Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 2
1,866
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Recent progress in the quantitative assessment and interpretation of photoactivity

, , &

References

  • Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012, 112(3), 1555–1614. DOI: 10.1021/cr100454n.
  • Colmenares, J.C., and Luque, R. Heterogeneous Photocatalytic Nanomaterials: Prospects and Challenges in Selective Transformations of biomass-derived Compounds Chem. Soc. Rev. 2014, 43(3), 765–778. DOI: 10.1039/C3CS60262A.
  • Teixeira, I.F.; Barbosa, E.C.M.; Tang, S.C.E., and Camargo, P.H.C. Carbon Nitrides and Metal Nanoparticles: From Controlled Synthesis to Design Principles for Improved Photocatalysis. Chem. Soc. Rev. 2018, 47(20), 7783–7817. DOI: 10.1039/C8CS00479J.
  • Chen, Q.; Shen, C.; He, L. Recent Advances of polyoxometalate-catalyzed Selective Oxidation Based on Structural Classification. Act. Crys. 2018, C 74, 1182–1201. DOI: 10.1107/S2053229618010902.
  • Yu, H.; Jiang, L.; Wang, H.; Huang, B.; Yuan, X.; Huang, J.; Zhang, J.; Zeng, G. Modulation of Bi2MoO6-Based Materials for Photocatalytic Water Splitting and Environmental Application: A Critical Review. Small. 2019, 15, 1901008. DOI: 10.1002/smll.201901008.
  • Kubacka, A.; Caudillo-Flores, U.; Barba-Nieto, I., and Fernández-García, M. Appl. Catal. A: General; 2021; Vol. 610, pp 117966. DOI: 10.1016/j.apcata.2020.117966.
  • Serpone, N. Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 104(1–3), 1–12. DOI: 10.1016/S1010-6030(96)04538-8.
  • Cassano, A.E., and Alfano, O.M. Reaction Engineering of Suspended Solid Heterogeneous Photocatalytic Reactors. Catal. Today. 2000, 58(2–3), 167–197. DOI: 10.1016/S0920-5861(00)00251-0.
  • Muñoz-Batista, M.J.; Ballari, M.M.; Kubacka, A.; Alfano, O.M., and Fernández-García, M. Braiding Kinetics and Spectroscopy in photo-catalysis: The spectro-kinetic Approach. Chem. Soc. Rev. 2019, 48(2), 637–682. DOI: 10.1039/C8CS00108A.
  • Nosaka, Y., and Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117(17), 11302–11336. DOI: 10.1021/acs.chemrev.7b00161.
  • Ohtani, B. Revisiting the Fundamental Physical Chemistry in Heterogeneous Photocatalysis: Its Thermodynamics and Kinetics. Phys. Chem. Chem. Phys. 2014, 16(5), 1788–1797. DOI: 10.1039/c3cp53653j.
  • Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and Kinetic Analysis of Heterogeneous Photocatalysis for Semiconductor Systems. Phys. Chem. Chem. Phys. 2014, 16(19), 8751–8760. DOI: 10.1039/c3cp55317e.
  • Mills, A.; O´Rouke, C., and Moore, K. Powder Semiconductor Photocatalysts in Aqueous Solution: An Overview of kinetic-based Reaction Mechansims. J. Photochem. Photobiol. A. 2015, 310, 66–105. DOI: 10.1016/j.jphotochem.2015.04.011.
  • Boyjoo, Y.; Sun, H.; Liu, J.; Pareek, V.K., and Wang, S. A Review on Photocatalysis for Air Treatment: From Catalyst Development to Reactor Design. Chem. Eng. J. 2017, 310, 537–559. DOI: 10.1016/j.cej.2016.06.090.
  • Ollis, D.F. Kinetic Disguises in Heterogeneous Photocatalysis. Top. Catal. 2005, 35(3–4), 217–223. DOI: 10.1007/s11244-005-3827-z.
  • Braslavsky, S.E.; Braun, A.M.; Cassano, A.E.; Emeline, A.V.; Litter, M.I.; Palmisano, L.; Parmon, V.N., and Serpone, N. Glossary of Terms Used in Photocatalysis and Radiation Catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83(4), 931–1014. DOI: 10.1351/PAC-REC-09-09-36.
  • Muñoz-Batista, M.J.; Caudillo-Flores, U.; Ung-Medina, F.; Chaez-Parga, M.C.; Cortés, J.A.; Kubacka, A., and Fernández-Garcia, M. Gas Phase 2-Propanol Degradation Using Titania Photocatalysts: Study of the Quantum Efficiency. Appl. Catal. B. 2017, 201, 400–410. DOI: 10.1016/j.apcatb.2016.08.014.
