Li, Q.; Wang, R.; Fu, S.; Lv, X.; He, Q.; Zhang, Y.; Yan, Q.; Xu, X., et al. First-Principle Insight into the Effects of Oxygen Vacancies on the Electronic, Photocatalytic, and Optical Properties of Monoclinic BiVO4(001). Front. Chem. 2020, 8, 8. DOI: 10.3389/fchem.2020.601983.
  • Liu, Q.; Li, W.; Qiao, Z.; Li, W.; Wang, L.; Zhu, S.; Jing, Z.; Yan, T. The Multiple Promotion Effects of Ammonium Phosphate-Modified Ag3PO4 on Photocatalytic Performance. Front. Chem. 2019, 7, 7. DOI: 10.3389/fchem.2019.00866.
  • Zhao, Y.; Li, R.; Mu, L.; Li, C. Significance of Crystal Morphology Controlling in Semiconductor-Based Photocatalysis: A Case Study on BiVO 4 Photocatalyst. Cryst. Growth Des. 2017, 17(6), 2923–2928. DOI: 10.1021/acs.cgd.7b00291.
  • Liu, G.; Zhu, Y.; Yan, Q.; Wang, H.; Wu, P.; Shen, Y.; Doekhi-Bennani, Y. Tuning Electron Transfer by Crystal Facet Engineering of BiVO4 for Boosting Visible-Light Driven Photocatalytic Reduction of Bromate. Sci. Total Environ. 2021, 762, 143086. DOI: 10.1016/j.scitotenv.2020.143086.
  • Zhao, W.; Feng, Y.; Huang, H.; Zhou, P.; Li, J.; Zhang, L.; Dai, B.; Xu, J.; Zhu, F.; Sheng, N., et al. A Novel Z-Scheme Ag3VO4/BiVO4 Heterojunction Photocatalyst: Study on the Excellent Photocatalytic Performance and Photocatalytic Mechanism. Appl. Catal. B Environ. 2019, 245, 448–458. DOI: 10.1016/j.apcatb.2019.01.001.
  • Zhu, Z.; Han, Q.; Yu, D.; Sun, J.; Liu, B. A Novel P-n Heterojunction of BiVO4/TiO2/GO Composite for Enhanced Visible-Light-Driven Photocatalytic Activity. Mater. Lett. 2017, 209, 379–383. DOI: 10.1016/j.matlet.2017.08.045.
  • Srinivasan, N.; Anbuchezhiyan, M.; Harish, S.; Ponnusamy, S. Efficient Catalytic Activity of BiVO4 Nanostructures by Crystal Facet Regulation for Environmental Remediation. Chemosphere. 2022, 289, 133097. DOI: 10.1016/j.chemosphere.2021.133097.
  • Liu, X.; Chen, W.; Wang, W.; Jiang, Y.; Cao, K.; Jiao, Z. F. Regulate the Preparation of Polyhedral BiVO4 Enclosed by High-Index Facet and Enhance Its Photocatalytic Activity. J. Colloid Interface Sci. 2022, 606, 393–405. DOI: 10.1016/j.jcis.2021.08.023.
  • Shafiq, I.; Hussain, M.; Shehzad, N.; Maafa, I. M.; Akhter, P.; Amjad, U.; Shafique, S.; Razzaq, A.; Yang, W.; Tahir, M., et al. The Effect of Crystal Facets and Induced Porosity on the Performance of Monoclinic BiVO4 for the Enhanced Visible-Light Driven Photocatalytic Abatement of Methylene Blue. J. Environ. Chem. Eng. 2019. 7, (4), 103265. DOI: 10.1016/j.jece.2019.103265.
  • Kamble, G. S.; Ling, Y.-C. Solvothermal Synthesis of Facet-Dependent BiVO4 Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Degradation of Organic Pollutant: Assessment of Toxicity by Zebrafish Embryo. Sci. Rep. 2020, 10(1), 12993. DOI: 10.1038/s41598-020-69706-4.
