Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 1
1,111
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Switching of support materials for the hydrogenation of nitroarenes: A review

, , &
Pages 259-342 | Received 01 Dec 2021, Accepted 16 Feb 2022, Published online: 02 May 2022

References

  • Mitsudome, T.; Kaneda, K. Gold Nanoparticle Catalysts for Selective Hydrogenations. Green Chem. 2013, 15, 2636–2654.
  • Lara, P.; Philippot, K. The Hydrogenation of Nitroarenes Mediated by Platinum Nanoparticles: An Overview. Catal. Sci. Technol. 2014, 4(8), 2445–2465. DOI: 10.1039/C4CY00111G.
  • Nozawa-Kumada, K.; Abe, E.; Ito, S.; Shigeno, M.; Kondo, Y. Super Electron Donor-mediated Reductive Transformation of Nitrobenzenes: A Novel Strategy to Synthesize Azobenzenes and Phenazines. Org. Biomol. Chem. 2018, 16(17), 3095–3098. DOI: 10.1039/C8OB00271A.
  • Downing, R. S.; Kunkeler, P. J.; Van Bekkum, H. Catalytic Syntheses of Aromatic Amines. Catal. Today. 1997, 37(2), 121–136. DOI: 10.1016/S0920-5861(97)00005-9.
  • Wegener, G.; Brandt, M.; Duda, L.; Hofmann, J.; Klesczewski, B.; Koch, D.; Kumpf, R. J.; Orzesek, H.; Pirkl, H. G.; Six, C, et al. Trends in Industrial Catalysis in the Polyurethane Industry. Appl. Catal., A. 2001, 221(1–2), 303–335. DOI: 10.1016/S0926-860X(01)00910-3.
  • El-Hout, S. I.; El-Sheikh, S. M.; Hassan, H. M.; Harraz, F. A.; Ibrahim, I. A.; El-Sharkawy, E. A. A Green Chemical Route for Synthesis of Graphene Supported Palladium Nanoparticles: A Highly Active and Recyclable Catalyst for Reduction of Nitrobenzene. Appl. Catal., A. 2015, 503, 176–185.
  • Wang, J.; Yuan, Z.; Nie, R.; Hou, Z.; Zheng, X. Hydrogenation of Nitrobenzene to Aniline over Silica Gel Supported Nickel Catalysts. Ind. Eng. Chem. Res. 2010, 49, 4664–4669.
  • Lakshminarayana, B.; Manna, A. K.; Satyanarayana, G., and Subrahmanyam, C. Palladium Nanoparticles on Silica Nanospheres for Switchable Reductive Coupling of Nitroarenes. Cataly. Lett. 2020, 150, 2309–2321. DOI:10.1007/s10562-020-03127-w.
  • Lakshminarayana, B.; Satyanarayana, G.; Subrahmanyam, C. Bimetallic Pd–Au/TiO 2 Nanoparticles: An Efficient and Sustainable Heterogeneous Catalyst for Rapid Catalytic Hydrogen Transfer Reduction of Nitroarenes. ACS Omega. 2018, 3(10), 13065–13072. DOI: 10.1021/acsomega.8b02064.
  • Lakshminarayana, B.; Ashok Kumar, K. V.; Selvaraj, M.; Satyanarayana, G.; Subrahmanyam, C. PVP-PS Supported Ultra-small Pd Nanoparticles for the Room Temperature Reduction of 4-nitrophenol. J. Environ. Chem. Eng. 2020, 8(4), 103899. DOI: 10.1016/j.jece.2020.103899.
  • Amanchi, S. R.; Kumar, K. A.; Lakshminarayana, B.; Satyanarayana, G.; Subrahmanyam, C. Photocatalytic Hydrogenation of Nitroarenes: Supporting Effect of CoO x on TiO 2 Nanoparticles. New J. Chem. 2019, 43(2), 748–754. DOI: 10.1039/C8NJ05260C.
  • Lakshminarayana, B.; Mahendar, L.; Ghosal, P.; Satyanarayana, G.; Subrahmanyam, C. Nano‐sized Recyclable PdO Supported Carbon Nanostructures for Heck Reaction: Influence of Carbon Materials. ChemistrySelect. 2017, 2, 2700–2707. DOI: 10.1002/slct.201602051.
  • Lakshminarayana, B.; Mahendar, L.; Ghosal, P.; Sreedhar, B.; Satyanarayana, G.; Subrahmanyam, C. Fabrication of Pd/CuFe 2 O 4 Hybrid Nanowires: A Heterogeneous Catalyst for Heck Couplings. New journal of Chemistry. 2018, 42(3), 1646–1654. DOI: 10.1039/C7NJ04361A.
  • Lakshminarayana, B.; Vinodkumar, T.; Satyanarayana, G.; Subrahmanyam, C. Novel Ultra-small Pd NPs on SOS Spheres: A New Catalyst for Domino Intramolecular Heck and Intermolecular Sonogashira Couplings. RSC Adv. 2020, 10(8), 4568–4578. DOI: 10.1039/C9RA09429F.
  • Lakshminarayana, B.; Mahendar, L.; Chakraborty, J.; Satyanarayana, G.; Subrahmanyam, C. Organic Transformations Catalysed by Palladium Nanoparticles on Carbon Nanomaterials. J. Chem. Sci. 2018, 130(5), 47. DOI: 10.1007/s12039-018-1449-9.
  • Lakshminarayana, B.; Chakraborty, J.; Satyanarayana, G.; Subrahmanyam, C. Recyclable Pd/CuFe 2 O 4 Nanowires: A Highly Active Catalyst for C–C Couplings and Synthesis of Benzofuran Derivatives. RSC Adv. 2018, 8(37), 21030–21039. DOI: 10.1039/C8RA03697G.
  • Dickerson, T. J.; Reed, N. N.; Janda, K. D. Soluble Polymers as Scaffolds for Recoverable Catalysts and Reagents. Chem. Rev. 2002, 102(10), 3325–3344.
  • Fan, Q. H.; Li, Y.-M.; Chan, A. S. C. Recoverable Catalysts for Asymmetric Organic Synthesis. Chem. Rev. 2002, 102, 3385–3466. DOI: 10.1021/cr010341a.
  • Van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Dendrimers as Support for Recoverable Catalysts and Reagents. Chem. Rev. 2002, 102, 3717–3756.
  • Yin, L. X.; Liebscher, J. Carbon−carbon Coupling Reactions Catalysed by Heterogeneous Palladium Catalysts. Chem. Rev. 2007, 107, 133–173. DOI: 10.1021/cr0505674.
  • Elliott, D. C.; Hart, T. R. Catalytic Hydroprocessing of Chemical Models for Bio-oil. Energy Fuels. 2008, 23, 631–637.
  • Lam, E.; Luong, J. H. Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catal. 2014, 4, 3393–3410. DOI: 10.1021/cs5008393.
  • Gawande, M. B.; Pandey, R. K.; Jayaram, R. V. Role of Mixed Metal Oxides in Catalysis Science−versatile Applications in Organic Synthesis. Catal. Sci. Technol. 2012, 2, 1113–1125.
  • Bond, G. C. Catalysis by Metals. Academic Press; New York. 1962, 126, 70–71.
  • Tanabe, K.; Holderich, W. F. Industrial Application of Solid Acid–base Catalysts. Appl.Catal.A. 1999, 181, 399–434. DOI: 10.1016/S0926-860X(98)00397-4.
  • Reddy, B. M.; Khan, A. Recent Advances on TiO2−ZrO2 Mixed Oxides as Catalysts and Catalyst Supports. Catal. Rev. Sci. Eng. 2005, 47, 257–296. DOI: 10.1081/CR-200057488.
  • Sonavane, S. U., and Jayaram, R. V. Selective Reduction of C=O in α, β-unsaturated Carbonyls through Catalytic Hydrogen Transfer Reaction over Mixed Metal Oxides. Synlett. 2004, 2004(1), 146–148. DOI:10.1055/s-2003-43359.
  • Gates, B. Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chem. Rev. 1995, 95;, 511–522. DOI: 10.1021/cr00035a003.
  • Rascon, F.; Wischert, R.; Coperet, C. Molecular Nature of Support Effects in Single-site Heterogeneous Catalysts: Silica Vs. Alumina. Chem. Sci. 2011, 2, 1449–1456. DOI: 10.1039/c1sc00073j.
  • Mol, J. C. Industrial Applications of Olefin Metathesis. J. Mol. Catal. A Chem. 2004, 213, 39–45. DOI: 10.1016/j.molcata.2003.10.049.
  • Sushko, P. V.; Mukhopadhyay, S.; Mysovsky, A. S.; Sulimov, V. B.; Taga, A.; Shluger, A. L. Structure and Properties of Defects in Amorphous Silica: New Insights from Embedded Cluster Calculations. J. Phys.: Condens. Matter. 2005, 17, S2115.
  • Ray, S.; Das, P.; Bhaumik, A.; Dutta, A.; Mukhopadhyay, C. Covalently Anchored Organic Carboxylic Acid on Porous Silica Nano Particle: A Novel Organometallic Catalyst (PSNP-CA) for the Chromatography-free Highly Product Selective Synthesis of Tetrasubstituted Imidazoles. Appl. Catal., A. 2013, 458, 183–195. DOI: 10.1016/j.apcata.2013.03.024.
  • Ray, S.; Brown, M.; Bhaumik, A.; Dutta, A.; Mukhopadhyay, C. A New MCM-41 Supported HPF 6 Catalyst for the Library Synthesis of Highly Substituted 1, 4-dihydropyridines and Oxidation to Pyridines: Report of One-dimensional Packing Towards LMSOMs and Studies on Their Photophysical Properties. Green Chem. 2013, 15, 1910–1924. DOI: 10.1039/c3gc40441b.
  • Kundu, P. K.; Dhiman, M.; Modak, A.; Chowdhury, A.; Polshettiwar, V.; Maiti, D. Palladium Nanoparticles Supported on Fibrous Silica (Kcc‐1‐pei/pd): A Sustainable Nanocatalyst for Decarbonylation Reactions. ChemPlusChem. 2016, 81, 1142–1146. DOI: 10.1002/cplu.201600245.
  • Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B. M. KCC-1 Supported Palladium Nanoparticles as an Efficient and Sustainable Nanocatalyst for Carbonylative Suzuki–Miyaura Cross-coupling. Green Chem. 2016, 18, 5890–5899. DOI: 10.1039/C6GC02012G.
  • Dhiman, M.; Chalke, B.; Polshettiwar, V. Efficient Synthesis of Monodisperse Metal (Rh, Ru, Pd) Nanoparticles Supported on Fibrous Nanosilica (KCC-1) for Catalysis. ACS Sustain. Chem. Eng. 2015, 3, 3224–3230. DOI 10.1021/acssuschemeng.5b00812.
  • Bergbreiter, D. E. Using Soluble Polymers to Recover Catalysts and Ligands. Chem. Rev. 2002, 102, 3345–3384. DOI: 10.1016/j.jcat.2006.12.011.
  • Dickerson, T. J.; Reed, N. N.; Janda, K. D. Soluble Polymers as Scaffolds for Recoverable Catalysts and Reagents. Chem. Rev. 2002, 102, 3325–3344. DOI 10.1021/cr010335e.
  • van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Dendrimers as Support for Recoverable Catalysts and Reagents. Chem. Rev. 2002, 102, 3717–3756. DOI: 10.1021/cr0103874.
  • Leadbeater, N. E.; Marco, M. Preparation of Polymer-supported Ligands and Metal Complexes for Use in Catalysis. Chem. Rev. 2002, 102, 3217–3274. DOI: 10.1021/cr010361c.
  • McNamara, C. A.; Dixon, M. J.; Bradley, M. Recoverable Catalysts and Reagents Using Recyclable Polystyrene-based Supports. Chem. Rev. 2002, 102, 3275–3300. DOI: 10.1021/cr0103571.
  • Jang, S. Polymer-bound Palladium-catalysed Cross-coupling of Organoboron Compounds with Organic Halides and Organic Triflates. Tetrahedron Lett. 1997, 38, 1793. DOI: 10.1016/S0040-4039(97)00171-8.
  • Ouyang, G.; Wang, C. X.; Yang, G. W. Surface Energy of Nanostructural Materials with Negative Curvature and Related Size Effects. Chem. Rev. 2009, 109, 4221–4247. DOI: 10.1021/cr900055f.
  • Ndolomingo, M. J.; Bingwa, N., and Meijboom, R. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020, 55, 6195–6241. DOI:10.1007/s10853-020-04415-x.
  • Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872.
  • Polshettiwar, V.; Varma, R. S. Green Chemistry by Nanocatalysis. Green Chem. 2010, 12, 743–754. DOI: 10.1039/b921171c.
  • Thielbeer, F.; Donaldson, K.; Bradley, M. Zeta Potential Mediated Reaction Monitoring on Nano and Microparticles. Bioconjug. Chem. 2011, 22, 144–150. DOI: 10.1021/bc1005015.
  • van Deelen, T. W.; Mejia, C. H.; de Jong, K. P. Control of Metal-support Interactions in Heterogeneous Catalysts to Enhance Activity and Selectivity. Nature Catal. 2019, 2, 955–970.
  • Lokteva, E. S.; Golubina, E. V. Metal–support Interactions in the Design of Heterogeneous Catalysts for Redox Processes. Pure Appl. Chem. 2019, 91, 609–631. DOI: 10.1515/pac-2018-0715.
  • Ruppert, A. M., and Weckhuysen, B. M. Active phase-support interactions: metal–support Interactions. In Handbook of Heterogeneous Catalysis, 2nd Ed., Wiley-VCH, Weinheim, Ertl, G.; Knozinger, H.; Schuth, F.; Weitkamp, J. (Eds.), 2008; pp 1178–1188.
  • Bingwa, N.; Patala, R.; Noh, J. H.; Ndolomingo, M. J.; Tetyana, S.; Bewana, S.; Meijboom, R. Synergistic Effects of Gold–palladium Nanoalloys and Reducible Supports on the Catalytic Reduction of 4-nitrophenol. Langmuir. 2017, 33, 7086–7095. DOI: 10.1021/acs.langmuir.7b00903.
  • Ordonez, S.; Daz, E.; Bueres, R. F.; Asedegbega-Nieto, E.; Sastre, H. Carbon Nanofibre-supported Palladium Catalysts as Model Hydrodechlorination Catalysts. J Catal. 2010, 272, 158–168. DOI: 10.1016/j.jcat.2010.03.001.
  • He, Z.; Dong, B.; Wang, W.; Yang, G.; Cao, Y.; Wang, H.; Yang, Y.; Wang, Q.; Peng, F.; Yu, H. Elucidating Interaction between Palladium and N-doped Carbon Nanotubes: Effect of Electronic Property on Activity for Nitrobenzene Hydrogenation. ACS Catal. 2019, 9, 2893–2901. DOI: 10.1021/acscatal.8b03965.
  • Fan, X.; Zhang, G.; Zhang, F. Multiple Roles of Graphene in Heterogeneous Catalysis. Chem. Soc. Rev. 2015, 44, 3023–3035. DOI: 10.1039/C5CS00094G.
  • Klaewkla, R.; Arend, M., and Hoelderich, W. F. A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems. Mass Transf. Adv. Aspects, Ch. 2011, 29, 667–684.
  • Ertl, G.; Kno¨zinger, H., and Weitkamp, J. (Eds.). Handbook of Heterogeneous Catalysis (Vol. 2, pp. 427-440). 1997. Weinheim: VCH.
  • Torres, G. C.; Jablonski, E. L.; Baronetti, G. T.; Castro, A. A.; De Miguel, S. R.; Scelza, O. A.; Blanco, M. D.; Pefia Jimenez, M. A.; Fierro, J. L. G. Effect of the Carbon Pre-treatment on the Properties and Performance for Nitrobenzene Hydrogenation of Pt/C Catalysts. Appl. Catal. A: General. 1997, 161, 213–226. DOI: 10.1016/S0926-860X(97)00071-9.
  • Li, Z.; Li, J.; Liu, J.; Zhao, Z.; Xia, C.; Li, F. Palladium Nanoparticles Supported on Nitrogen‐Functionalized Active Carbon: A Stable and Highly Efficient Catalyst for the Selective Hydrogenation of Nitroarenes. ChemCatChem. 2014, 6, 1333–1339.
  • Veerakumar, P.; Panneer Muthuselvam, I.; Hung, C. T.; Lin, K. C.; Chou, F. C.; Liu, S. B. Biomass-derived Activated Carbon Supported Fe3O4 Nanoparticles as Recyclable Catalysts for Reduction of Nitroarenes. ACS Sustainable Chem. Eng. 2016, 4, 6772–6782. DOI: 10.1021/acssuschemeng.6b01727.
  • Jyothi, T. M.; Rao, B. S.; Sugunan, S. Reduction of Nitroarenes with Isopropanol and Potassium Hydroxide over Metal Oxide Catalysts. Indian J. Chem. 2000, 39A, 1041–1043.
  • Kulkarni, A. S.; Jayaram, R. V. Liquid Phase Catalytic Transfer Hydrogenation of Aromatic Nitro Compounds on La1−xSrxFeO3 Perovskites Prepared by Microwave Irradiation. J. Mol. Catal. A. 2004, 223, 107–110. DOI: 10.1016/j.molcata.2003.12.042.
  • Alonso, F.; Riente, P.; Reinoso, F. R.; Martez, J. R.; Escribano, A. S.; Yus, M. A Highly reusable Carbon-supported Platinum Catalyst for the Hydrogen-transfer Reduction of Ketones. ChemCatChem. 2009, 1, 75–77. DOI: 10.1002/cctc.200900045.
  • Subramanian, T.; Pitchumani, K. Selective Reduction of Nitroarenes by Using Zeolite-supported Copper Nanoparticles with 2-propanol as a Sustainable Reducing Agent. ChemCatChem. 2012, 4, 1917–1921. DOI: 10.1002/cctc.201200443.
  • Kadam, H. K.; Tilve, S. G. Advancement in Methodologies for Reduction of Nitroarenes. RSC Adv. 2015, 5, 83391–83407. DOI: 10.1039/C5RA10076C.
  • Huang, L.; Lv, Y.; Wu, S.; Liu, P.; Xiong, W.; Hao, F.; Luo, H. A. Activated Carbon Supported Bimetallic Catalysts with Combined Catalytic Effects for Aromatic Nitro Compounds Hydrogenation under Mild Conditions. Appl. Catal., A. 2019, 577, 76–85. DOI: 10.1016/j.apcata.2019.03.017.
  • Noschese, A.; Buonerba, A.; Canton, P.; Milione, S.; Capacchione, C.; Grassi, A. Highly Efficient and Selective Reduction of Nitroarenes into Anilines Catalysed by Gold Nanoparticles Incarcerated in a Nanoporous Polymer Matrix: Role of the Polymeric Support and Insight into the Reaction Mechanism. J. Catal. 2016, 340, 30–40.
  • Fang, H.; Wen, M.; Chen, H.; Wu, Q.; Li, W. Graphene Stabilized Ultra-small CuNi Nanocomposite with High Activity and Recyclability toward Catalysing the Reduction of Aromatic Nitro-compounds. Nanoscale. 2016, 8, 536–542. DOI: 10.1039/C5NR05016B.
  • Tang, Q.; Yuan, Z.; Jin, S.; Yao, K.; Yang, H.; Chi, Q.; Liu, B. Biomass-derived Carbon-supported Ni Catalyst: An Effective Heterogeneous Non-noble Metal Catalyst for the Hydrogenation of Nitro Compounds. React. Chem. Eng. 2020, 5, 58–65. DOI: 10.1039/C9RE00366E.