  • Van Gerven, T.; Mul, G.; Moulijn, J.; Stankiewicz, A. A Review of Intensification of Photocatalytic Processes. Chem. Eng. Process. Process. Intensif. 2007, 46(9), 781–789. DOI: 10.1016/j.cep.2007.05.012.
  • Zhong, L.; Haghighat, F. Photocatalytic Air Cleaners and Materials Technologies - Abilities and Limitations. Build. Environ. 2015, 91, 191–203. DOI: 10.1016/j.buildenv.2015.01.033.
  • Ballari, M.M.; Brandi, R.; Alfano, O., and Cassano, A. Mass Transfer Limitations in Photocatalytic Reactors Employing Titanium Dioxide Suspensions. I. Concentration Profiles in the Bulk. Chem. Eng. J. 2008, 136(1), 50–65. DOI: 10.1016/j.cej.2007.03.028.
  • Klaewkla, R.; Arend, M.G., and Hoelderich, W. A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems. Mass Transfer - Advanced Aspects, InTech. 2011. DOI: 10.5772/22962.
  • Mehrotra, K.; Yablonsky, G.S., and Ray, A.K. Kinetic Studies of Photocatalytic Degradation in a TiO2 Slurry System: Distinguishing Working Regimes and Determining Rate Dependences. Ind. Eng. Chem. Res. 2003, 42, 2273–2281. DOI: 10.1021/ie0209881.
  • Ballari, M.M.; Alfano, O.M., and Cassano, A.E. Mass Transfer Limitations in Slurry Photocatalytic Reactors: Experimental Validation. Chem. Eng. Sci. 2010, 65(17), 4931–4942. DOI: 10.1016/j.ces.2010.04.021.
  • Kapteijn, F.; Moulijn, J. A. Handbook of Heterogeneous Catalysis, 2nd ed.; Ertl, G., Knozinger, H., Schuth, F., Weitkamp, J., Eds; Wiley-VCH: Weinheim, 2008; pp. 2019–2045.
  • Kramm, U.I.; Marschall, R., and Rose, M. Pitfalls in Heterogeneous Thermal, Electro- and Photocatalysis. ChemCatChem. 2019, 11(11), 1–13. DOI: 10.1002/cctc.201900137.
  • Kubacka, A.; Barba-Nieto, I.; Caudillo-Flores, U.; Fernández-García, M. Interpreting quantum Efficiency for Energy and Environmental Applications of photo-catalytic Materials. Curr. Op. Chem. Eng. 2021, 33, 100712. DOI: 10.1016/j.coche.2021.100712.
  • Ohtani, B. Preparing Articles on Photocatalysis—Beyond the Illusions, Misconceptions, and Speculation. Chem. Lett. 2008, 37(3), 216–229. DOI: 10.1246/cl.2008.216.
  • Kisch, H.; Bahnemann, D. Best Practice in Photocatalysis: Comparing Rates or Apparent Quantum Yields? J. Phys. Chem. Lett. 2015, 6(10), 1907–1910. DOI: 10.1021/acs.jpclett.5b00521.
  • Qureshi, M.; Tanabe, K. Insights on Measuring and Reporting Heterogeneous Photocatalysis: Efficiency Definitions and Setup Examples. Chem. Mater. 2017, 29(1), 158–167. DOI: 10.1021/acs.chemmater.6b02907.
  • Melchionna, M.; Fornasiero, P. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020, 10(10), 5493–5501. DOI: 10.1021/acscatal.0c01204.
  • Vignolo-González, H.A.; Laha, S.; Jiménez-Solano, A.; Oshima, T.; Duppel, V.; Schutzenbude, P., and Lotsch, B.V. Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO2@TiO2 as a Benchmark. Matter. 2020, 3(2), 464–486. DOI: 10.1016/j.matt.2020.07.021.
  • Burwell, R.L. Manual of Symbols and Terminology for Physicochemical Quantities and Units - Appendix II. Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Part II: Heterogeneous Catalysis. Pure Appl. Chem. 1976, 46, 7190. DOI: 10.1351/pac197646010071.
  • Eaton, T.R.; Campos, M.P.; Gray, K.A., and Notestein, J.M. Quantifying Accessible Sites and Reactivity on titania-silica (Photo) Catalysts: Refining TOF Calculations. J. Catal. 2014, 309, 156–165. DOI: 10.1016/j.jcat.2013.09.015.
  • Simpson, B.H., and Rodríguez-López, J. Redox Titrations via Surface Interrogation Scanning Electrochemical Microscopy at an Extended Semiconducting Surface for the Quantification of Photogenerated Adsorbed Intermediates. Electrochim. Acta. 2015, 179, 74–83. DOI: 10.1016/j.electacta.2015.04.128.
  • Luo, C.; Ren, X.; Dai, Z.; Zhang, Y.; Qi, X.; Pan, C. Present Perspectives of Advanced Characterization Techniques in TiO 2 -based Photocatalysts. ACS Appl. Mater. Interfaces. 2017, 9(28), 23265–23286. DOI: 10.1021/acsami.7b00496.
