Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 1
1,219
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A review on state-of-the-art catalysts for methane partial oxidation to syngas production

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 343-399 | Received 18 Dec 2022, Accepted 27 Apr 2022, Published online: 23 May 2022

References

  • Hannah Ritchie and Max Roser. CO2 and Greenhouse Gas Emissions. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions; 2020 (accessed Mar 22, 2022).
  • Friedlingstein, P.; Jones, M.; O’sullivan, M.; Andrew, R.; Hauck, J.; Peters, G.; DBakker, O. Global Carbon Budget 2019. Earth Syst. Sci. Data. 2019, 11(4), 1783‒1838. DOI: 10.5194/essd-11-1783-2019.
  • Peters, G. P.; Andrew, R. M.; Canadell, J. G.; Friedlingstein, P.; Jackson, R. B.; Korsbakken, J. I.; Peregon, A.; Peregon, A. Carbon Dioxide Emissions Continue to Grow Amidst Slowly Emerging Climate Policies. Nat. Clim. Change. 2020, 10(1), 3–6. DOI: 10.1038/s41558-019-0659-6.
  • Kan, S. Y.; Chen, B.; Wu, X. F.; Chen, Z. M.; Chen, G. Q. Natural Gas Overview for World Economy: From Primary Supply to Final Demand via Global Supply Chains. Energy Policy. 2019, 124, 215–225. DOI: 10.1016/j.enpol.2018.10.002.
  • Dos Santos, R. G.; Alencar, A. C. Biomass-derived Syngas Production via Gasification Process and Its Catalytic Conversion into Fuels by Fischer Tropsch Synthesis: A Review. Int. J. Hydrogen Energy. 2020, 45(36), 18114‒18132. DOI: 10.1016/j.ijhydene.2019.07.133.
  • Minh, D. P.; Siang, T. J.; Vo, D. V. N.; Phan, T. S.; Ridart, C.; Nzihou, A.; Grouset, D. Hydrogen Production from Biogas Reforming: An Overview of Steam Reforming, Dry Reforming, Dual Reforming, and Tri-reforming of Methane. In Hydrogen Supply Chains; Azzaro-Pantel, C., Ed.; Academic Press: London, 2018; pp 111–166.
  • Research and Markets Ltd. Syngas & Derivatives Market by Production Technology, Gasifier Type, Feedstock (Coal, Natural Gas, Petroleum Byproducts, Biomass/waste), application (chemicals, fuel, and electricity), and region - Global Forecast to 2025, https://www.researchandmarkets.com/reports/; 2021 (accessed Oct 25, 2021).
  • Mordor Intelligence. Syngas market‒Growth, Trends, and Forecast (2022-2027). https://www.mordorintelligence.com/industry-reports/syngas-market; 2021 (accessed Mar 22, 2022).
  • Lee, N. Smaller-scale and Modular Technologies Drive GTL Industry Forward. http://www.gasprocessingnews.com/features/201706/smaller-scale-and-modular-technologies-drive-gtl-industry-forward.aspx/; 2020 (accessed Oct 25, 2021).
  • Abdullah, B.; Abd Ghani, N. A.; Vo, D. V. N. Recent Advances in Dry Reforming of Methane over Ni-based Catalysts. J. Clean. Prod. 2017, 162, 170–185. DOI: 10.1016/j.jclepro.2017.05.176.
  • Wang, B.; Albarracín-Suazo, S.; Pagán-Torres, Y.; Nikolla, E. Advances in Methane Conversion Processes. Catal. Today. 2017, 285, 147‒158. DOI: 10.1016/j.cattod.2017.01.023.
  • Siang, T. J.; Pham, T. L.; Van Cuong, N.; Phuong, P. T.; Phuc, N. H. H.; Truong, Q. D.; Vo, D. V. N. Combined Steam and CO2 Reforming of Methane for Syngas Production over Carbon-resistant Boron-promoted Ni/SBA-15 Catalysts. Micro. Meso. Mater. 2018, 262, 122–132. DOI: 10.1016/j.micromeso.2017.11.028.
  • Subraveti, S. G.; Roussanaly, S.; Anantharaman, R.; Riboldi, L.; Rajendran, A. Techno-economic Assessment of Optimised Vacuum Swing Adsorption for Post-combustion CO2 Capture from Steam-methane Reformer Flue Gas. Sep. Purif. Technol. 2020, 256, 117832. DOI: 10.1016/j.seppur.2020.117832.
  • Pantaleo, G.; La Parola, V.; Deganello, F.; Singha, R. K.; Bal, R.; Venezia, A. M. Ni/CeO2 Catalysts for Methane Partial Oxidation: Synthesis Driven Structural and Catalytic Effects. Appl. Catal. B–Environ. 2016, 189, 233–241. DOI: 10.1016/j.apcatb.2016.02.064.
  • The Global Syngas Technologies Council. Partial Oxidation. https://globalsyngas.org/syngas-technology/syngas-production/partial-oxidation/; 2018 (accessed Oct 25, 2021).
  • Linde. Partial Oxidation. Linde Engineering. https://www.linde-engineering.com/en/process-plants/hydrogen_and_synthesis_gas_plants/gas_generation/partial_oxidation/index.html/; 2020 (accessed Oct 25, 2021).
  • Liander, H The Utilisation of Natural Gases for the Ammonia Process. Trans. Faraday Soc. 1929, 25, 462‒472. DOI: 10.1039/TF9292500462.
  • Prettre, M.; Eichner, C.; Perrin, M. The Catalytic Oxidation of Methane to Carbon Monoxide and Hydrogen. Trans. Faraday Soc. 1946, 42, 335b–339. DOI: 10.1039/TF946420335B.
  • Huszar, K.; Racz, G.; Szekely, G. The Catalytic Oxidation of Methane to Carbon Monoxide and Hydrogen. Acta Chim. Acad. Sci. Hung. 1971, 70, 287. DOI: 10.1039/TF946420335b.
  • Gavalas, G. R.; Phichitkul, C.; Voecks, G. E. Structure and Activity of NiOα-Al2O3 and NiOZrO2 Calcined at High Temperatures: I. Structure. J. Catal. 1984, 88(1), 54‒64. DOI: 10.1016/0021-9517(84)90049-6.
  • Gavalas, G. R.; Phichitkul, C.; Voecks, G. E. Structure and Activity of NiOα-Al2O3 and NiOZrO2 Calcined at High Temperatures: II. Activity in the Fuel-rich Oxidation of Methane. J. Catal. 1984, 88(1), 65‒72. DOI: 10.1016/0021-9517(84)90050-2.
  • Ashcroft, A. T.; Cheetham, A. K.; Foord, J. A.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Selective Oxidation of Methane to Synthesis Gas Using Transition Metal Catalysts. Nature. 1990, 344(6264), 319‒321. DOI: 10.1038/344319a0.
  • Hickman, D. A.; Schmidt, L. D. Steps in CH4 Oxidation on Pt and Rh Surfaces: High-temperature Reactor Simulations. AIChE J. 1993, 39(7), 1164‒1177. DOI: 10.1002/aic.690390708.
  • Hickman, D. A.; Schmidt, L. D. Production of Syngas by Direct Catalytic Oxidation of Methane. Science. 1993, 259(5093), 343‒346. DOI: 10.1126/science.259.5093.343.
  • Choudhary, V. R.; Prabhakar, B.; Rajput, A. M. Beneficial Effects of Noble Metal Addition to Ni/Al2O3 Catalyst for Oxidative Methane-to-syngas Conversion. J. Catal. 1995, 157(2), 752‒754. DOI: 10.1006/jcat.1995.1342.