  • Yang, J.; Peng, Y.; Chen, S.; Yang, B.; Liu, Y.; Peng, L.; Zhang, J. Controllable Synthesis of BiVO4 with a Homojunction of (110) and (040) Crystal Facets for Photocatalytic Degradation of Rhodamine B. Mater. Res. Express. 2019, 6(8), 085501. DOI: 10.1088/2053-1591/ab1b8c.
  • Yan, M.; Wu, Y.; Yan, Y.; Yan, X.; Zhu, F.; Hua, Y.; Shi, W. Synthesis and Characterization of Novel BiVO4 /Ag3vo4 Heterojunction with Enhanced Visible-Light-Driven Photocatalytic Degradation of Dyes. ACS Sustainable Chem. Eng. 2016, 4(3), 757–766. DOI: 10.1021/acssuschemeng.5b00690.
  • Ju, P.; Wang, P.; Li, B.; Fan, H.; Ai, S.; Zhang, D.; Wang, Y. A Novel Calcined Bi2WO6/BiVO4 Heterojunction Photocatalyst with Highly Enhanced Photocatalytic Activity. Chem. Eng. J. 2014, 236, 430–437. DOI: 10.1016/j.cej.2013.10.001.
  • Zhao, S.; Chen, C.; Ding, J.; Yang, S.; Zang, Y.; Ren, N. One-Pot Hydrothermal Fabrication of BiVO4/Fe3O4/RGO Composite Photocatalyst for the Simulated Solar Light-Driven Degradation of Rhodamine B. Front. Environ. Sci. Eng. 2022, 16(3), 36. DOI: 10.1007/s11783-021-1470-y.
  • Channei, D.; Nakaruk, A.; Khanitchaidecha, W.; Jannoey, P.; Phanichphant, S. Adsorption and Photocatalytic Processes of Mesoporous SiO2-Coated Monoclinic BiVO4. Front. Chem. 2018, 6, 6. DOI: 10.3389/fchem.2018.00415.
  • Sun, Z.; Yu, Z.; Liu, Y.; Shi, C.; Zhu, M.; Wang, A. Construction of 2D/2D BiVO4/g-C3N4 Nanosheet Heterostructures with Improved Photocatalytic Activity. J. Colloid Interface Sci. 2019, 533, 251–258. DOI: 10.1016/j.jcis.2018.08.071.
  • Tian, Y.; Chang, B.; Yang, Z.; Zhou, B.; Xi, F.; Dong, X. Graphitic Carbon Nitride–BiVO4 Heterojunctions: Simple Hydrothermal Synthesis and High Photocatalytic Performances. RSC Adv. 2014, 4(8), 4187–4193. DOI: 10.1039/C3RA46079G.
  • Yu, C.; Dong, S.; Zhao, J.; Han, X.; Wang, J.; Sun, J. Preparation and Characterization of Sphere-Shaped BiVO4 /Reduced Graphene Oxide Photocatalyst for an Augmented Natural Sunlight Photocatalytic Activity. J. Alloys Compd. 2016, 677, 219–227. DOI: 10.1016/j.jallcom.2016.03.249.
  • Li, Y.; Dong, S.; Wang, Y.; Sun, J.; Li, Y.; Pi, Y.; Hu, L.; Sun, J. Reduced Graphene Oxide on a Dumbbell-Shaped BiVO4 Photocatalyst for an Augmented Natural Sunlight Photocatalytic Activity. J. Mol. Catal. A: Chem. 2014, 387, 138–146. DOI: 10.1016/j.molcata.2014.02.027.
  • Wang, R.; Cao, L. Facile Synthesis of a Novel Visible-Light-Driven AgVO3/BiVO4 Heterojunction Photocatalyst and Mechanism Insight. J. Alloys Compd. 2017, 722, 445–451. DOI: 10.1016/j.jallcom.2017.06.162.
  • Chen, T.; Liu, L.; Hu, C.; Huang, H. Recent Advances on Bi2WO6-Based Photocatalysts for Environmental and Energy Applications. Chin. J. Catal. 2021, 42(9), 1413–1438. DOI: 10.1016/S1872-2067(20)63769-X.