  • Duan, Y.; Song, T.; Dong, X.; Yang, Y. Enhanced Catalytic Performance of Cobalt Nanoparticles Coated with a N, P-codoped Carbon Shell Derived from Biomass for Transfer Hydrogenation of Functionalized Nitroarenes. Green Chem. 2018, 20, 2821–2828. DOI: 10.1039/C8GC00619A.
  • Zhu, Q.; Sun, X.; Zhao, H.; Xu, D.; Dong, Z. The Selective Transfer Hydrogenation and N-formylation of Nitroarenes by Facilely-prepared N, S Co-doped Carbon Encapsulated Cobalt Nanoparticles Catalyst. Ind. Eng. Chem. Res. 2020, 59, 5615–5623. DOI 10.1021/acs.iecr.9b06366.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • John, J.; Gravel, E.; Namboothiri, I. N.; Doris, E. Advances in Carbon Nanotube-noble Metal Catalysed Organic Transformations. Nanotechnol. Rev. 2012, 1, 515–539. DOI: 10.1515/ntrev-2012-0025.
  • Chen, P.; Yang, F.; Kostka, A.; Xia, W. Interaction of Cobalt Nanoparticles with Oxygen-and Nitrogen-functionalized Carbon Nanotubes and Impact on Nitrobenzene Hydrogenation Catalysis. ACS Catal. 2014, 4, 1478–1486. DOI: 10.1021/cs500173t.
  • Dong, B.; Li, Y.; Ning, X.; Wang, H.; Yu, H.; Peng, F. Trace Iron Impurities Deactivate Palladium Supported on Nitrogen-doped Carbon Nanotubes for Nitrobenzene Hydrogenation. Appl. Catal. A: General. 2017, 545, 54–63. DOI: 10.1016/j.apcata.2017.07.035.
  • Carturan, G.; Facchin, G.; Cocco, G.; Navazio, G.; Gubitosa, G. Hydrogenation of Nitrocompounds with Supported Palladium Catalysts: Influence of Metal Dispersion and Nitrocompound Nature. J. Catal. 1983, 82, 56–65. DOI: 10.1016/0021-9517(83)90117-3.
  • Chinthaginjala, J. K.; Villa, A.; Su, D. S.; Mojet, B. L.; Lefferts, L. Nitrite Reduction over Pd Supported CNFs: Metal Particle Size Effect on Selectivity. Catal. Today. 2012, 183, 119–123. DOI: 10.1016/j.cattod.2011.11.003.
  • Semagina, N.; Renken, A.; Kiwi-Minsker, L. Palladium Nanoparticle Size Effect in 1-hexyne Selective Hydrogenation. J. Phys. Chem. C. 2007, 111, 13933–13937. DOI: 10.1021/jp073944k.
  • Neri, G.; Musolino, M. G.; Milone, C.; Pietropaolo, D.; Galvagno, S. Particle Size Effect in the Catalytic Hydrogenation of 2, 4-dinitrotoluene over Pd/C Catalysts. Appl. Catal. A: General. 2001, 208, 307–316. DOI: 10.1016/S0926-860X(00)00717-1.
  • Semagina, N.; Renken, A.; Laub, D.; Kiwi-Minsker, L. Synthesis of Monodispersed Palladium Nanoparticles to Study Structure Sensitivity of Solvent-free Selective Hydrogenation of 2-methyl-3-butyn-2-ol. J. Catal. 2007, 246, 308–314.
  • Jawale, D. V.; Gravel, E.; Boudet, C.; Shah, N.; Geertsen, V.; Li, H.; Namboothiri, I. N. N.; Doris, E. Selective Conversion of Nitroarenes Using a Carbon Nanotube–ruthenium Nanohybrid. Chem. Comm. 2015, 51, 1739–1742. DOI: 10.1039/C4CC09192B.
  • Uozumi, Y.; Yamada, Y. M.; Ohno, A. Hydrogenation of Nitroarenes Using a Carbon Nanotube–Ruthenium Nanohybrid. Synfacts. 2015, 11, 0442–0442−.
  • Tomkins, P.; Gebauer-Henke, E.; Leitner, W.; Müller, T. E. Concurrent Hydrogenation of Aromatic and Nitro Groups over Carbon-supported Ruthenium Catalysts. ACS Catal. 2015, 5, 203–209. DOI: 10.1021/cs501122h.
  • Gu, X.; Qi, W.; Xu, X.; Sun, Z.; Zhang, L.; Liu, W.; Pan, X.; Su, D. Covalently Functionalized Carbon Nanotube Supported Pd Nanoparticles for Catalytic Reduction of 4-nitrophenol. Nanoscale. 2014, 6, 6609–6616. DOI: 10.1039/C4NR00826J.
  • Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. DOI: 10.1039/B917103G.
  • Wei, Z.; Pan, R.; Hou, Y.; Yang, Y.; Liu, Y. Graphene-supported Pd Catalyst for Highly Selective Hydrogenation of Resorcinol to 1, 3-cyclohexanedione through Giant π-conjugate Interactions. Sci. Rep. 2015, 5, 15664–15673. DOI: 10.1038/srep15664.
  • Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Müllen, K. Composites of Graphene with Large Aromatic Molecules. Adv. Mater. 2009, 21, 3191–3195. DOI: 10.1002/adma.200803808.
  • Xiao, F.; Pignatello, J. J. π–π Interactions between (Hetero) Aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environ. Sci. Technol. 2015, 49, 906–914. DOI: 10.1021/es5043029.
  • Balamurugan, K.; Subramanian, V. Adsorption of Chlorobenzene onto (5,5) Armchair Single-Walled Carbon Nanotube and Graphene Sheet: Toxicity versus Adsorption Strength. J. Phys. Chem. C. 2013, 117, 21217–21227. DOI: 10.1021/jp403646h.
  • Feng, Y. S.; Ma, J. J.; Kang, Y. M.; Xu, H. J. PdCu Nanoparticles Supported on Graphene: An Efficient and Recyclable Catalyst for Reduction of Nitroarenes. Tetrahedron. 2014, 70, 6100–6105. DOI: 10.1016/j.tet.2014.04.034.
  • Jagadeesh, R. V.; Natte, K.; Junge, H.; Beller, M. Nitrogen-doped Graphene-activated Iron-oxide-based Nanocatalysts for Selective Transfer Hydrogenation of Nitroarenes. ACS Catal. 2015, 5, 1526–1529. DOI: 10.1021/cs501916p.
  • Dideikin, A. T.; Vul, A. Y. Graphene Oxide and Derivatives: The Place in Graphene Family. Front. Phys. 2019, 6, 149. DOI: 10.3389/fphy.2018.00149.
  • Xiao, D.; Sun, W.; Dai, H.; Zhang, Y.; Qin, X.; Li, L.; Wei, Z.; Chen, X. Influence of Charge States on the π–π Interactions of Aromatic Side Chains with Surface of Graphene Sheet and Single-walled Carbon Nanotubes in Bioelectrodes. J. Phys. Chem. C. 2014, 118, 20694–20701. DOI: 10.1021/jp506336c.
  • Kandathil, V.; Kulkarni, B.; Siddiqa, A.; Kempasiddaiah, M.; Sasidhar, B. S.; Patil, S. A.; Patil, S. A. Immobilized N-Heterocyclic Carbene-Palladium (II) Complex on Graphene Oxide as Efficient and Recyclable Catalyst for Suzuki–Miyaura Cross-Coupling and Reduction of Nitroarenes. Cataly. Lett. 2020, 150, 384–403. DOI: 10.1007/s10562-019-03083-0.
  • Bilgicli, H. G.; Burhan, H.; Diler, F.; Cellat, K.; Kuyuldar, E.; Zengin, M.; Sen, F. Composites of Palladium Nanoparticles and Graphene Oxide as a Highly Active and Reusable Catalyst for the Hydrogenation of Nitroarenes. Microporous Mesoporous Mater. 2020, 296, 110014. DOI: 10.1016/j.micromeso.2020.110014.
  • Smith, A. T.; LaChance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/reduced Graphene Oxide and Their Nanocomposites. Nanomater Sci. 2019, 1, 31–47.
  • Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced Graphene Oxide Today. J. Mater. Chem. C. 2020, 8, 1198–1224. DOI: 10.1039/C9TC04916A.
  • Kumar, R.; Ansari, M. O.; Barakat, M. A., and Rashid, J. Graphene/metal Oxide–based Nanocomposite as Photocatalyst for Degradation of Water Pollutants. Graphene-Based Nanotechnol. Energy Environ. 2019, 221–240. DOI:10.1016/B978-0-12-815811-1.00013-2.
  • Nie, R.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Platinum Supported on Reduced Graphene Oxide as a Catalyst for Hydrogenation of Nitroarenes. Carbon. 2012, 50, 586–596. DOI: 10.1016/j.carbon.2011.09.017.
  • El-Hout, S. I.; El-Sheikh, S. M.; Hassan, H. M.; Harraz, F. A.; Ibrahim, I. A.; El-Sharkawy, E. A. A Green Chemical Route for Synthesis of Graphene Supported Palladium Nanoparticles: A Highly Active and Recyclable Catalyst for Reduction of Nitrobenzene. Appl. Catal., A. 2015, 503, 176–185. DOI: 10.1016/j.apcata.2015.06.036.
  • Metin, O.; Can, H.; Şendil, K.; Gültekin, M. S. Monodisperse Ag/Pd Core/shell Nanoparticles Assembled on Reduced Graphene Oxide as Highly Efficient Catalysts for the Transfer Hydrogenation of Nitroarenes. J. Colloid Interface Sci. 2017, 498, 378–386. DOI: 10.1016/j.jcis.2017.03.066.
  • Metin, O.; Mendoza-Garcia, A.; Dalmızrak, D.; Gültekin, M. S.; Sun, S. FePd Alloy Nanoparticles Assembled on Reduced Graphene Oxide as a Catalyst for Selective Transfer Hydrogenation of Nitroarenes to Anilines Using Ammonia Borane as a Hydrogen Source. Catal. Sci. Technol. 2016, 6, 6137–6143. DOI: 10.1039/C6CY00118A.