  • Ji, Y.; Li, W.; Xu, H.; Chen, Y. A Study on the Ignition Process for the Catalytic Partial Oxidation of Methane to Synthesis Gas by MS-TPSR Technique. Catal. Lett. 2001, 71(1), 45‒48. DOI: 10.1023/A:1016648106910.
  • Enger, B. C.; Lødeng, R.; Holmen, A. A Review of Catalytic Partial Oxidation of Methane to Synthesis Gas with Emphasis on Reaction Mechanisms over Transition Metal Catalysts. Appl. Catal. A-Gen. 2008, 346(1‒2), 1‒27. DOI: 10.1016/j.apcata.2008.05.018.
  • Panov, G. I.; Starokon, E. V.; Ivanov, D. P.; Pirutko, L. V.; Kharitonov, A. S. Active and Super Active Oxygen on Metals in Comparison with Metal Oxides. Catal. Rev. -Sci. Eng. 2021, 63(4), 597–638. DOI: 10.1080/01614940.2020.1778389.
  • Mackie, J. C Partial Oxidation of Methane: The Role of the Gas Phase Reactions. Catal. Rev. -Sci. Eng. 1991, 33(1–2), 169–240. DOI: 10.1080/01614949108020299.
  • Zhu, Y.; Zhang, S.; Shan, J. J.; Nguyen, L.; Zhan, S.; Gu, X.; Tao, F. In Situ Surface Chemistries and Catalytic Performances of Ceria Doped with Palladium, Platinum, and Rhodium in Methane Partial Oxidation for the Production of Syngas. ACS Catal. 2013, 3(11), 2627–2639. DOI: 10.1021/cs400070y.
  • Meng, Y.; Ding, C.; Gao, X.; Li, Z.; Li, Z.; Li, Z.; Li, Z. Adsorption of Pd on the Cu (1 1 1) Surface and Its Catalysis of Methane Partial Oxidation: A Density Functional Theory Study. Appl. Surf. Sci. 2020, 513, 145724. DOI: 10.1016/j.apsusc.2020.145724.
  • Mishra, A.; Shafiefarhood, A.; Dou, J.; Li, F. Rh Promoted Perovskites for Exceptional “Low Temperature” Methane Conversion to Syngas. Catal. Today. 2020, 350, 149‒155. DOI: 10.1016/j.cattod.2019.05.036.
  • Rocha, K. D. O.; Macedo, W. C.; Marques, C. M.; Bueno, J. M. Pt/Al2O3La2O3 Catalysts Stable at High Temperature in Air, Prepared Using a “One-pot” Sol–gel Process: Synthesis, Characterization, and Catalytic Activity in the Partial Oxidation of CH4. Chem. Eng. Sci. 2021, 229, 115966. DOI: 10.1016/j.ces.2020.115966.
  • Bartholomew, C. H Mechanisms of Catalyst Deactivation. Appl. Catal. A–Gen. 2001, 212(1–2), 17–60. DOI: 10.1016/S0926-860X(00)00843-7.
  • Argyle, M. D.; Bartholomew, C. H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catal. 2015, 5(1), 145–269. DOI: 10.3390/catal5010145.
  • Sengodan, S.; Lan, R.; Humphreys, J.; Du, D.; Xu, W.; Wang, H.; Tao, S. Advances in Reforming and Partial Oxidation of Hydrocarbons for Hydrogen Production and Fuel Cell Applications. Renew. Sust. Energ. Rev. 2018, 82, 761‒780. DOI: 10.1016/j.rser.2017.09.071.
  • Bashan, V.; Ust, Y. Perovskite Catalysts for Methane Combustion: Applications, Design, Effects for Reactivity and Partial Oxidation. Int. J. Energ. Res. 2019, 43(14), 7755‒7789. DOI: 10.1002/er.4721.
  • Elbadawi, A. H.; Ge, L.; Li, Z.; Liu, S.; Wang, S.; Zhu, Z. Catalytic Partial Oxidation of Methane to Syngas: Review of Perovskite Catalysts and Membrane Reactors. Catal. Rev. -Sci. Eng. 2021, 63(1), 1‒67. DOI: 10.1080/01614940.2020.1743420.
  • Basile, F.; Fornasari, G.; Trifiro, F.; Vaccari, A. Partial Oxidation of Methane: Effect of Reaction Parameters and Catalyst Composition on the Thermal Profile and Heat Distribution. Catal. Today. 2001, 64(1‒2), 21‒30. DOI: 10.1016/S0920-5861(00)00505-8.
  • Zhu, J.; Zhang, D.; King, K. D. Reforming of CH4 by Partial Oxidation: Thermodynamic and Kinetic Analyses. Fuel. 2001, 80(7), 899‒905. DOI: 10.1016/S0016-2361(00)00165-4.
  • Xiao, T. C.; Hanif, A.; York, A. P.; Nishizaka, Y.; Green, M. L. Study on the Mechanism of Partial Oxidation of Methane to Synthesis Gas over Molybdenum Carbide Catalyst. Phys. Chem. Chem. Phys. 2002, 4(18), 4549‒4554. DOI: 10.1039/B204347E.
  • Horn, R.; Williams, K. A.; Degenstein, N. J.; Bitsch-Larsen, A.; Dalle Nogare, D.; Tupy, S. A.; Schmidt, L. D. Methane Catalytic Partial Oxidation on Autothermal Rh and Pt Foam Catalysts: Oxidation and Reforming Zones, Transport Effects, and Approach to Thermodynamic Equilibrium. J. Catal. 2007, 249(2), 380‒393. DOI: 10.1016/j.jcat.2007.05.011.
  • Jang, W. J.; Jeong, D. W.; Shim, J. O.; Kim, H. M.; Roh, H. S.; Son, I. H.; Lee, S. J. Combined Steam and Carbon Dioxide Reforming of Methane and Side Reactions: Thermodynamic Equilibrium Analysis and Experimental Application. Appl. Energy. 2016, 173, 80‒91. DOI: 10.1016/j.apenergy.2016.04.006.
  • Cao, P.; Adegbite, S.; Zhao, H.; Lester, E.; Wu, T. Tuning Dry Reforming of Methane for FT Syntheses: A Thermodynamic Approach. Appl. Energy. 2018, 227, 190‒197. DOI: 10.1016/j.apenergy.2017.08.007.
  • Chein, R. Y.; Hsu, W. H. Thermodynamic Analysis of Syngas Production via Chemical Looping Dry Reforming of Methane. Energy. 2019, 180, 535‒547. DOI: 10.1016/j.energy.2019.05.083.
  • Siang, T. J.; Jalil, A. A.; Abdulrasheed, A. A.; Hambali, H. U.; Nabgan, W. Thermodynamic Equilibrium Study of Altering Methane Partial Oxidation for Fischer–Tropsch Synfuel Production. Energy. 2020, 198, 117394. DOI: 10.1016/j.energy.2020.117394.
  • Boucouvalas, Y.; Zhang, Z.; Verykios, X. E. Partial Oxidation of Methane to Synthesis Gas via the Direct Reaction Scheme over Ru/TiO2 Catalyst. Catal. Lett. 1996, 40(3–4), 189‒195. DOI: 10.1007/BF00815281.
  • Goula, M. A.; Lemonidou, A. A.; Grünert, W.; Baerns, M. Methane Partial Oxidation to Synthesis Gas Using Nickel on Calcium Aluminate Catalysts. Catal. Today. 1996, 32(1‒4), 149‒156. DOI: 10.1016/S0920-5861(96)00168-X.