  • Amaterz, E.; Tara, A.; Bouddouch, A.; Taoufyq, A.; Bakiz, B.; Benlhachemi, A.; Jbara, O. Photo-Electrochemical Degradation of Wastewaters Containing Organics Catalysed by Phosphate-Based Materials: A Review. Rev. Environ. Sci. Bio/Technol. 2020, 19(4), 843–872. DOI: 10.1007/s11157-020-09547-9.
  • Ait Ahsaine, H.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R. Novel Lu-Doped Bi2WO6 Nanosheets: Synthesis, Growth Mechanisms and Enhanced Photocatalytic Activity under UV-Light Irradiation. Ceram. Int. 2016, 42(7), 8552–8558. DOI: 10.1016/j.ceramint.2016.02.082.
  • Ait Ahsaine, H.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Valmalette, J.-C.; Guinneton, F.; Arab, M.; Gavarri, J.-R. Structural, Vibrational Study and UV Photoluminescence Properties of the System Bi (2−x) Lu (X) WO 6 (0.1 ≤ X ≤ 1). RSC Adv. 2015, 5(116), 96242–96252. DOI: 10.1039/C5RA19424E.
  • Ait Ahsaine, H UV-Light Photocatalytic Properties of the Bismuth Lutetium Tungstate System Bi2-XLuxWO6 (0 ≤ X ≤ 1). Mater. Lett. 2020, 276, 128221. DOI: 10.1016/j.matlet.2020.128221.
  • Geng, Y.; Zhang, P.; Kuang, S. Fabrication and Enhanced Visible-Light Photocatalytic Activities of BiVO4 /Bi2wo6 Composites. RSC Adv. 2014, 4(86), 46054–46059. DOI: 10.1039/C4RA07427K.
  • Chen, L.; Meng, D.; Wu, X.; Wang, A.; Wang, J.; Yu, M.; Liang, Y. Enhanced Visible Light Photocatalytic Performances of Self-Assembled Hierarchically Structured BiVO4/Bi2WO6 Heterojunction Composites with Different Morphologies. RSC Adv. 2016, 6(57), 52300–52309. DOI: 10.1039/C6RA08685C.
  • Hu, H.; Kong, W.; Wang, J.; Liu, C.; Cai, Q.; Kong, Y.; Zhou, S.; Yang, Z. Engineering 2D Compressed Layered G-C3N4 Nanosheets by the Intercalation of BiVO4-Bi2WO6 Composites for Boosting Photocatalytic Activities. Appl. Surf. Sci. 2021, 557, 149796. DOI: 10.1016/j.apsusc.2021.149796.
  • Liaqat, M.; Khalid, N. R. Efficient Photocatalysis Performance and Recyclability of MoO3/BiVO4 Heterostructure under Visible Light. Appl. Nanosci. 2021, 11(7), 2085–2094. DOI: 10.1007/s13204-021-01929-x.
  • Saleem, A.; Ahmed, T.; Ammar, M.; Zhang, H.; Xu, H.; Tabassum, R. Direct Growth of M-BiVO4@carbon Fibers for Highly Efficient and Recyclable Photocatalytic and Antibacterial Applications. J. Photochem. Photobiol. B: Biol. 2020, 213, 112070. DOI: 10.1016/j.jphotobiol.2020.112070.
  • Xu, G.; Du, M.; Zhang, J.; Li, T.; Guan, Y.; Guo, C. Facile Fabrication of Magnetically Recyclable Fe3O4/BiVO4/CuS Heterojunction Photocatalyst for Boosting Simultaneous Cr(VI) Reduction and Methylene Blue Degradation under Visible Light. J. Alloys Compd. 2022, 895, 162631. DOI: 10.1016/j.jallcom.2021.162631.
  • Zhang, Y.; Chen, X.; Zhang, H.; Hu, S.; Zhao, G.; Zhang, M.; Qin, W.; Wang, Z.; Huang, X.; Wang, J. Facile Exfoliation for High-Quality Molybdenum Disulfide Nanoflakes and Relevant Field-Effect Transistors Developed with Thermal Treatment. Front. Chem. 2021, 9. DOI: 10.3389/fchem.2021.650901.