  • Nasrollahzadeh, M.; Sajadi, S. M.; Rostami-Vartooni, A.; Alizadeh, M.; Bagherzadeh, M. Green Synthesis of the Pd Nanoparticles Supported on Reduced Graphene Oxide Using Barberry Fruit Extract and Its Application as a Recyclable and Heterogeneous Catalyst for the Reduction of Nitroarenes. J. Colloid Interface Sci. 2016, 466, 360–368. DOI: 10.1016/j.jcis.2015.12.036.
  • Liu, X.; Wang, C.; Cheng, S.; Shang, N.; Gao, S.; Feng, C.; Wang, C.; Qiao, Y.; Wang, Z. Agpd Nanoparticles Supported on Reduced Graphene Oxide: A High Catalytic Activity Catalyst for the Transfer Hydrogenation of Nitroarenes. Catal. Commun. 2018, 108, 103–107. DOI: 10.1016/j.catcom.2018.02.001.
  • Fan, G. Y.; Huang, W. J. Synthesis of Ruthenium/reduced Graphene Oxide Composites and Application for the Selective Hydrogenation of Halonitroaromatics. Chin. Chem. Lett. 2014, 25, 359–363. DOI: 10.1016/j.cclet.2013.11.044.
  • Dong, W.; Cheng, S.; Feng, C.; Shang, N.; Gao, S.; Wang, C. Fabrication of Highly Dispersed Pd Nanoparticles Supported on Reduced Graphene Oxide for Catalytic Reduction of 4-nitrophenol. Catal. Commun. 2017, 90, 70–74. DOI: 10.1016/j.catcom.2016.11.021.
  • Goswami, A.; Kadam, R. G.; Tuček, J.; Sofer, Z.; Bouša, D.; Varma, R. S.; Gawande, M. B.; Zbořil, R. Fe (0)-embedded Thermally Reduced Graphene Oxide as Efficient Nanocatalyst for Reduction of Nitro Compounds to Amines. Chem. Eng. J. 2020, 382, 122469. DOI: 10.1016/j.cej.2019.122469.
  • Liu, X.; Zhao, X.; Zhou, M.; Cao, Y.; Wu, H.; Zhu, J. Highly Stable and Active Palladium Nanoparticles Supported on a Mesoporous UiO66@ Reduced Graphene Oxide Complex for Practical Catalytic Applications. Eur. J. Inorg. Chem. 2016, 2016, 3338–3343. DOI: 10.1002/ejic.201600367.
  • Antolini, E. Carbon Supports for Low-temperature Fuel Cell Catalysts. Appl. Catal., B. 2009, 88, 1–24. DOI: 10.1016/j.apcatb.2008.09.030.
  • Feng, R.; Li, M.; Liu, J. Synthesis of Core–shell Au@ Pt Nanoparticles Supported on Vulcan XC-72 Carbon and Their Electrocatalytic Activities for Methanol Oxidation. Colloids Surf., A. 2012, 406, 6–12. DOI: 10.1016/j.colsurfa.2012.04.030.
  • Şener, T.; Kayhan, E.; Sevim, M.; Metin, I. Monodisperse CoFe2O4 Nanoparticles Supported on Vulcan XC-72: High Performance Electrode Materials for Lithium-air and Lithium-ion Batteries. J. Power Sources. 2015, 288, 36–41. DOI: 10.1016/j.jpowsour.2015.04.120.
  • Gharibi, H.; Kakaei, K.; Zhiani, M. Platinum Nanoparticles Supported by a Vulcan XC-72 and PANI Doped with Trifluoromethane Sulfonic Acid Substrate as a New Electrocatalyst for Direct Methanol Fuel Cells. J. Phys. Chem. C. 2010, 114, 5233–5240. DOI: 10.1021/jp9119414.
  • Gao, S.; Feng, T.; Wu, Q.; Feng, C.; Shang, N.; Wang, C. Immobilizing AgPd Alloy on Vulcan XC-72 Carbon: A Novel Catalyst for Highly Efficient Hydrogen Generation from Formaldehyde Aqueous Solution. RSC Adv. 2016, 6, 105638–105643. DOI: 10.1039/C6RA22761A.
  • Wang, Z. L.; Yan, J. M.; Wang, H. L.; Ping, Y.; Jiang, Q. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/sodium Formate. Sci. Rep. 2012, 2, 203–598. DOI: 10.1038/srep00598.
  • Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Nielsen, M.; Brückner, A, et al. Heterogenized Cobalt Oxide Catalysts for Nitroarene Reduction by Pyrolysis of Molecularly Defined Complexes. Nature Chem. 2013, 5, 537–543. DOI: 10.1038/nchem.1645.
  • Liu, W.; Zhang, L.; Yan, W.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T. Single-atom Dispersed Co–N–C Catalyst: Structure Identification and Performance for Hydrogenative Coupling of Nitroarenes. Chem. Sci. 2016, 7, 5758–5764. DOI: 10.1039/C6SC02105K.
  • Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schunemann, V.; Bruckner, A.; Beller, M. Nanoscale Fe2O3-based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science. 2013, 342, 1073–1076.
  • Chen, J.; Yao, Y.; Zhao, J.; Zhao, Y.; Zheng, Y.; Li, M.; Yang, Q. A Highly Active Non-precious Metal Catalyst Based on Fe–N–C@ CNTs for Nitroarene Reduction. RSC Adv. 2016, 6, 96203–96209.
  • Zhang, L.; Liu, X.; Zhou, X.; Gao, S.; Shang, N.; Feng, C.; Wang, C. Ultrafine Pd Nanoparticles Anchored on Nitrogen-doping Carbon for Boosting Catalytic Transfer Hydrogenation of Nitroarenes. ACS Omega. 2018, 3, 10843–10850. DOI: 10.1021/acsomega.8b01141.
  • Liu, L.; Concepcion, P.; Corma, A. Non-noble Metal Catalysts for Hydrogenation: A Facile Method for Preparing Co Nanoparticles Covered with Thin Layered Carbon. J. Catal. 2016, 340, 1–9. DOI: 10.1016/j.jcat.2016.04.006.
  • Liu, L.; Gao, F.; Concepción, P.; Corma, A. A New Strategy to Transform Mono and Bimetallic Non-noble Metal Nanoparticles into Highly Active and Chemoselective Hydrogenation Catalysts. J. Catal. 2017, 350, 218–225. DOI: 10.1016/j.jcat.2017.03.014.
  • Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120, 683–733. DOI: 10.1021/acs.chemrev.9b00230.
  • Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing Oxide Reducibility: The Role of Metal/oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catal. 2017, 7, 6493–6513. DOI: 10.1021/acscatal.7b01913.
  • Jupille, J.; Thornton, G. In Defects at Oxide Surfaces; Heidelberg: Germany,Springer:, 2015.
  • Gawande, M. B.; Pandey, R. K.; Jayaram, R. V. Role of Mixed Metal Oxides in Catalysis Science−versatile Applications in Organic Synthesis. Catal. Sci. Technol. 2012, 2, 1113–1125. DOI: 10.1039/c2cy00490a.
  • Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong Interactions in Supported-metal Catalysts. Science. 1981, 211, 1121–1125. DOI: 10.1126/science.211.4487.1121.
  • Bagheri, S.; Muhd Julkapli, N.; Bee Abd Hamid, S. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. Sci. World J. 2014, 2014, 1–21. DOI: 10.1155/2014/727496).
  • Kim, T. S.; Stiehl, J. D.; Reeves, C. T.; Meyer, R. J.; Mullins, C. B. Cryogenic CO Oxidation on TiO2-supported Gold Nanoclusters Pre-covered with Atomic Oxygen. J. Am. Chem. Soc. 2003, 125, 2018–2019. DOI: 10.1021/ja028719p.
  • Oi, L. E.; Choo, M. Y.; Lee, H. V.; Ong, H. C.; Hamid, S. B. A.; Juan, J. C. Recent Advances of Titanium Dioxide (Tio2) for Green Organic Synthesis. RSC Adv. 2016, 6, 108741–108754. DOI: 10.1039/C6RA22894A.
  • Manyar, H. G.; Paun, C.; Pilus, R.; Rooney, D. W.; Thompson, J. M.; Hardacre, C. Highly Selective and Efficient Hydrogenation of Carboxylic Acids to Alcohols Using Titania Supported Pt Catalysts. Chem. Commun. 2010, 46, 6279–6281. DOI: 10.1039/c0cc01365j.
  • Yan, W.; Mahurin, S. M.; Pan, Z.; Overbury, S. H.; Dai, S. Ultra-stable Au Nanocatalyst Supported on Surface-modified TiO2 Nanocrystals. J. Am. Chem. Soc. 2005, 127, 10480–10481. DOI: 10.1021/ja053191k.
  • Manr´ıquez, M. E. ;.; Opez, T. L.; Omez, R. G.; Navarrete, J. Preparation of TiO2–ZrO2 Mixed Oxides with Controlled Acid–basic Properties. J. Mol. Catal. A Chem. 2004, 220, 229–237. DOI: 10.1016/j.molcata.2004.06.003.
  • Makosch, M.; Lin, W. I.; Bumbálek, V.; Sá, J.; Medlin, J. W.; Hungerbühler, K.; van Bokhoven, J. A. Organic Thiol Modified Pt/TiO2 Catalysts to Control Chemoselective Hydrogenation of Substituted Nitroarenes. ACS Catal. 2012, 2, 2079–2081. DOI: 10.1021/cs300378p.
  • Bartholomew, C. H. Mechanisms of Catalyst Deactivation. Appl. Catal., A. 2001, 212, 17–60. DOI 10.1016/S0926-860X(00)00843-7.
  • Chen, P.; Khetan, A.; Yang, F.; Migunov, V.; Weide, P.; Stürmer, S. P.; Guo, P.; Kahler, K.; Xia, W.; Mayer, J, et al. Experimental and Theoretical Understanding of Nitrogen-doping-induced Strong Metal–support Interactions in Pd/TiO2 Catalysts for Nitrobenzene Hydrogenation. ACS Catal. 2017, 7, 1197–1206.