  • Nakagawa, K.; Ikenaga, N.; Suzuki, T.; Kobayashi, T.; Haruta, M. Partial Oxidation of Methane to Synthesis Gas over Supported Iridium Catalysts. Appl. Catal. A-Gen. 1998, 169(2), 281‒290. DOI: 10.1016/S0926-860X(98)00020-9.
  • Basile, F.; Fornasari, G.; Gazzano, M.; Kiennemann, A.; Vaccari, A. Preparation and Characterisation of a Stable Rh Catalyst for the Partial Oxidation of Methane. J. Catal. 2003, 217(2), 245‒252. DOI: 10.1016/S0021-9517(03)00021-6.
  • Kim, P.; Kim, Y.; Kim, H.; Song, I. K.; Yi, J. Synthesis and Characterization of Mesoporous Alumina with Nickel Incorporated for Use in the Partial Oxidation of Methane into Synthesis Gas. Appl. Catal. A-Gen. 2004, 272(1‒2), 157‒166. DOI: 10.1016/j.apcata.2004.05.055.
  • Liu, T.; Snyder, C.; Veser, G. Catalytic Partial Oxidation of Methane: Is a Distinction between Direct and Indirect Pathways Meaningful? Ind. Eng. Chem. Res. 2007, 46(26), 9045‒9052. DOI: 10.1021/ie070062z.
  • Siang, T. J.; Jalil, A. A.; Hamid, M. Y. S.; Abdulrasheed, A. A.; Abdullah, T. A. T.; Vo, D. V. N. Role of Oxygen Vacancies in Dendritic Fibrous M/KCC-1 (M= Ru, Pd, Rh) Catalysts for Methane Partial Oxidation to H2-rich Syngas Production. Fuel. 2020, 278, 118360. DOI: 10.1016/j.fuel.2020.118360.
  • Nguyen, T. H.; Łamacz, A.; Beaunier, P.; Czajkowska, S.; Domański, M.; Krztoń, A.; Van Le, T.; Djéga-Mariadassou, G. Partial Oxidation of Methane over Bifunctional Catalyst I. In Situ Formation of Ni0/La2O3 during Temperature Programmed POM Reaction over LaNiO3 Perovskite. Appl. Catal. B-Environ. 2014, 152, 360‒369. DOI: 10.1016/j.apcatb.2014.01.053.
  • Makarshin, L. L.; Sadykov, V. A.; Andreev, D. V.; Gribovskii, A. G.; Privezentsev, V. V.; Parmon, V. N. Syngas Production by Partial Oxidation of Methane in a Microchannel Reactor over a Ni–Pt/La0.2Zr0.4Ce0.4Ox Catalyst. Fuel Process. Technol. 2015, 131, 21‒28. DOI: 10.1016/j.fuproc.2014.10.031.
  • Cheng, Z.; Qin, L.; Guo, M.; Xu, M.; Fan, J. A.; Fan, L. S. Oxygen Vacancy Promoted Methane Partial Oxidation over Iron Oxide Oxygen Carriers in the Chemical Looping Process. Phys. Chem. Chem. Phys. 2016, 18(47), 32418‒32428. DOI: 10.1039/C6CP06264D.
  • Jabbour, K Tuning Combined Steam and Dry Reforming of Methane for “Metgas” Production: A Thermodynamic Approach and State-of-the-art Catalysts. J. Energy Chem. 2020, 48, 54‒91. DOI: 10.1016/j.jechem.2019.12.017.
  • Wang, F.; Li, W. Z.; Lin, J. D.; Chen, Z. Q.; Wang, Y. Crucial Support Effect on the Durability of Pt/MgAl2O4 for Partial Oxidation of Methane to Syngas. Appl. Catal. B-Environ. 2018, 231, 292‒298. DOI: 10.1016/j.apcatb.2018.03.018.
  • Li, B.; Maruyama, K.; Nurunnabi, M.; Kunimori, K.; Tomishige, K. Temperature Profiles of Alumina-supported Noble Metal Catalysts in Autothermal Reforming of Methane. Appl. Catal. A-Gen. 2004, 275(1‒2), 157‒172. DOI: 10.1016/j.apcata.2004.07.047.
  • Deutschmann, O.; Schmidt, L. D. Modeling the Partial Oxidation of Methane in a Short-contact-time Reactor. AIChE J. 1998, 44(11), 2465‒2477. DOI: 10.1002/aic.690441114.
  • Salehi, M. S.; Askarishahi, M.; Godini, H. R.; Schomäcker, R.; Wozny, G. CFD Simulation of Oxidative Coupling of Methane in Fluidized-bed Reactors: A Detailed Analysis of Flow-reaction Characteristics and Operating Conditions. Ind. Eng. Chem. Res. 2016, 55(5), 1149‒1163. DOI: 10.1021/acs.iecr.5b02433.
  • Partopour, B.; Dixon, A. G. Reduced Microkinetics Model for Computational Fluid Dynamics (CFD) Simulation of the Fixed-bed Partial Oxidation of Ethylene. Ind. Eng. Chem. Res. 2016, 55(27), 7296‒7306. DOI: 10.1021/acs.iecr.6b00526.
  • Carrera, A.; Beretta, A.; Groppi, G. Catalytic Partial Oxidation of Iso-octane over Rh/α-Al2O3 in an Adiabatic Reactor: An Experimental and Modeling Study. Ind. Eng. Chem. Res. 2017, 56(17), 4911‒4919. DOI: 10.1021/acs.iecr.7b00255.
  • Zhang, Q.; Liu, Y.; Chen, T.; Yu, X.; Wang, J.; Wang, T. Simulations of Methane Partial Oxidation by CFD Coupled with Detailed Chemistry at Industrial Operating Conditions. Chem. Eng. Sci. 2016, 142, 126‒136. DOI: 10.1016/j.ces.2015.11.010.
  • Banke, K.; Hegner, R.; Schröder, D.; Schulz, C.; Atakan, B.; Kaiser, S. A. Power and Syngas Production from Partial Oxidation of Fuel-rich methane/DME Mixtures in an HCCI Engine. Fuel. 2019, 243, 97‒103. DOI: 10.1016/j.fuel.2019.01.076.
  • Gopaul, S. G.; Dutta, A. Dry Reforming of Multiple Biogas Types for Syngas Production Simulated Using Aspen Plus: The Use of Partial Oxidation and Hydrogen Combustion to Achieve Thermo-neutrality. Int. J. Hydrogen Energy. 2015, 40(19), 6307‒6318. DOI: 10.1016/j.ijhydene.2015.03.079.
  • Ma, Y.; Ma, Y.; Chen, Y.; Ma, S.; Li, Q.; Hu, X.; Dong, D.; Buckley, C. E.; Dong, D. Highly Stable Nanofibrous La2NiZrO6 Catalysts for Fast Methane Partial Oxidation. Fuel. 2020, 265, 116861. DOI: 10.1016/j.fuel.2019.116861.
  • Guo, J.; Ding, C.; Ma, Z.; Ma, L.; Wang, J.; Shangguan, J.; Zhang, K.; Zhao, M.; Li, Y.; Wang, M. Highly Dispersed and Stable Pt Clusters Encapsulated within ZSM-5 with Aid of Sodium Ion for Partial Oxidation of Methane. Fuel. 2021, 289, 119839. DOI: 10.1016/j.fuel.2020.119839.