  • Zhang, Y.; Liu, Y.; Gao, W.; Chen, P.; Cui, H.; Fan, Y.; Shi, X.; Zhao, Y.; Cui, G.; Tang, B. MoS2 Nanosheets Assembled on Three-Way Nitrogen-Doped Carbon Tubes for Photocatalytic Water Splitting. Front. Chem. 2019, 7, 7. DOI: 10.3389/fchem.2019.00325.
  • Cui, X.; Yang, X.; Xian, X.; Tian, L.; Tang, H.; Liu, Q. Insights into Highly Improved Solar-Driven Photocatalytic Oxygen Evolution over Integrated Ag3PO4/MoS2 Heterostructures. Front. Chem. 2018, 6, 6. DOI: 10.3389/fchem.2018.00123.
  • Fu, Y.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Xing, L.; Ma, J.; Wang, H.; Xue, X. Direct Z-Scheme Heterojunction of ZnO/MoS2 Nanoarrays Realized by Flowing-Induced Piezoelectric Field for Enhanced Sunlight Photocatalytic Performances. Appl. Catal. B Environ. 2021, 285, 119785. DOI: 10.1016/j.apcatb.2020.119785.
  • Xu, A.; Tu, W.; Shen, S.; Lin, Z.; Gao, N.; Zhong, W. BiVO4@MoS2 Core-Shell Heterojunction with Improved Photocatalytic Activity for Discoloration of Rhodamine B. Appl. Surf. Sci. 2020, 528, 146949. DOI: 10.1016/j.apsusc.2020.146949.
  • Zhao, W.; Liu, Y.; Wei, Z.; Yang, S.; He, H.; Sun, C. Fabrication of a Novel P–n Heterojunction Photocatalyst n-BiVO4@p-MoS2 with Core–Shell Structure and Its Excellent Visible-Light Photocatalytic Reduction and Oxidation Activities. Appl. Catal. B Environ. 2016, 185, 242–252. DOI: 10.1016/j.apcatb.2015.12.023.
  • Li, Y.; Li, X.; Wang, X.-T.; Jian, L.-J.; Abdallah, N. I. M.; Dong, X.-F.; Wang, C.-W. P-n Heterostructured Design of Decahedral NiS/BiVO4 with Efficient Charge Separation for Enhanced Photodegradation of Organic Dyes. Colloids Surf. A. 2021, 608, 125565. DOI: 10.1016/j.colsurfa.2020.125565.
  • A, M.; J, M.; Ashokkumar, M.; Arunachalam, P. A Review on BiVO4 Photocatalyst: Activity Enhancement Methods for Solar Photocatalytic Applications. Appl. Catal., A. 2018, 555, 47–74. DOI: 10.1016/j.apcata.2018.02.010.
  • Ikeda, S.; Kawaguchi, T.; Higuchi, Y.; Kawasaki, N.; Harada, T.; Remeika, M.; Islam, M. M.; Sakurai, T. Effects of Zirconium Doping into a Monoclinic Scheelite BiVO4 Crystal on Its Structural, Photocatalytic, and Photoelectrochemical Properties. Front Chem. 2018, 6. DOI: 10.3389/fchem.2018.00266.
  • Khanh Huyen, N. T.; Pham, T.-D.; Dieu Cam, N. T.; Van Quan, P.; Van Noi, N.; Hanh, N. T.; Thanh Tung, M. H.; Dao, V.-D. Fabrication of Titanium Doped BiVO4 as a Novel Visible Light Driven Photocatalyst for Degradation of Residual Tetracycline Pollutant. Ceram. Int. 2021, 47(24), 34253–34259. DOI: 10.1016/j.ceramint.2021.08.335.
  • Zou, Y.; Lu, M.; Jiang, Z.; Xu, L.; Liu, C.; Zhang, L.; Chen, Y. Hydrothermal Synthesis of Zn-Doped BiVO4 with Mixed Crystal Phase for Enhanced Photocatalytic Activity. Opt. Mater. 2021, 119, 111398. DOI: 10.1016/j.optmat.2021.111398.