  • Raj, K. J. A.; Prakash, M. G.; Mahalakshmy, R.; Elangovan, T.; Viswanathan, B. Liquid Phase Hydrogenation of Nitrobenzene over Nickel Supported on Titania. Chin. J. Catal. 2012, 33, 1299–1305. DOI: 10.1016/S1872-2067(11)60398-7.
  • Shukla, A.; Singha, R. K.; Sasaki, T.; Adak, S.; Bhandari, S.; Prasad, V. V. D. N.; Bordoloi, A.; Bal, R. Room Temperature Selective Reduction of Nitroarenes to Azoxy Compounds over Ni-TiO2 Catalyst. Mol. Catal. 2020, 490, 110943–110953.
  • Qu, R.; Macino, M.; Iqbal, S.; Gao, X.; He, Q.; Hutchings, G. J.; Sankar, M. Supported Bimetallic AuPd Nanoparticles as a Catalyst for the Selective Hydrogenation of Nitroarenes. Nanomaterials. 2018, 8, 690–700. DOI: 10.3390/nano8090690.
  • Zou, L.; Cui, Y.; Dai, W. Highly Efficient Au/TiO2 Catalyst for One‐pot Conversion of Nitrobenzene to p‐Aminophenol in Water Media. Chin. J. Chem. 2014, 32, 257–262. DOI: 10.1002/cjoc.201300875.
  • Kuhaudomlap, S.; Mekasuwandumrong, O.; Praserthdam, P.; Fujita, S. I.; Arai, M.; Panpranot, J. The H2-Treated TiO2 Supported Pt Catalysts Prepared by Strong Electrostatic Adsorption for Liquid-Phase Selective Hydrogenation. Catalysts. 2018, 8, 87–98. DOI: 10.3390/catal8020087.
  • Fujita, S. I.; Yoshida, H.; Asai, K.; Meng, X.; Arai, M. Selective Hydrogenation of Nitrostyrene to Aminostyrene over Pt/TiO2 Catalysts: Effects of Pressurized Carbon Dioxide and Catalyst Preparation Conditions. J. Supercrit. Fluids. 2011, 60, 106–112. DOI: 10.1016/j.supflu.2011.02.016.
  • Yoshida, H.; Igarashi, N.; Fujita, S. I.; Panpranot, J.; Arai, M. Influence of Crystallite Size of TiO2 Supports on the Activity of Dispersed Pt Catalysts in Liquid-phase Selective Hydrogenation of 3-nitrostyrene, Nitrobenzene and Styrene. Catal. Lett. 2014, 145, 606–611. DOI: 10.1007/s10562-014-1404-4.
  • Pisduangdaw, S.; Mekasuwandumrong, O.; Yoshida, H.; Fujita, S. I.; Arai, M.; Panpranot, J. Flame-made Pt/TiO2 Catalysts for the Liquid-phase Selective Hydrogenation of 3-nitrostyrene. Appl. Catal. A. 2015, 490, 193–200. DOI: 10.1016/j.apcata.2014.10.002.
  • Varkolu, M.; Velpula, V.; Pochamoni, R.; Muppala, A. R.; Burri, D. R.; Kamaraju, S. R. R. Nitrobenzene Hydrogenation over Ni/TiO2 Catalyst in Vapour Phase at Atmospheric Pressure: Influence of Preparation Method. Appl. Petrochem. Res. 2016, 6, 15–23. DOI: 10.1007/s13203-015-0115-0.
  • González-Vera, D.; Bustamante, T. M.; de León, J. D.; Dinamarca, R.; Morales, R.; Osorio-Vargas, P. A.; Torres, C. C., and Campos, C. H. Chemoselective Nitroarene Hydrogenation over Ni-Pd Alloy Supported on TiO2 Prepared from Ilmenite-type PdxNi1−xTiO3. Mater. Today Commun. 2020, 24, 101091–101112. DOI: 10.1016/j.mtcomm.2020.101091.
  • Corma, A.; Serna, P.; Concepción, P.; Calvino, J. J. Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748–8753. DOI: 10.1021/ja800959g.
  • Sharma, R. K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R. S.; Gawande, M. B. Fe3O4 (Iron Oxide)-supported Nanocatalysts: Synthesis, Characterization and Applications in Coupling Reactions. Green Chem. 2016, 18, 3184–3209. DOI: 10.1039/C6GC00864J.
  • Shifrina, Z. B.; Bronstein, L. M. Magnetically Recoverable Catalysts: Beyond Magnetic Separation. Front. Chem. 2018, 6, 298. DOI: 10.3389/fchem.2018.00298.
  • Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397. DOI: 10.1007/s11671-008-9174-9.
  • Niu, H.; Lu, J.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Iron Oxide as a Catalyst for Nitroarene Hydrogenation: Important Role of Oxygen Vacancies. Ind. Eng. Chem. Res. 2016, 55, 8527–8533. DOI: 10.1021/acs.iecr.6b00984.
  • Ma, Y.; Zhang, L.; Shi, W.; Niu, Y.; Zhang, B.; Su, D. Facile-fabricated Iron Oxide Nanorods as a Catalyst for Hydrogenation of Nitrobenzene. Chin. J. Catal. 2019, 30, 183–186.
  • Lin, F. H.; Doong, R. A. Bifunctional Au−Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction. J. Phys. Chem. C. 2011, 115, 6591–6598. DOI: 10.1021/jp110956k.
  • Jing, P.; Gan, T.; Qi, H.; Zheng, B.; Chu, X.; Yu, G.; Yan, W.; Zou, Y.; Zhang, W.; Liu, G. Synergism of Pt Nanoparticles and Iron Oxide Support for Chemoselective Hydrogenation of Nitroarenes under Mild Conditions. Chin. J. Catal. 2019, 40, 214–222. DOI 10.1016/S1872-2067(19)63276-6.
  • Wei, H.; Liu, X.; Wang, A.; Zhang, L.; Qiao, B.; Yang, X.; Huang, Y.; Miao, S.; Liu, J.; Zhang, T. FeOx-supported Platinum Single-atom and Pseudo-single-atom Catalysts for Chemoselective Hydrogenation of Functionalized Nitroarenes. Nat. Commun. 2014, 5, 5634. DOI: 10.1038/ncomms6634.
  • Byun, S.; Song, Y.; Kim, B. M. Heterogenized Bimetallic Pd–Pt–Fe3O4 Nanoflakes as Extremely Robust, Magnetically Recyclable Catalysts for Chemoselective Nitroarene Reduction. ACS Appl. Mater. Interfaces. 2016, 8, 14637–14647. DOI: 10.1021/acsami.6b05229.
  • Easterday, R.; Sanchez-Felix, O.; Losovyj, Y.; Pink, M.; Stein, B. D.; Morgan, D. G.; Rakitin, M.; Yu, V.; Sulman, D. M. G.; Mahmoud, W. E, et al. Design of Ruthenium/iron Oxide Nanoparticle Mixtures for Hydrogenation of Nitrobenzene. Catal. Sci. Technol. 2015, 5, 1902–1910. DOI: 10.1039/C4CY01277A.
  • Pélisson, C. H.; Denicourt‐Nowicki, A.; Meriadec, C.; Greneche, J. M.; Roucoux, A. Magnetically Recoverable Palladium (0) Nanocomposite Catalyst for Hydrogenation Reactions in Water. ChemCatChem. 2015, 7, 309–315. DOI: 10.1002/cctc.201402761.
  • Biglione, C.; Cappelletti, A. L.; Strumia, M. C.; Martín, S. E.; Uberman, P. M. Magnetic Pd Nanocatalyst Fe3O4@Pd for C–C Bond Formation and Hydrogenation Reactions. J. Nanopart. Res. 2018, 20, 127–142. DOI: 10.1007/s11051-018-4233-3.
  • Shokouhimehr, M. Magnetically Separable and Sustainable Nanostructured Catalysts for Heterogeneous Reduction of Nitroaromatics. Catalysts. 2015, 5, 534–560. DOI: 10.3390/catal5020534.
  • Shukla, A.; Singha, R. K.; Sasaki, T.; Prasad, V. V.; Bal, R. Synthesis of Highly Active Pd Nanoparticles Supported Iron Oxide Catalyst for Selective Hydrogenation and Cross‐Coupling Reactions in Aqueous Medium. ChemistrySelect. 2019, 4, 5019–5032. DOI: 10.1002/slct.201900358.
  • Gawande, M. B.; Rathi, A. K.; Branco, P. S.; Nogueira, I. D.; Velhinho, A.; Shrikhande, J. J.; Indulkar, U. U.; Jayaram, R. V.; Ghumman, C. A. A.; Bundaleski, N, et al. Regio‐and Chemoselective Reduction of Nitroarenes and Carbonyl Compounds over Recyclable Magnetic Ferrite-Nickel Nanoparticles (Fe3o4- Ni) by Using Glycerol as a Hydrogen Source. Chem. - Eur. J. 2012, 18, 12628–12632. DOI: 10.1002/chem.201202380.
  • Jiang, T.; Du, S.; Jafari, T.; Zhong, W.; Sun, Y.; Song, W.; Luo, Z.; Hines, W. A.; Suib, S. L. Synthesis of Mesoporous γ-Fe2O3 Supported Palladium Nanoparticles and Investigation of Their Roles as Magnetically Recyclable Catalysts for Nitrobenzene Hydrogenation. Appl. Catal., A. 2015, 502, 105–113. DOI: 10.1016/j.apcata.2015.05.013.
  • Zhang, R.; Liu, J.; Li, F.; Wu, S.; Xia, C.; Sun, W. Magnetically Separable and Versatile Pd/Fe3O4 Catalyst for Efficient Suzuki Cross‐Coupling Reaction and Selective Hydrogenation of Nitroarenes. Chin. J. Chem. 2011, 29, 525–530.
  • Zeynizadeh, B.; Mohammadzadeh, I.; Shokri, Z.; Hosseini, S. A. Synthesis and Characterization of NiFe2O4@Cu Nanoparticles as a Magnetically Recoverable Catalyst for Reduction of Nitroarenes to Arylamines with NaBH4. J. Colloid Interface Sci. 2017, 500, 285–293. DOI: 10.1016/j.jcis.2017.03.030.