  • Sheppard, T.; Hamill, C. D.; Goguet, A.; Rooney, D. W.; Thompson, J. M. A Low Temperature, Isothermal Gas-phase System for Conversion of Methane to Methanol over Cu–ZSM-5. Chem. Commun. 2014, 50(75), 11053‒11055. DOI: 10.1039/C4CC02832E.
  • Zhu, J.; Sushkevich, V. L.; Knorpp, A. J.; Newton, M. A.; Mizuno, S. C.; Wakihara, T.; van Bokhoven, J. A.; Liu, Z.; van Bokhoven, J. A. Cu-erionite Zeolite Achieves High Yield in Direct Oxidation of Methane to Methanol by Isothermal Chemical Looping. Chem. Mater. 2020, 32(4), 1448‒1453. DOI: 10.1021/acs.chemmater.9b04223.
  • Shen, X.; Sun, Y.; Wu, Y.; Wang, J.; Jiang, E.; Xu, X.; Jia, Z.; Jia, Z. The Coupling of CH4 Partial Oxidation and CO2 Splitting for Syngas Production via Double Perovskite-type Oxides LaFexCo1−xO3. Fuel. 2020, 268, 117381. DOI: 10.1016/j.fuel.2020.117381.
  • Zhang, X.; Pei, C.; Chang, X.; Chen, S.; Liu, R.; Zhao, Z. J.; Gong, J. FeO6 Octahedral Distortion Activates Lattice Oxygen in Perovskite Ferrite for Methane Partial Oxidation Coupled with CO2 Splitting. J. Am. Chem. Soc. 2020, 142(26), 11540‒11549. DOI: 10.1021/jacs.0c04643.
  • Cruellas, A.; Melchiori, T.; Gallucci, F.; van Sint Annaland, M. Advanced Reactor Concepts for Oxidative Coupling of Methane. Catal. Rev. -Sci. Eng. 2017, 59(3), 234‒294. DOI: 10.1080/01614940.2017.1348085.
  • Liu, R.; Pei, C.; Zhang, X.; Chen, S.; Li, H.; Zeng, L.; Mu, R. Chemical Looping Partial Oxidation over FeWO <sub>/<sub>sio2 Catalysts. Chinese Journal of Catalysis. 2020, 41(7), 1140‒1141. DOI: 10.1023/A:1016648106910.
  • Guo, D.; Wang, G. C. Partial Oxdation of Methane on Anatase and Rutile Defective TiO2 Supported Rh4 Cluster: A Density Functional Theory Study. J. Phys. Chem. C. 2017, 121(47), 22630. DOI: 10.1021/acs.jpcc.7b07489.
  • Wang, L.; Li, Z.; Wang, Z.; Chen, X.; Song, W.; Zhao, Z.; Wei, Y.; Zhang, X. Hetero-metallic Active Sites in Omega (MAZ) Zeolite-catalyzed Methane Partial Oxidation: A DFT Study. Ind. Eng. Chem. Res. 2021, 60(6), 2400‒2409. DOI: 10.1021/acs.iecr.0c05457.
  • Mahyuddin, M. H.; Tanaka, T.; Shiota, Y.; Staykov, A.; Yoshizawa, K. Methane Partial Oxidation over [Cu2(μ-O)]2+ and [Cu3(μ-O)3]2+ Active Species in Large-pore Zeolites. ACS Catal. 2018, 8(2), 1500‒1509. DOI: 10.1021/acscatal.7b03389.
  • Guo, D.; Wen, J. H.; Wang, G. C. Coordination Dependence of Carbon Deposition Resistance in Partial Oxidation of Methane on Rh Catalysts. Catal. Today. 2020, 355, 422‒434. DOI: 10.1016/j.cattod.2019.07.017.
  • Shafiefarhood, A.; Zhang, J.; Neal, L. M.; Li, F. Rh-promoted Mixed Oxides for “Low-temperature” Methane Partial Oxidation in the Absence of Gaseous Oxidants. J. Mater. Chem. A. 2017, 5(23), 11930‒11939. DOI: 10.1039/C7TA01398A.
  • Shafiefarhood, A.; Hamill, J. C.; Neal, L. M.; Li, F. Methane Partial Oxidation Using [email protected]−δ Core–shell Catalyst–transient Pulse Studies. Phys. Chem. Chem. Phys. 2015, 17(46), 31297‒31307. DOI: 10.1039/C5CP05583K.
  • Mallens, E. P. J.; Hoebink, J. H. B. J.; Marin, G. B. The Reaction Mechanism of the Partial Oxidation of Methane to Synthesis Gas: A Transient Kinetic Study over Rhodium and A Comparison with Platinum. J. Catal. 1997, 167(1), 43‒56. DOI: 10.1006/jcat.1997.1533.
  • Mudu, F.; Olsbye, U.; Arstad, B.; Diplas, S.; Li, Y.; Fjellvåg, H. Aluminium Substituted Lanthanum Based Perovskite Type Oxides, Non-stoichiometry and Performance in Methane Partial Oxidation by Framework Oxygen. Appl. Catal. A-Gen. 2016, 523, 171‒181. DOI: 10.1016/j.apcata.2016.05.013.
  • Costa, D. S.; Gomes, R. S.; Rodella, C. B.; da Silva Junior, R. B.; Frety, R.; Neto, É. T.; Brandão, S. T. Study of Nickel, Lanthanum and Niobium-based Catalysts Applied in the Partial Oxidation of Methane. Catal. Today. 2020, 344, 15‒23. DOI: 10.1016/j.cattod.2018.10.022.
  • de Sousa, L. F.; Toniolo, F. S.; Landi, S. M.; Schmal, M. Investigation of Structures and Metallic Environment of the Ni/Nb2O5 by Different in Situ treatments–Effect on the Partial Oxidation of Methane. Appl. Catal. A-Gen. 2017, 537, 100‒110. DOI: 10.1016/j.apcata.2017.03.015.
  • Araújo, J. C.; Oton, L. F.; Bessa, B.; Neto, A. B.; Oliveira, A. C.; Lang, R.; Otubo, L.; Bueno, J. M. The Role of Pt Loading on La2O3-Al2O3 Support for Methane Conversion Reactions via Partial Oxidation and Steam Reforming. Fuel. 2019, 254, 115681. DOI: 10.1016/j.fuel.2019.115681.
  • Chen, S.; Zeng, L.; Tian, H.; Li, X.; Gong, J. Enhanced Lattice Oxygen Reactivity over Ni-modified WO3-based Redox Catalysts for Chemical Looping Partial Oxidation of Methane. ACS Catal. 2017, 7(5), 3548‒3559. DOI: 10.1021/acscatal.7b00436.
  • Thomas, D. J.; Willi, R.; Baiker, A. Partial Oxidation of Methane: The Role of Surface Reactions. Ind. Eng. Chem. Res. 1992, 31(10), 2272‒2278. DOI: 10.1021/ie00010a003.
  • Hohn, K. L.; Schmidt, L. D. Partial Oxidation of Methane to Syngas at High Space Velocities over Rh-coated Spheres. Appl. Catal. A-Gen. 2001, 211(1), 53‒68. DOI: 10.1016/S0926-860X(00)00835-8.
  • Minh, D. P.; Pham, X. H.; Siang, T. J.; Vo, D. V. N. Review on the Catalytic Tri-reforming of methane-Part I: Impact of Operating Conditions, Catalyst Deactivation and Regeneration. Appl. Catal. A–Gen. 2021, 621, 118202. DOI: 10.1016/j.apcata.2021.118202.