  • Hou, Y.; Yuan, H.; Chen, H.; Feng, J.; Ding, Y.; Li, L. Preparation of La3+/Zn2+-Doped BiVO4 Nanoparticles and Its Enhanced Visible Photocatalytic Activity. Appl. Phys. A. 2017, 123(10), 611. DOI: 10.1007/s00339-017-1228-3.
  • Chen, X.; Li, L.; Yi, T.; Zhang, W.; Zhang, X.; Wang, L. Microwave Assisted Synthesis of Sheet-like Cu/BiVO4 and Its Activities of Various Photocatalytic Conditions. J. Solid State Chem. 2015, 229, 141–149. DOI: 10.1016/j.jssc.2015.05.026.
  • Wang, M.; Guo, P.; Chai, T.; Xie, Y.; Han, J.; You, M.; Wang, Y.; Zhu, T. Effects of Cu Dopants on the Structures and Photocatalytic Performance of Cocoon-like Cu-BiVO4 Prepared via Ethylene Glycol Solvothermal Method. J. Alloys Compd. 2017, 691, 8–14. DOI: 10.1016/j.jallcom.2016.08.198.
  • Geng, Y.; Zhang, P.; Li, N.; Sun, Z. Synthesis of Co Doped BiVO4 with Enhanced Visible-Light Photocatalytic Activities. J. Alloys Compd. 2015, 651, 744–748. DOI: 10.1016/j.jallcom.2015.08.123.
  • Chala, S.; Wetchakun, K.; Phanichphant, S.; Inceesungvorn, B.; Wetchakun, N. Enhanced Visible-Light-Response Photocatalytic Degradation of Methylene Blue on Fe-Loaded BiVO4 Photocatalyst. J. Alloys Compd. 2014, 597, 129–135. DOI: 10.1016/j.jallcom.2014.01.130.
  • Wang, M.; CHE, Y.; NIU, C.; Dang, M.; Dong, D. Lanthanum and Boron Co-Doped BiVO4 with Enhanced Visible Light Photocatalytic Activity for Degradation of Methyl Orange. J. Rare Earths. 2013, 31(9), 878–884. DOI: 10.1016/S1002-0721(12)60373-1.
  • Luo, Y.; Tan, G.; Dong, G.; Ren, H.; Xia, A. A Comprehensive Investigation of Tetragonal Gd-Doped BiVO4 with Enhanced Photocatalytic Performance under Sun-Light. Appl. Surf. Sci. 2016, 364, 156–165. DOI: 10.1016/j.apsusc.2015.12.100.
  • Li, S.; Cheng, Y.; Wang, Q.; Liu, C.; Xu, L. D. Fabrication and Characterization of Photocatalyst Ni-Doped BiVO4 for High Effectively Degrading Dye Contaminant. Mater. Res. Express. 2020, 7(11), 115005. DOI: 10.1088/2053-1591/abc79e.
  • Qin, C.; Liao, H.; Rao, F.; Zhong, J., and Li, J. One-pot hydrothermal preparation of Br-doped BiVO4 with enhanced visible-light photocatalytic activity. Solid State Sci. 2020, 105, 106285. DOI: 10.1016/j.solidstatesciences.2020.106285.
  • Wang, M.; Niu, C.; Liu, J.; Wang, Q.; Yang, C.; Zheng, H. Effective Visible Light-Active Nitrogen and Samarium Co-Doped BiVO4 for the Degradation of Organic Pollutants. J. Alloys Compd. 2015, 648, 1109–1115. DOI: 10.1016/j.jallcom.2015.05.115.
  • Wang, M.; Liu, Q.; Che, Y.; Zhang, L.; Zhang, D. Characterization and Photocatalytic Properties of N-Doped BiVO4 Synthesized via a Sol–Gel Method. J. Alloys Compd. 2013, 548, 70–76. DOI: 10.1016/j.jallcom.2012.08.140.
  • Xue, S.; He, H.; Wu, Z.; Yu, C.; Fan, Q.; Peng, G.; Yang, K. An Interesting Eu,F-Codoped BiVO4 Microsphere with Enhanced Photocatalytic Performance. J. Alloys Compd. 2017, 694, 989–997. DOI: 10.1016/j.jallcom.2016.10.146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.