  • Patra, A. K.; Vo, N. T.; Kim, D. Highly Robust Magnetically Recoverable Ag/Fe2O3 Nanocatalyst for Chemoselective Hydrogenation of Nitroarenes in Water. Appl. Catal., A. 2017, 538, 148–156. DOI 10.1016/j.apcata.2017.03.007.
  • Naaz, F.; Farooq, U., and Ahmad, T. Ceria as an Efficient Nanocatalyst for Organic Transformations. In I. Sinha, & M. Shukla (Eds.), Nanocatalysts. IntechOpen. 2019. DOI: 10.5772/intechopen.82688.
  • Rodriguez, J. A.; Grinter, D. C.; Liu, Z.; Palomino, R. M.; Senanayake, S. D. Ceria-based Model Catalysts: Fundamental Studies on the Importance of the Metal–ceria Interface in CO Oxidation, the Water–gas Shift, CO2 Hydrogenation, and Methane and Alcohol Reforming. Chem. Soc. Rev. 2017, 46, 1824–1841. DOI: 10.1039/C6CS00863A.
  • Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-based Materials. Chem. Rev. 2016, 116, 5987–6041. DOI: 10.1021/acs.chemrev.5b00603.
  • Segura, Y.; Lopez, N; Perez-Ramirez, J. Origin of the Superior Hydrogenation Selectivity of Gold Nanoparticles in Alkyne + Alkene Mixtures: Triple- versus Double-Bond Activation. J. Catal. 2007, 247, 383–386. DOI: 10.1016/j.jcat.2007.02.019.
  • Azizi, Y.; Petit, C.; Pitchon, V. Formation of Polymer-Grade Ethylene by Selective Hydrogenation of Acetylene over Au/CeO2. Catalyst. J. Catal. 2008, 256, 338–344.
  • Zhu, H. Z.; Lu, Y. M.; Fan, F. J.; Yu, S. H. Selective Hydrogenation of Nitroaromatics by Ceria Nanorods. Nanoscale. 2013, 5, 7219–7223. DOI: 10.1039/c3nr02662k.
  • Vile, G.; Wrabetz, S.; Floryan, L.; Schuster, M. E.; Girgsdies, F.; Teschner, D.; Perez-Ramírez, J. Stereo- and Chemoselective Character of Supported CeO2 Catalysts for Continuous-Flow Three-Phase Alkyne Hydrogenation. ChemCatChem. 2014, 6, 1928–1934. DOI: 10.1002/cctc.201402124.
  • Shi, X.; Wang, X.; Shang, X.; Zou, X.; Ding, W.; Lu, X. High Performance and Active Sites of a Ceria‐Supported Palladium Catalyst for Solvent‐Free Chemoselective Hydrogenation of Nitroarenes. ChemCatChem. 2017, 9, 3743–3751. DOI: 10.1002/cctc.201700631.
  • Wei, Q.; Ma, Q.; Zuo, P.; Fan, H.; Qu, S.; Shen, W. Hollow Structure and Electron Promotion Effect of Mesoporous Pd/CeO2 Catalyst for Enhanced Catalytic Hydrogenation. ChemCatChem. 2018, 10, 1019–1026. DOI: 10.1002/cctc.201701457.
  • Shukla, A.; Singha, R. K.; Sasaki, T; Bal, R. Nanocrystalline Pt-CeO2 as an Efficient Catalyst for a Room Temperature Selective Reduction of Nitroarenes. Green Chem. 2015, 17, 785–790. DOI 10.1039/C4GC01664E.
  • She, W.; Qi, T.; Cui, M.; Yan, P.; Ng, S. W.; Li, W.; Li, G. High Catalytic Performance of a CeO2-supported Ni Catalyst for Hydrogenation of Nitroarenes, Fabricated via Coordination-assisted Strategy. ACS Appl. Mater. Interfaces. 2018, 10, 14698–14707. DOI: 10.1021/acsami.8b01187.
  • Hao, P.; Xie, M.; Chen, S.; Li, M.; Bi, F.; Zhang, Y.; Lin, M.; Guo, X.; Ding, W.; Guo, X. Surrounded Catalysts Prepared by Ion-exchange Inverse Loading. Sci. Adv. 2020, 6, 7031–7040. DOI 10.1126/sciadv.aay7031.
  • Makosch, M.; Sa, J.; Kartusch, C.; Richner, G.; van Bokhoven, J. A.; Hungerbühler, K. Hydrogenation of Nitrobenzene over Au/MeOx Catalysts—A Matter of the Support. ChemCatChem. 2012, 4, 59–63. DOI: 10.1002/cctc.201100299.
  • Li, H. Q.; Liu, X.; Zhang, Q.; Li, S. S.; Liu, Y. M.; He, H. Y.; Cao, Y. Deoxygenative Coupling of Nitroarenes for the Synthesis of Aromatic Azo Compounds with CO Using Supported Gold Catalysts. Chem. Commun. 2015, 51, 11217–11220. DOI: 10.1039/C5CC03134F.
  • Li, J.; Song, S.; Long, Y.; Wu, L.; Wang, X.; Xing, Y.; Zhang, H.; Liu, X.; Zhang, H. Investigating the Hybrid-Structure-Effect of CeO 2 -encapsulated Au Nanostructures on the transfer Coupling of nitrobenzene. Adv. Mater. 2018, 30, 1704416–1704422. DOI: 10.1002/adma.201704416.
  • Liu, X.; Ye, S.; Li, H. Q.; Liu, Y. M.; Cao, Y.; Fan, K. N. Mild, Selective and Switchable Transfer Reduction of Nitroarenes Catalysed by Supported Gold Nanoparticles. Catal. Sci. Technol. 2013, 3, 3200–3206. DOI: 10.1039/c3cy00533j.
  • Combita, D.; Concepción, P.; Corma, A. Gold Catalysts for the Synthesis of Aromatic Azocompounds from Nitroaromatics in One Step. J. Catal. 2014, 311, 339–349. DOI: 10.1016/j.jcat.2013.12.014.
  • Bailie, J. E.; Hutchings, G. J., and O’Leary, S. Supported Catalysts. Encyclopedia of Materials: Science and Technology; Elsevier Amsterdam; The Netherlands, 2001, 8986−8990. DOI:10.1016/B0-08-043152-6/01620-X.
  • Kalita, G. D.; Sarmah, P. P.; Saikia, P. K.; Saikia, L.; Das, P. Selective Hydrogenation of Nitroarenes to Amines by Ligand-assisted Pd Nanoparticles: Influence of Donor Ligands on Catalytic Activity. New J. Chem. 2019, 43, 4253–4260. DOI: 10.1039/C8NJ05932B.
  • Ryabchuk, P.; Agostini, G.; Pohl, M. M.; Lund, H.; Agapova, A.; Junge, H.; Junge, K.; Beller, M. Intermetallic Nickel Silicide nanocatalyst−A Non-noble Metal–based General Hydrogenation Catalyst. Sci. Adv. 2018, 4, eaat0761. DOI 10.1126/sciadv.aat0761.
  • Wei, N.; Zou, X.; Huang, H.; Wang, X.; Ding, W.; Lu, X. Preparation of Well‐Ordered Mesoporous‐Silica‐Supported Ruthenium Nanoparticles for Highly Selective Reduction of Functionalized Nitroarenes through Transfer Hydrogenation. Eur. J. Org. Chem. 2018, 2018, 209–214. DOI: 10.1002/ejoc.201701228.
  • Yu, X.; Wang, M.; Li, H. Study on the Nitrobenzene Hydrogenation over a Pd-B/SiO2 Amorphous Catalyst. Appl. Catal., A. 2000, 202, 17–22. DOI: 10.1016/S0926-860X(00)00454-3.
  • Liu, Z.; Li, Y.; Huang, X.; Zuo, J.; Qin, Z.; Xu, C. Preparation and Characterization of Ni-B/SiO2 Sol Amorphous Catalyst and Its Catalytic Activity for Hydrogenation of Nitrobenzene. Catal. Commun. 2016, 85, 17–21. DOI: 10.1016/j.catcom.2016.07.008.
  • Xu, D.; Lv, H.; Liu, B. Encapsulation of Metal Nanoparticle Catalysts within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review. Front. Chem. 2018, 6, 550. DOI: 10.3389/fchem.2018.00550.
  • Zhang, J.; Wang, L.; Shao, Y.; Wang, Y.; Gates, B. C.; Xiao, F. S. A Pd@ Zeolite Catalyst for Nitroarene Hydrogenation with High Product Selectivity by Sterically Controlled Adsorption in the Zeolite Micropores. Angew. Chem. Int. Ed. 2017, 56, 9747–9751.
  • Zhang, Y.; Fulajtárová, K.; Kubů, M.; Mazur, M.; Hronec, M.; Čejka, J. Electronic/steric Effects in Hydrogenation of Nitroarenes over the Heterogeneous Pd@ BEA and Pd@ MWW Catalysts. Catal. Today. 2020, 345, 39–47. DOI: 10.1016/j.cattod.2019.11.020.
  • Cui, T. L.; Ke, W. Y.; Zhang, W. B.; Wang, H. H.; Li, X. H.; Chen, J. S. Encapsulating Palladium Nanoparticles inside Mesoporous MFI Zeolite Nanocrystals for Shape‐Selective Catalysis. Angew. Chem. Int. Ed. 2016, 55, 9178–9182. DOI 10.1002/anie.201602429.
  • Mazaheri, O.; Kalbasi, R. J. Preparation and Characterization of Ni/mZSM-5 Zeolite with a Hierarchical Pore Structure by Using KIT-6 as Silica Template: An Efficient Bi-functional Catalyst for the Reduction of Nitro Aromatic Compounds. RSC Adv. 2015, 5, 34398–34414. DOI 10.1039/C5RA02349A.