  • Wu, J.; Helveg, S.; Ullmann, S.; Peng, Z.; Bell, A. T. Growth of Encapsulating Carbon on Supported Pt Nanoparticles Studied by in Situ TEM. J. Catal. 2016, 338, 295‒304. DOI: 10.1016/j.jcat.2016.03.010.
  • Xu, J.; Saeys, M. Improving the Coking Resistance of Ni-based Catalysts by Promotion with Subsurface Boron. J. Catal. 2006, 242(1), 217–226. DOI: 10.1016/j.jcat.2006.05.029.
  • Torrez-Herrera, J. J.; Korili, S. A.; Gil, A. Recent Progress in the Application of Ni-based Catalysts for the Dry Reforming of Methane. Catal. Rev. -Sci. Eng. 2021, 1–58. DOI: 10.1080/01614940.2021.2006891.
  • Abdulrasheed, A.; Jalil, A. A.; Gambo, Y.; Ibrahim, M.; Hambali, H. U.; Hamid, M. Y. S. A Review on Catalyst Development for Dry Reforming of Methane to Syngas: Recent Advances. Renew. Sus. Energy Rev. 2019, 108, 175–193. DOI: 10.1016/j.rser.2019.03.054.
  • Djéga-Mariadassou, G.; Boudart, M. Classical Kinetics of Catalytic Reactions. J. Catal. 2003, 216(1–2), 89–97. DOI: 10.1016/S0021-9517(02)00099-4.
  • Lee, S. J.; Jun, J. H.; Lee, S. H.; Yoon, K. J.; Lim, T. H.; Nam, S. W.; Hong, S. A. Partial Oxidation of Methane over Nickel-added Strontium Phosphate. Appl. Catal. A–Gen. 2002, 230(1–2), 61–71. DOI: 10.1016/S0926-860X(01)00995-4.
  • Luo, Z.; Kriz, D. A.; Miao, R.; Kuo, C. H.; Zhong, W.; Guild, C.; He, J.; Willis, B.; Dang, Y.; Suib, S. L., et al. TiO2 Supported Gold–palladium Catalyst for Effective Syngas Production from Methane Partial Oxidation. Appl. Catal. A–Gen. 2018, 554, 54–63. DOI: 10.1016/j.apcata.2018.01.020.
  • Mattos, L. V.; De Oliveira, E. R.; Resende, P. D.; Noronha, F. B.; Passos, F. B. Partial Oxidation of Methane on Pt/Ce–ZrO2 Catalysts. Catal. Today. 2002, 77(3), 245–256. DOI: 10.1016/S0920-5861(02)00250-X.
  • Yan, Q. G.; Wu, T. H.; Weng, W. Z.; Toghiani, H.; Toghiani, R. K.; Wan, H. L.; Pittman, C. U., Jr Partial Oxidation of Methane to H2 and CO over Rh/SiO2 and Ru/SiO2 Catalysts. J. Catal. 2004, 226(2), 247–259. DOI: 10.1016/j.jcat.2004.05.028.
  • Fleys, M.; Simon, Y.; Swierczynski, D.; Kiennemann, A.; Marquaire, P. M. Investigation of the Reaction of Partial Oxidation of Methane over Ni/La2O3 Catalyst. Energy Fuels. 2006, 20(6), 2321–2329. DOI: 10.1021/ef0602729.
  • Rabe, S.; Nachtegaal, M.; Vogel, F. Catalytic Partial Oxidation of Methane to Synthesis Gas over a Ruthenium Catalyst: The Role of the Oxidation State. Phys. Chem. Chem. Phys. 2007, 9(12), 1461–1468. DOI: 10.1039/B617529E.
  • Stötzel, J.; Frahm, R.; Kimmerle, B.; Nachtegaal, M.; Grunwaldt, J. D. Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique. J. Phys. Chem. C. 2012, 116(1), 599–609. DOI: 10.1021/jp2052294.
  • Velasco, J. A.; Fernandez, C.; Lopez, L.; Cabrera, S.; Boutonnet, M.; Järås, S. Catalytic Partial Oxidation of Methane over Nickel and Ruthenium Based Catalysts under Low O2/CH4 Ratios and with Addition of Steam. Fuel. 2015, 153, 192–201. DOI: 10.1016/j.fuel.2015.03.009.
  • Grunwaldt, J. D.; Hannemann, S.; Schroer, C. G.; Baiker, A. 2D-mapping of the Catalyst Structure inside a Catalytic Microreactor at Work: Partial Oxidation of Methane over Rh/Al2O3. J. Phys. Chem. B. 2006, 110(17), 8674–8680. DOI: 10.1021/jp060371n.
  • Pan, C. J.; Tsai, M. C.; Su, W. N.; Rick, J.; Akalework, N. G.; Agegnehu, A. K.; Cheng, S. Y.; Hwang, B. J. Tuning/exploiting Strong Metal-support Interaction (SMSI) in Heterogeneous Catalysis. J. Taiwan Inst. Chem. Eng. 2017, 74, 154–186. DOI: 10.1016/j.jtice.2017.02.012.
  • Kang, D.; Lim, H. S.; Lee, M.; Lee, J. W. Syngas Production on a Ni-enhanced Fe2O3/Al2O3 Oxygen Carrier via Chemical Looping Partial Oxidation with Dry Reforming of Methane. Appl. Energy. 2018, 211, 174‒186. DOI: 10.1016/j.apenergy.2017.11.018.
  • Li, L.; Dostagir, M. D.; Shrotri, A.; Fukuoka, A.; Kobayashi, H. Partial Oxidation of Methane to Syngas via Formate Intermediate Found for a Ruthenium–rhenium Bimetallic Catalyst. ACS Catal. 2021, 11(7), 3782‒3789. DOI: 10.1021/acscatal.0c05491.
  • Gil-Calvo, M.; Jimenez-Gonzalez, C.; de Rivas, B.; Gutiérrez-Ortiz, J. I.; Lopez-Fonseca, R. Effect of Ni/Al Molar Ratio on the Performance of Substoichiometric NiAl2O4 Spinel-based Catalysts for Partial Oxidation of Methane. Appl. Catal. B-Environ. 2017, 209, 128‒138. DOI: 10.1016/j.apcatb.2017.02.063.
  • Pal, P.; Singha, R. K.; Saha, A.; Bal, R.; Panda, A. B. Defect-induced Efficient Partial Oxidation of Methane over Nonstoichiometric Ni/CeO2 Nanocrystals. J. Phys. Chem. C. 2015, 119(24), 13610‒13618. DOI: 10.1021/acs.jpcc.5b01724.
  • Singha, R. K.; Ghosh, S.; Acharyya, S. S.; Yadav, A.; Shukla, A.; Sasaki, T.; Venezia, A. M.; Pendem, C.; Bal, R. Partial Oxidation of Methane to Synthesis Gas over Pt Nanoparticles Supported on Nanocrystalline CeO2 Catalyst. Catal. Sci. Technol. 2016, 6(12), 4601‒4615. DOI: 10.1039/C5CY02088C.
  • Pantaleo, G.; La Parola, V.; Deganello, F.; Calatozzo, P.; Bal, R.; Venezia, A. M. Synthesis and Support Composition Effects on CH4 Partial Oxidation over Ni–CeLa Oxides. Appl. Catal. B-Environ. 2015, 164, 135‒143. DOI: 10.1016/j.apcatb.2014.09.011.
  • Li, D.; Sakai, S.; Nakagawa, Y.; Tomishige, K. FTIR Study of CO Adsorption on Rh/MgO Modified with CO, Ni, Fe, or CeO2 for the Catalytic Partial Oxidation of Methane. Phys. Chem. Chem. Phys. 2012, 14(25), 9204‒9213. DOI: 10.1039/C2CP41050H.
  • Kaddeche, D.; Djaidja, A.; Barama, A. Partial Oxidation of Methane on Co-precipitated Ni–Mg/Al Catalysts Modified with Copper or Iron. Int. J. Hydrogen Energy. 2017, 42(22), 15002‒15009. DOI: 10.1016/j.ijhydene.2017.04.281.
  • Emamdoust, A.; La Parola, V.; Pantaleo, G.; Testa, M. L.; Shayesteh, S. F.; Venezia, A. M. Partial Oxidation of Methane over SiO2 Supported Ni and NiCe Catalysts. J. Energy Chem. 2020, 47, 1‒9. DOI: 10.1016/j.jechem.2019.11.019.
  • Kondratenko, V. A.; Berger-Karin, C.; Kondratenko, E. V. Partial Oxidation of Methane to Syngas over γ-Al2O3-supported Rh Nanoparticles: Kinetic and Mechanistic Origins of Size Effect on Selectivity and Activity. ACS Catal. 2014, 4(9), 3136‒3144. DOI: 10.1021/cs5002465.
  • Berger-Karin, C.; Sebek, M.; Pohl, M. M.; Bentrup, U.; Kondratenko, V. A.; Steinfeldt, N.; Kondratenko, E. V. Tailored Noble Metal Nanoparticles on γ‒Al2O3 for High Temperature CH4 Conversion to Syngas. ChemCatChem. 2012, 4(9), 1368‒1375. DOI: 10.1002/cctc.201200096.
  • Goodman, E. D.; Latimer, A. A.; Yang, A. C.; Wu, L.; Tahsini, N.; Abild-Pedersen, F.; Cargnello, M. Low-temperature Methane Partial Oxidation to Syngas with Modular Nanocrystal Catalysts. ACS Appl. Nano. Mater. 2018, 1(9), 5258‒5267. DOI: 10.1021/acsanm.8b01256.
  • Boukha, Z.; Gil-Calvo, M.; de Rivas, B.; González-Velasco, J. R.; Gutiérrez-Ortiz, J. I.; López-Fonseca, R. Behaviour of Rh Supported on Hydroxyapatite Catalysts in Partial Oxidation and Steam Reforming of Methane: On the Role of the Speciation of the Rh Particles. Appl. Catal. A-Gen. 2018, 556, 191‒203. DOI: 10.1016/j.apcata.2018.03.002.
  • Boukha, Z.; Jiménez-González, C.; Gil-Calvo, M.; de Rivas, B.; González-Velasco, J. R.; Gutiérrez-Ortiz, J. I.; López-Fonseca, R. MgO/NiAl2O4 as a New Formulation of Reforming Catalysts: Tuning the Surface Properties for the Enhanced Partial Oxidation of Methane. Appl. Catal. B-Environ. 2016, 199, 372‒383. DOI: 10.1016/j.apcatb.2016.06.045.
  • Jang, W. J.; Shim, J. O.; Kim, H. M.; Yoo, S. Y.; Roh, H. S. A Review on Dry Reforming of Methane in Aspect of Catalytic Properties. Catal. Today. 2019, 324, 15‒26. DOI: 10.1016/j.cattod.2018.07.032.
  • Aziz, M. A. A.; Jalil, A. A.; Wongsakulphasatch, S.; Vo, D. V. N. Understanding the Role of Surface Basic Sites of Catalysts in CO2 Activation in Dry Reforming of Methane: A Short Review. Catal. Sci. Technol. 2020, 10(1), 35‒45. DOI: 10.1039/C9CY01519A.
  • Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G. A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catal. 2020, 10(8), 858. DOI: 10.3390/catal10080858.
  • Özdemir, H.; Öksüzömer, M. F.; Gürkaynak, M. A. Preparation and Characterization of Ni Based Catalysts for the Catalytic Partial Oxidation of Methane: Effect of Support Basicity on H2/CO Ratio and Carbon Deposition. Int. J. Hydrogen Energy. 2010, 35(22), 12147‒12160. DOI: 10.1016/j.ijhydene.2010.08.091.
  • Song, Y. Q.; Liu, H. M.; He, D. H. Effects of Hydrothermal Conditions of ZrO2 on Catalyst Properties and Catalytic Performances of Ni/ZrO2 in the Partial Oxidation of Methane. Energy Fuels. 2010, 24(5), 2817‒2824. DOI: 10.1021/ef1000024.
  • Ding, C.; Wang, J.; Jia, Y.; Ai, G.; Liu, S.; Liu, P.; Zhang, K.; Han, Y.; Ma, X. Anti-coking of Yb-promoted Ni/Al2O3 Catalyst in Partial Oxidation of Methane. Int. J. Hydrogen Energy. 2016, 41(25), 10707‒10718. DOI: 10.1016/j.ijhydene.2016.04.110.
  • Gambo, Y.; Jalil, A. A.; Triwahyono, S.; Abdulrasheed, A. A. Recent Advances and Future Prospect in Catalysts for Oxidative Coupling of Methane to Ethylene: A Review. J. Ind. Eng. Chem. 2018, 59, 218‒229. DOI: 10.1016/j.jiec.2017.10.027.
  • Krcha, M. D.; Mayernick, A. D.; Janik, M. J. Periodic Trends of Oxygen Vacancy Formation and C–H Bond Activation over Transition Metal-doped CeO2 (1 1 1) Surfaces. J. Catal. 2012, 293, 103‒115. DOI: 10.1016/j.jcat.2012.06.010.
  • Gao, Q.; Hao, J.; Qiu, Y.; Hu, S.; Hu, Z. Electronic and Geometric Factors Affecting Oxygen Vacancy Formation on CeO2 (111) Surfaces: A First-principles Study from Trivalent Metal Doping Cases. Appl. Surf. Sci. 2019, 497, 143732. DOI: 10.1016/j.apsusc.2019.143732.
  • Chin, Y. H.; Buda, C.; Neurock, M.; Iglesia, E. Reactivity of Chemisorbed Oxygen Atoms and Their Catalytic Consequences during CH4–O2 Catalysis on Supported Pt Clusters. J. Am. Chem. Soc. 2011, 133(40), 15958‒15978. DOI: 10.1021/ja202411v.
  • Scarabello, A.; Dalle Nogare, D.; Canu, P.; Lanza, R. Partial Oxidation of Methane on Rh/ZrO2 and Rh/Ce‒ZrO2 on Monoliths: Catalyst Restructuring at Reaction Conditions. Appl. Catal. B-Environl. 2015, 174, 308‒322. DOI: 10.1016/j.apcatb.2015.03.012.
  • Osman, A. I.; Meudal, J.; Laffir, F.; Thompson, J.; Rooney, D. Enhanced Catalytic Activity of Ni on η-Al2O3 and ZSM-5 on Addition of Ceria Zirconia for the Partial Oxidation of Methane. Appl. Catal. B-Environ. 2017, 212, 68‒79. DOI: 10.1016/j.apcatb.2016.12.058.
  • Cheephat, C.; Daorattanachai, P.; Devahastin, S.; Laosiripojana, N. Partial Oxidation of Methane over Monometallic and Bimetallic Ni-, Rh-, Re-based Catalysts: Effects of Re Addition, Co-fed Reactants and Catalyst Support. Appl. Catal. A-Gen. 2018, 563, 1‒8. DOI: 10.1016/j.apcata.2018.06.032.