  • Romanazzi, G.; Mastrorilli, P.; Latronico, M.; Mali, M.; Nacci, A.; Delľanna, M. M. Catalytic Activities of Heterogeneous Catalysts Obtained by Copolymerization of Metal-containing 2-(acetoacetoxy) Ethyl Methacrylate. Open Chem. 2018, 16, 520–534. DOI: 10.1515/chem-2018-0055.
  • Schlick, S.; Bortel, E.; Dyrek, K. Catalysis on Polymer Supports. Acta Polym. 1996, 47, 1–15. DOI: 10.1002/actp.1996.010470101.
  • Sreedhar, B.; Devi, D. K.; Yada, D. Selective Hydrogenation of Nitroarenes Using Gum Acacia Supported Pt Colloid an Effective Reusable Catalyst in Aqueous Medium. Catal. Commun. 2011, 12, 1009–1014. DOI: 10.1016/j.catcom.2011.02.027.
  • Dell’Anna, M. M.; Intini, S.; Romanazzi, G.; Rizzuti, A.; Leonelli, C.; Piccinni, F.; Mastrorilli, P. Polymer Supported Palladium Nanocrystals as Efficient and Recyclable Catalyst for the Reduction of Nitroarenes to Anilines under Mild Conditions in Water. J. Mol. Catal. A Chem. 2014, 395, 307–314. DOI 10.1016/j.molcata.2014.08.033.
  • Romanazzi, G.; Fiore, A. M.; Mali, M.; Rizzuti, A.; Leonelli, C.; Nacci, A.; Mastrorilli, P.; Dell’Anna, M. M. Polymer Supported Nickel Nanoparticles as Recyclable Catalyst for the Reduction of Nitroarenes to Anilines in Aqueous Medium. Mol. Catal. 2018, 446, 31–38.
  • Dell’Anna, M. M.; Gallo, V.; Mastrorilli, P.; Romanazzi, G. A Recyclable Nanoparticle-supported Rhodium Catalyst for Hydrogenation Reactions. Molecules. 2010, 15, 3311–3318. DOI 10.3390/molecules15053311.
  • Wen, H.; Yao, K.; Zhang, Y.; Zhou, Z.; Kirschning, A. Catalytic Transfer Hydrogenation of Aromatic Nitro Compounds in Presence of Polymer-supported Nano-amorphous Ni–B Catalyst. Catal. Commun. 2009, 10, 1207–1211. DOI: 10.1016/j.catcom.2009.01.030.
  • Chu, C.; Su, Z. Facile Synthesis of AuPt Alloy Nanoparticles in Polyelectrolyte Multilayers with Enhanced Catalytic Activity for Reduction of 4-nitrophenol. Langmuir. 2014, 30, 15345–15350. DOI 10.1021/la5042019.
  • Doherty, S.; Knight, J. G.; Backhouse, T.; Bradford, A.; Saunders, F.; Bourne, R. A.; Chamberlain, T. W.; Stones, R.; Clayton, A.; Lovelock, K. Highly Efficient Aqueous Phase Reduction of Nitroarenes Catalysed by Phosphine-decorated Polymer Immobilized Ionic Liquid Stabilized PdNPs. Catal. Sci. Technol. 2018, 8, 1454–1467. DOI: 10.1039/C7CY02557B.
  • Lei, Y.; Chen, Z.; Lan, G.; Wang, R.; Zhou, X. Y. Pd Nanoparticles Stabilized with Phosphine-functionalized Porous Ionic Polymer for Efficient Catalytic Hydrogenation of Nitroarenes in Water. New J. Chem. 2020, 44, 3681–3689. DOI 10.1039/C9NJ05734J.
  • Li, J.; Wang, Y.; Jin, X.; Wang, Y.; Li, H. Poly (Amic Acid) Salt‐mediated Palladium and Platinum Nanoparticles as Highly Active and Recyclable Catalysts for Hydrogenation of Nitroarenes in Water under Ambient Conditions. Appl. Organomet. Chem. 2019, 33, e4717. DOI: 10.1002/aoc.4717.
  • Wang, X.; Huang, C.; Li, X.; Xie, C.; Yu, S. PVA‐encapsulated Palladium Nanoparticles: Eco‐friendly and Highly Selective Catalyst for Hydrogenation of Nitrobenzene in Aqueous Medium. Chem. Asian J. 2019, 14, 2266–2272. DOI: 10.1002/asia.201900333.
  • Guo, M.; Li, H.; Ren, Y.; Ren, X.; Yang, Q.; Li, C. Improving Catalytic Hydrogenation Performance of Pd Nanoparticles by Electronic Modulation Using Phosphine Ligands. ACS Catal. 2018, 8, 6476–6485.
  • Xu, K.; Zhang, Y.; Chen, X.; Huang, L.; Zhang, R.; Huang, J. Convenient and Selective Hydrogenation of Nitro Aromatics with a Platinum Nanocatalyst under Ambient Pressure. Adv. Synth. Catal. 2011, 353, 1260–1264. DOI: 10.1002/adsc.201100007.
  • Magdalene, R. M.; Leelamani, E. G.; Gowda, N. N. Hydrogenation of Nitroarenes Using Polybenzimidazole-supported Rhodium Catalyst. J. Mol. Catal. A Chem. 2004, 223, 17–20. DOI 10.1016/j.molcata.2003.12.041.
  • Cárdenas-Lizana, F.; Berguerand, C.; Yuranov, I.; Kiwi-Minsker, L. Chemoselective Hydrogenation of Nitroarenes: Boosting Nanoparticle Efficiency by Confinement within Highly Porous Polymeric Framework. J. Catal. 2013, 301, 103–111. DOI 10.1016/j.jcat.2013.01.021.
  • Sadjadi, S.; Koohestani, F. Pd Immobilized on Polymeric Network Containing Imidazolium Salt, Cyclodextrin and Carbon Nanotubes: Efficient and Recyclable Catalyst for the Hydrogenation of Nitroarenes in Aqueous Media. J. Mol. Liq. 2020, 301, 112414. DOI 10.1016/j.molliq.2019.112414.
  • Cai, X.; Nie, J.; Yang, G.; Wang, F.; Ma, C.; Lu, C.; Chen, Z. Phosphorus-rich Network Polymer Supported Ruthenium Nanoparticles for Nitroarene Reduction. Mater. Lett. 2019, 240, 80–83. DOI 10.1016/j.matlet.2018.12.140.
  • Guo, M.; Li, H.; Ren, Y.; Ren, X.; Yang, Q.; Li, C. Improving Catalytic Hydrogenation Performance of Pd Nanoparticles by Electronic Modulation Using Phosphine Ligands. ACS Catal. 2018, 8, 6476–6485. DOI: 10.1021/acscatal.8b00872.
  • Ding, S. Y.; Wang, W. Covalent Organic Frameworks (Cofs): From Design to Applications. Chem. Soc. Rev. 2013, 42, 548–568. DOI: 10.1039/C2CS35072F.
  • Zeng, Y.; Zou, R.; Luo, Z.; Zhang, H.; Yao, X.; Ma, X.; Zou, R.; Zhao, Y. Covalent Organic Frameworks Formed with Two Types of Covalent Bonds Based on Orthogonal Reactions. J. Am. Chem. Soc. 2015, 137, 1020–1023. DOI 10.1021/ja510926w.
  • Huang, N.; Chen, X.; Krishna, R.; Jiang, D. Two‐dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel‐wall Functionalization. Angew. Chem. Int. Ed. 2015, 54, 2986–2990.
  • Gomes, R.; Bhanja, P.; Bhaumik, A. A Triazine-based Covalent Organic Polymer for Efficient CO2 Adsorption. Chem. Commun. 2015, 51, 10050–10053. DOI 10.1039/C5CC02147B.
  • Li, Z.; Feng, X.; Zou, Y.; Zhang, Y.; Xia, H.; Liu, X.; Mu, Y. A 2D Azine-linked Covalent Organic Framework for Gas Storage Applications. Chem. Commun. 2014, 50, 1382–13825. DOI: 10.1039/C4CC05665E.
  • Vijay, S. V.; Medhavi, V.; Igor, M.; Frederik, H.; Gokcen, S.; Christian, O.; Joachim, P. S.; Bettina, V. L. Exploiting Noncovalent Interactions in an Imine-Based Covalent Organic Framework for Quercetin Delivery. Adv. Mater. 2016, 28, 8749–8754. DOI 10.1002/adma.201603006.
  • Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A Hydrazone-based Covalent Organic Framework for Photocatalytic Hydrogen Production. Chem. Sci. 2014, 5, 2789–2793. DOI: 10.1039/C4SC00016A.
  • Liu, G.; Sheng, J.; Zhao, Y. Chiral Covalent Organic Frameworks for Asymmetric Catalysis and Chiral Separation. Sci. China: Chem. 2017, 60, 1015–1022. DOI: 10.1007/s11426-017-9070-1.
  • Long, J.; Liu, H.; Wu, S.; Liao, S.; Li, Y. Selective Oxidation of Saturated Hydrocarbons Using Au–Pd Alloy Nanoparticles Supported on Metal–organic Frameworks. ACS Catal. 2013, 3, 647–654. DOI: 10.1021/cs300754k.
  • Sadhasivam, V.; Mariyappan, M.; Siva, A. Porous Triazine Containing Covalent Organic Polymer Supported Pd Nanoparticles: A Stable and Efficient Heterogeneous Catalyst for Sonogashira Cross‐Coupling and the Reduction of Nitroarenes. ChemistrySelect. 2018, 3, 13442–13455. DOI: 10.1002/slct.201802977.
  • Yuan, M.; Yang, R.; Wei, S.; Hu, X.; Xu, D.; Yang, J.; Dong, Z. Ultra-fine Pd Nanoparticles Confined in A Porous Organic Polymer: A Leaching-and-aggregation-resistant Catalyst for the Efficient Reduction of Nitroarenes by NaBH4. J. Colloid Interface Sci. 2019, 538, 720–730. DOI: 10.1016/j.jcis.2018.11.065.