  • Yang, W.; Wang, X.; Song, S.; Zhang, H. Syntheses and Applications of Noble-metal-free CeO2-based Mixed-oxide Nanocatalysts. Chem. 2019, 5(7), 1743‒1774. DOI: 10.1016/j.chempr.2019.04.009.
  • Das, S.; Jangam, A.; Jayaprakash, S.; Xi, S.; Hidajat, K.; Tomishige, K.; Kawi, S. Role of Lattice Oxygen in Methane Activation on Ni-phyllosilicate@Ce1-xZrxO2 Core-shell Catalyst for Methane Dry Reforming: Zr Doping Effect, Mechanism, and Kinetic Study. Appl. Catal. B-Environ. 2021, 290, 119998. DOI: 10.1016/j.apcatb.2021.119998.
  • Toscani, L. M.; Zimicz, M. G.; Martins, T. S.; Lamas, D. G.; Larrondo, S. A. In Situ X-ray Absorption Spectroscopy Study of CuO–NiO/CeO2–ZrO2 Oxides: Redox Characterization and Its Effect in Catalytic Performance for Partial Oxidation of Methane. RSC Adv. 2018, 8(22), 12190–12203. DOI: 10.1039/C8RA01528G.
  • Toscani, L. M.; Bellora, M. S.; Huck-Iriart, C.; Soldati, A. L.; Sacanell, J.; Martins, T. S.; Craievich, A.; Fantini, M. C.; Larrondo, S. A.; Lamas, D. G. NiO/CeO2-Sm2O3 Nanocomposites for Partial Oxidation of Methane: In-situ Experiments by Dispersive X-ray Absorption Spectroscopy. Appl. Catal. A-Gen. 2021, 626, 118357. DOI: 10.1016/j.apcata.2021.118357.
  • Yentekakis, I. V.; Goula, G.; Hatzisymeon, M.; Betsi-Argyropoulou, I.; Botzolaki, G.; Kousi, K.; Kondarides, D. I.; Taylor, M. J.; Parlett, C. M.; Osatiashtiani, A., et al. Effect of Support Oxygen Storage Capacity on the Catalytic Performance of Rh Nanoparticles for CO2 Reforming of Methane. Appl. Catal. B-Environ. 2019, 243, 490‒501. DOI: 10.1016/j.apcatb.2018.10.048.
  • Al-Fatesh, A. S.; Arafat, Y.; Kasim, S. O.; Ibrahim, A. A.; Abasaeed, A. E.; Fakeeha, A. H. In Situ Auto-gasification of Coke Deposits over a Novel Ni-Ce/W-Zr Catalyst by Sequential Generation of Oxygen Vacancies for Remarkably Stable Syngas Production via CO2-reforming of Methane. Appl. Catal. B-Environ. 2021, 280, 119445. DOI: 10.1016/j.apcatb.2020.119445.
  • Tang, M.; Xu, L.; Fan, M. Progress in Oxygen Carrier Development of Methane-based Chemical-looping Reforming: A Review. Appl. Energy. 2015, 151, 143‒156. DOI: 10.1016/j.apenergy.2015.04.017.
  • Qin, L.; Guo, M.; Liu, Y.; Cheng, Z.; Fan, J. A.; Fan, L. S. Enhanced Methane Conversion in Chemical Looping Partial Oxidation Systems Using a Copper Doping Modification. Appl. Catal. B-Environ. 2018, 235, 143–149. DOI: 10.1016/j.apcatb.2018.04.072.
  • Shen, Q.; Huang, F.; Tian, M.; Zhu, Y.; Li, L.; Wang, J.; Wang, X. Effect of Regeneration Period on the Selectivity of Synthesis Gas of Ba-hexaaluminates in Chemical Looping Partial Oxidation of Methane. ACS Catal. 2019, 9(1), 722–731. DOI: 10.1021/acscatal.8b03855.
  • Bian, Z.; Wang, Z.; Jiang, B.; Hongmanorom, P.; Zhong, W.; Kawi, S. A Review on Perovskite Catalysts for Reforming of Methane to Hydrogen Production. Renew. Sust. Energ. Rev. 2020, 134, 110291. DOI: 10.1016/j.rser.2020.110291.
  • Bhattar, S.; Abedin, M. A.; Kanitkar, S.; Spivey, J. J. A Review on Dry Reforming of Methane over Perovskite Derived Catalysts. Catal. Today. 2021, 365, 2–23. DOI: 10.1016/j.cattod.2020.10.041.
  • Chang, H.; Bjørgum, E.; Mihai, O.; Yang, J.; Lein, H. L.; Grande, T.; Raaen, S.; Zhu, Y. A.; Holmen, A.; Chen, D. Effects of Oxygen Mobility in La–Fe-based Perovskites on the Catalytic Activity and Selectivity of Methane Oxidation. ACS Catal. 2020, 10(6), 3707–3719. DOI: 10.1021/acscatal.9b05154.
  • Mihai, O.; Chen, D.; Holmen, A. Chemical Looping Methane Partial Oxidation: The Effect of the Crystal Size and O Content of LaFeO3. J. Catal. 2012, 293, 175–185. DOI: 10.1016/j.jcat.2012.06.022.
  • Yang, J.; Bjørgum, E.; Chang, H.; Zhu, K. K.; Sui, Z. J.; Zhou, X. G.; Holmen, A.; Zhu, Y. A.; Chen, D. On the Ensemble Requirement of Fully Selective Chemical Looping Methane Partial Oxidation over La-Fe-based Perovskites. Appl. Catal. B-Environ. 2022, 301, 120788. DOI: 10.1016/j.apcatb.2021.120788.
  • Jiang, B.; Li, L.; Zhang, Q.; Ma, J.; Zhang, H.; Yu, K.; Bian, Z.; Zhang, X.; Ma, X.; Tang, D. Iron–oxygen Covalency in Perovskites to Dominate Syngas Yield in Chemical Looping Partial Oxidation. J. Mater. Chem. A. 2021, 9(22), 13008–13018. DOI: 10.1039/D1TA02103F.
  • Marek, E.; Hu, W.; Gaultois, M.; Grey, C. P.; Scott, S. A. The Use of Strontium Ferrite in Chemical Looping Systems. Appl. Energy. 2018, 223, 369–382. DOI: 10.1016/j.apenergy.2018.04.090.
  • Muñoz-García, A. B.; Bugaris, D. E.; Pavone, M.; Hodges, J. P.; Huq, A.; Chen, F.; Zur Loye, H. C.; Carter, E. A. Unveiling Structure–property Relationships in Sr2Fe1.5Mo0.5O6-δ, an Electrode Material for Symmetric Solid Oxide Fuel Cells. J. Am. Chem. Soc. 2012, 134(15), 6826–6833. DOI: 10.1021/ja300831k.
  • Ma, Y.; Ma, Y.; Long, G.; Li, J.; Hu, X.; Ye, Z.; Dong, D.; Buckley, C. E.; Dong, D. Synergistic Promotion Effect of MgO and CeO2 on Nanofibrous Ni/Al2O3 Catalysts for Methane Partial Oxidation. Fuel. 2019, 258, 116103. DOI: 10.1016/j.fuel.2019.116103.
  • Li, Y.; Wang, J.; Ding, C.; Ma, L.; Xue, Y.; Guo, J.; Liu, P. Effect of Cobalt Addition on the Structure and Properties of Ni–MCM-41 for the Partial Oxidation of Methane to Syngas. RSC Adv. 2019, 9(44), 25508‒25517. DOI: 10.1039/C9RA03534F.
  • Liu, Y.; Qin, L.; Cheng, Z.; Goetze, J. W.; Kong, F.; Fan, J. A.; Fan, L. S. Near 100% CO Selectivity in Nanoscaled Iron-based Oxygen Carriers for Chemical Looping Methane Partial Oxidation. Nat. Commun. 2019, 10(1), 1‒6. DOI: 10.1038/s41467-019-13560-0.
  • Guo, S.; Wang, J.; Ding, C.; Duan, Q.; Ma, Q.; Zhang, K.; Liu, P. Confining Ni Nanoparticles in Honeycomb-like Silica for Coking and Sintering Resistant Partial Oxidation of Methane. Int. J. Hydrogen Energy. 2018, 43(13), 6603‒6613. DOI: 10.1016/j.ijhydene.2018.02.035.
  • Ding, C.; Wang, J.; Guo, S.; Ma, Z.; Li, Y.; Ma, L.; Zhang, K. Abundant Hydrogen Production over Well Dispersed Nickel Nanoparticles Confined in Mesoporous Metal Oxides in Partial Oxidation of Methane. Int. J. Hydrogen Energy. 2019, 44(57), 30171‒30184. DOI: 10.1016/j.ijhydene.2019.09.202.
  • Singha, R. K.; Shukla, A.; Yadav, A.; Konathala, L. S.; Bal, R. Effect of Metal-support Interaction on Activity and Stability of Ni-CeO2 Catalyst for Partial Oxidation of Methane. Appl. Catal. B-Environ. 2017, 202, 473‒488. DOI: 10.1016/j.apcatb.2016.09.060.
  • Ding, C.; Ai, G.; Zhang, K.; Yuan, Q.; Han, Y.; Ma, X.; Wang, J.; Liu, S. Coking Resistant Ni/ZrO2@SiO2 Catalyst for the Partial Oxidation of Methane to Synthesis Gas. Int. J. Hydrogen Energy. 2015, 40(21), 6835‒6843. DOI: 10.1016/j.ijhydene.2015.03.094.
  • Neal, L.; Shafiefarhood, A.; Li, F. Effect of Core and Shell Compositions on MeOx@LaySr1‒yFeO3 Core–shell Redox Catalysts for Chemical Looping Reforming of Methane. Appl. Energy. 2015, 157, 391‒398. DOI: 10.1016/j.apenergy.2015.06.028.
  • Li, L.; He, S.; Song, Y.; Zhao, J.; Ji, W.; Au, C. T. Fine-tunable Ni@porous Silica Core‒shell Nanocatalysts: Synthesis, Characterization, and Catalytic Properties in Partial Oxidation of Methane to Syngas. J. Catal. 2012, 288, 54‒64. DOI: 10.1016/j.jcat.2012.01.004.
  • Dou, Y.; Pang, Y.; Gu, L.; Ding, Y.; Jiang, W.; Feng, X.; Ji, W.; Au, C. T. Core-shell Structured Ru-Ni@SiO2: Active for Partial Oxidation of Methane with Tunable H2/CO Ratio. J. Energy Chem. 2018, 27(3), 883‒889. DOI: 10.1016/j.jechem.2017.07.011.
  • Shafiefarhood, A.; Galinsky, N.; Huang, Y.; Chen, Y.; Li, F. Fe2O3@LaxSr1‒xFeO3 Core‒shell Redox Catalyst for Methane Partial Oxidation. ChemCatChem. 2014, 6(3), 790‒799. DOI: 10.1002/cctc.201301104.
  • Neal, L. M.; Shafiefarhood, A.; Li, F. Dynamic Methane Partial Oxidation Using a Fe2O3@ La0.8Sr0.2FeO3-δ Core–shell Redox Catalyst in the Absence of Gaseous Oxygen. ACS Catal. 2014, 4(10), 3560‒3569. DOI: 10.1021/cs5008415.
  • Zhao, G.; Chai, R.; Zhang, Z.; Sun, W.; Liu, Y.; Lu, Y. High-performance Ni-CeAlO3-Al2O3/FeCrAl-fiber Catalyst for Catalytic Oxy-methane Reforming to Syngas. Fuel. 2019, 58, 116102. DOI: 10.1016/j.fuel.2019.116102.
  • Siang, T. J.; Jalil, A. A.; Abdulrahman, A.; Hambali, H. U. Enhanced Carbon Resistance and Regenerability in Methane Partial Oxidation to Syngas Using Oxygen Vacancy-rich Fibrous Pd, Ru and Rh/KCC-1 Catalysts. Environ. Chem. Lett. 2021, 19(3), 2733‒2742. DOI: 10.1007/s10311-021-01192-0.
  • Das, S.; Gupta, R.; Kumar, A.; Shah, M.; Sengupta, M.; Bhandari, S.; Bordoloi, A. Facile Synthesis of Ruthenium Decorated Zr0.5Ce0.5O2 Nanorods for Catalytic Partial Oxidation of Methane. ACS Appl. Nano Mater. 2018, 1(6), 2953‒2961. DOI: 10.1021/acsanm.8b00567.
  • Melchiori, T.; Di Felice, L.; Mota, N.; Navarro, R. M.; Fierro, J. L. G.; van Sint Annaland, M.; Gallucci, F. J. A. C. A. G. Methane Partial Oxidation over a LaCr0.85Ru0.15O3 Catalyst: Characterization, Activity Tests and Kinetic Modeling. Appl. Catal. A-Gen. 2014, 486, 239‒249. DOI: 10.1016/j.apcata.2014.08.040.
  • Bawornruttanaboonya, K.; Laosiripojana, N.; Mujumdar, A. S.; Devahastin, S. Catalytic Partial Oxidation of CH4 over Bimetallic Ni‐Re/Al2O3: Kinetic Determination for Application in Microreactor. AIChE J. 2018, 64(5), 1691‒1701. DOI: 10.1002/aic.16037.
  • McCormick, R. L.; Alptekin, G. O.; Herring, A. M.; Ohno, T. R.; Dec, S. F. Methane Partial Oxidation over Vanadyl Pyrophosphate and the Effect of Fe and Cr Promoters on Selectivity. J. Catal. 1997, 172(1), 160‒169. DOI: 10.1006/jcat.1997.1840.
  • Alptekin, G. O.; Herring, A. M.; Williamson, D. L.; Ohno, T. R.; McCormick, R. L. Methane Partial Oxidation by Unsupported and Silica Supported Iron Phosphate Catalysts: Influence of Reaction Conditions and Co-feeding of Water on Activity and Selectivity. J. Catal. 1999, 181(1), 104‒112. DOI: 10.1006/jcat.1998.2297.
  • Nguyen, T. H.; Łamacz, A.; Krztoń, A.; Ura, A.; Chałupka, K.; Nowosielska, M.; Rynkowski, J.; Djéga-Mariadassou, G. Partial Oxidation of Methane over Ni0/La2O3 Bifunctional Catalyst II: Global Kinetics of Methane Total Oxidation, Dry Reforming and Partial Oxidation. Appl. Catal. B-Environ. 2015, 165, 389‒398. DOI: 10.1016/j.apcatb.2014.10.019.
  • Nguyen, T. H.; Łamacz, A.; Krztoń, A.; Djéga-Mariadassou, G. Partial Oxidation of Methane over Ni0/La2O3 Bifunctional Catalyst IV: Simulation of Methane Total Oxidation, Dry Reforming and Partial Oxidation Using the Quasi-Steady State Approximation. Appl. Catal. B-Environ. 2016, 199, 424‒432. DOI: 10.1016/j.apcatb.2016.06.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.