  • Li, J.; Zhang, L.; Liu, X.; Shang, N.; Gao, S.; Feng, C.; Wang, C.; Wang, Z. Pd Nanoparticles Supported on a Covalent Triazine-based Framework Material: An Efficient and Highly Chemoselective Catalyst for the Reduction of Nitroarenes. New J. Chem. 2018, 42, 9684–9689.
  • Shi, X.; Yao, Y.; Xu, Y.; Liu, K.; Zhu, G.; Chi, L.; Lu, G. Imparting Catalytic Activity to a Covalent Organic Framework Material by Nanoparticle Encapsulation. ACS Appl. Mater. Interfaces. 2017, 9, 7481–7488. DOI: 10.1021/acsami.6b16267.
  • Emadi, F.; Nemati, F; Elhampour, A. Silver Nanoparticles Supported on Mesoporous Triazine Carbon Material: A Versatile Catalyst for Reduction of Nitroaromatic Compounds. ChemistrySelect. 2020, 5, 4328–4336. DOI 10.1002/slct.202000645.
  • Rodríguez‐San‐Miguel, D.; Yazdi, A.; Guillerm, V. J. P.; Puntes, V.; Maspoch, D.; Zamora, F.; Zamora, F. Confining Functional Nanoparticles into Colloidal Imine‐Based COF Spheres by a Sequential Encapsulation–Crystallization Method. Chem. - Eur. J. 2017, 23, 8623–8627. DOI 10.1002/chem.201702072.
  • Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. DOI 10.1021/ja00146a033.
  • Subramanian, S.; Zaworotko, M. J. Porous Solids by design:[Zn (4,4′‐bpy)2(sif 6)]n·xDMF, a Single Framework Octahedral Coordination Polymer with Large Square Channels. Angew. Chem. Int. Ed. Engl. 1995, 34, 2127–2129. DOI 10.1002/anie.199521271.
  • Kepert, C. J.; Rosseinsky, M. J. A Porous Chiral Framework of Coordinated 1, 3, 5-benzenetricarboxylate: Quadruple Interpenetration of the (10, 3)-A Network. Chem. Commun. 1998, 31–32. doi:10.1039/a705336c.
  • Janiak, C.; Vieth, J. K. MOFs, MILs and More: Concepts, Properties and Applications for Porous Coordination Networks (Pcns). New J. Chem. 2010, 34, 2366–2388.
  • Kim, C. R.; Uemura, T; Kitagawa, S. Inorganic Nanoparticles in Porous Coordination Polymers. Chem. Soc. Rev. 2016, 45, 3828–3845. DOI 10.1039/C5CS00940E.
  • Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H. C. Tuning the Topology and Functionality of Metal− Organic Frameworks by Ligand Design. Acc. Chem. Res. 2011, 44, 123–133. DOI: 10.1021/ar100112y.
  • Cohen, S. M. Postsynthetic Methods for the Functionalization of Metal–organic Frameworks. Chem. Rev. 2012, 112, 970–1000. DOI: 10.1021/cr200179u.
  • Lin, Z. J.; Lü, J.; Hong, M.; Cao, R. Metal–organic Frameworks Based on Flexible Ligands (Fl-mofs): Structures and Applications. Chem. Soc. Rev. 2014, 43, 5867–5895. DOI: 10.1039/C3CS60483G.
  • Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Y. Applications of Metal–organic Frameworks in Heterogeneous Supramolecular Catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. DOI: 10.1039/C4CS00094C.
  • Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal–organic Frameworks Catalysed C–C and C–heteroatom Coupling Reactions. Chem. Soc. Rev. 2015, 44, 1922–1947. DOI: 10.1039/C4CS00254G.
  • Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional Metal–organic Framework Catalysts: Synergistic Catalysis and Tandem Reactions. Chem. Soc. Rev. 2017, 46, 126–157. DOI: 10.1039/C6CS00250A.
  • Liu, Y.; Xuan, W.; Cui, Y. Engineering Homochiral Metal‐organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation. Adv. Mater. 2010, 22, 4112–4135. DOI: 10.1002/adma.201000197.
  • Zhang, T.; Lin, W. Metal–organic Frameworks for Artificial Photosynthesis and Photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993. DOI: 10.1039/C4CS00103F.
  • Jian, S.; Li, Y. Ni@ Pd Core-shell Nanoparticles Supported on a Metal-organic Framework as Highly Efficient Catalysts for Nitroarenes Reduction. Chin. J. Catal. 2016, 37, 91–97. DOI 10.1016/S1872-2067(15)60940-8.
  • Ji, P.; Manna, K.; Lin, Z.; Feng, X.; Urban, A.; Song, Y.; Lin, W. Single-site Cobalt Catalysts at New Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 Metal–organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides. J. Am. Chem. Soc. 2017, 139, 7004–7011. DOI 10.1021/jacs.7b02394.
  • Bao, L.; Yu, Z.; Fei, T.; Yan, Z.; Li, J.; Sun, C.; Pang, S. Palladium Supported on Metal–organic Framework as a Catalyst for the Hydrogenation of Nitroarenes under Mild Conditions. Appl. Organomet. Chem. 2020, 34, e5607. DOI 10.1002/aoc.5607.
  • Zhou, Y. H.; Yang, Q.; Chen, Y. Z.; Jiang, H. L. Low-cost CuNi@ MIL-101 as an Excellent Catalyst toward Cascade Reaction: Integration of Ammonia Borane Dehydrogenation with Nitroarene Hydrogenation. Chem. Commun. 2017, 53, 12361–12364. DOI: 10.1039/C7CC06530B.
  • Sun, J. L.; Chen, Y. Z.; Ge, B. D.; Li, J. H. J. H; Wang, G. M. Three-shell Cu@ Co@ Ni Nanoparticles Stabilized with a Metal–organic Framework for Enhanced Tandem Catalysis. ACS Appl. Mater. Interfaces. 2018, 11, 940–947. DOI: 10.1021/acsami.8b18584.
  • Babel, V.; Hiran, B. L. Heterogeneous AgPd Alloy Nanocatalyst for Selective Reduction of Aromatic Nitro Compounds Using Formic Acid as Hydrogen Source. Catal. Lett. 2020, 150, 1865–1869. DOI: 10.1007/s10562-020-03098-y.
  • Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic Catalysis of Au@ Ag Core− Shell Nanoparticles Stabilized on Metal− Organic Framework. J. Am. Chem. Soc. 2011, 133, 1304–1306. DOI 10.1021/ja1099006.
  • Pachfule, P.; Kandambeth, S.; Díaz, D. D.; Banerjee, R. Highly Stable Covalent Organic framework–Au Nanoparticles Hybrids for Enhanced Activity for Nitrophenol Reduction. Chem. Commun. 2014, 50, 3169–3172. DOI: 10.1039/C3CC49176E.
  • Yang, Q.; Zhang, H. Y.; Wang, L.; Zhang, Y.; Zhao, J. Ru/UiO-66 Catalyst for the Reduction of Nitroarenes and Tandem Reaction of Alcohol oxidation/Knoevenagel Condensation. ACS omega. 2018, 3, 4199–4212. DOI: 10.1021/acsomega.8b00157.
  • Zhuang, G. L.; Bai, J. Q.; Tan, L.; Huang, H. L.; Gao, Y. F.; Zhong, X.; Zhong, C. L.; Wang, J. G. Preparation and Catalytic Properties of Pd Nanoparticles Supported on Micro-crystal DUT-67 MOFs. RSC Adv. 2015, 5, 32714–32719. DOI: 10.1039/C5RA03286E.
  • Jiao, N.; Li, Z.; Xia, C.; Liu, J. Palladium Nanoparticles Immobilized on Cross‐Linked Polymeric Ionic Liquid Material: Application as Efficient and Recoverable Catalyst for the Hydrogenation of Nitroarenes. ChemistrySelect. 2017, 2, 4545–4556. DOI 10.1002/slct.201700836.
  • Du, W.; Chen, G.; Nie, R.; Li, Y.; Hou, Z. Highly Dispersed Pt in MIL-101: An Efficient Catalyst for the Hydrogenation of Nitroarenes. Catal. Commun. 2013, 41, 56–59. DOI: 10.1016/j.catcom.2013.06.038.
  • Guha, N. R.; Bhattacherjee, D.; Das, P. Solid Supported Rhodium (0) Nanoparticles: An Efficient Catalyst for Chemo-and Regio-selective Transfer Hydrogenation of Nitroarenes to Anilines under Microwave Irradiation. Tetrahedron Lett. 2014, 55, 2912–2916. DOI: 10.1016/j.tetlet.2014.03.047.
  • Yadav, V.; Gupta, S.; Kumar, R.; Singh, G.; Lagarkha, R. Polymeric Peg35k-pd Nanoparticles: Efficient and Recyclable Catalyst for Reduction of Nitro Compounds. Synth. Commun. 2012, 42, 213–222. DOI: 10.1080/00397911.2010.523159.
  • Salam, N.; Banerjee, B.; Roy, A. S.; Mondal, P.; Roy, S.; Bhaumik, A.; Islam, S. M. Silver Nanoparticles Embedded over Mesoporous Organic Polymer as Highly Efficient and Reusable Nanocatalyst for the Reduction of Nitroarenes and Aerobic Oxidative Esterification of Alcohols. Appl. Catal., A. 2014, 477, 184–194. DOI 10.1016/j.apcata.2014.03.014.
  • Ding, Z. C.; Li, C. Y.; Chen, J. J.; Zeng, J. H.; Tang, H. T.; Ding, Y. J.; Zhan, Z. P. Palladium/Phosphorus‐Doped Porous Organic Polymer as Recyclable Chemoselective and Efficient Hydrogenation Catalyst under Ambient Conditions. Adv. Synth. Catal. 2017, 359, 2280–2287. DOI: 10.1002/adsc.201700374.
  • Li, L.; Zhou, C.; Zhao, H.; Wang, R. Spatial Control of Palladium Nanoparticles in Flexible Click-based Porous Organic Polymers for Hydrogenation of Olefins and Nitrobenzene. Nano Res. 2015, 8, 709–721.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.