  • Caudillo-Flores, U.; Muñoz-Batista, M.J.; Kubacka, A., and Fernández-García, M. Operando Spectroscopy in Photocatalysis. ChemPhotoChem. 2018, 2(9), 777–785. DOI: 10.1002/cptc.201800117.
  • Muñoz-Batista, M.J.; Motta-Meira, D.; Colón, G.; Kubacka, A., and Fernández-García, M. Phase-Contact Engineering in Mono- and Bimetallic Cu-Ni Co-catalysts for Hydrogen Photocatalytic Materials. Angew. Chem. Int. Ed. 2018, 57(5), 1199–1203. DOI: 10.1002/anie.201709552.
  • Caudillo-Flores, U.; Barba-Nieto, I.; Muñoz-Batista, M.J.; Kubacka, A., and Fernández-García, M. Characterization of Photo-catalysts: From Traditional to Advanced Approaches. Topics Curr. Chem. 2019, 24, 377–399. DOI: 10.1007/s41061-019-0248-1.
  • Fontelles-Carceller, O.; Muñoz-Batista, M.J.; Conesa, J.C.; Fernández-García, M., and Kubacka, A. UV and Visible Hydrogen photo-production Using Pt Promoted Nb-doped TiO2 photo-catalysts: Interpreting Quantum Efficiency. Appl. Catal. B. 2017, 216, 133–145. DOI: 10.1016/j.apcatb.2017.05.022.
  • Ray, S.; Lalman, J.A., and Biswas, N. Using the Box-Benkhen Technique to Statistically Model Phenol Photocatalytic Degradation by Titanium Dioxide Nanoparticles. Chem. Eng. J. 2009, 150(1), 15–24. DOI: 10.1016/j.cej.2008.11.039.
  • García, B.B.; Lourinho, G.; Romano, P., and Brito, P.S.D. Photocatalytic Degradation of Swine Wastewater on Aqueous TiO2 Suspensions: Optimization and Modeling via Box-Behnken Design. Helyon. 2020, 6(1), e03293. DOI: 10.1016/j.heliyon.2020.e03293.
  • ISO (International Organization for Standardization) (2016). ISO 22197-1. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials-Part 1: Removal of Nitric Oxide. https://www.iso.org/standard/65416.html.
  • ISO (International Organization for Standardization) (2019). ISO 22197-2. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials-Part 2: Removal of Acetaldehyde https://www.iso.org/standard/72347.html.
  • Baumanis, C., and Bahnemann, D.W. TiO 2 Thin Film Electrodes: Correlation between Photocatalytic Activity and Electrochemical Properties. J. Phys. Chem. C. 2008, 112(48), 19097–19101. DOI: 10.1021/jp807655a.
  • Khan, A.; Goepel, M.; Kubas, A.; Lomot, D.; Lisowski, W.; Lisovytskiy, D.; Nowicka, A.; Colmenares, J.A., and Glaser, R. Slective Oxidation of 5-Hydromehylfurfural to 2,5-Diformylfuran by Visible Light-driven Photocatalysis over in-situ substrate-sensitized Titania. ChemSusChem. 2021, 14(5), 1351–1362. DOI: 10.1002/cssc.202002687.
  • Mills, A.; Hill, C., and Robertson, P.K. Overview of the Current ISO Tests for Photocatalytic Materials. J. Photochem. Photobiol. 2012, 237, 7–23. DOI: 10.1016/j.jphotochem.2012.02.024.
  • Satuf, M.L.; Brandi, R.J.; Cassano, A.E., and Alfano, O.M. Experimental Method to Evaluate the Optical Properties of Aqueous Titanium Dioxide Suspensions. Ind. Eng. Chem. Res. 2005, 44(17), 6643–6649. DOI: 10.1021/ie050365y.
  • Du, Y.; Liu, M.; Gou, L. Scattering Phase Function of Fractal Aggregates of TiO2 Particulate Photocatalyst Simulated with Discrete Dipole Approximation. Int. J. Hydrogen Energ. 2020, 45(52), 28034–28043. DOI: 10.1016/j.ijhydene.2020.03.223.
  • García-Gil, A.; Casado, C.; Pablos, C.; Marugán, J. Novel Procedure for the Numerical Simulation of Solar Water Disinfection Processes in Flow Reactors. Chem. Eng. J. 2019, 376, 120194. DOI: 10.1016/j.cej.2018.10.131.
  • Caudilllo-Flores, U.; Agostini, G.; Marini, C.; Kubacka, A.; Fernández-García, M. Hydrogen thermo-photo Production Using Ru/TiO2: Heat and Light Synergistic Effects. Appl. Catal. B. 2019, 256, 117790. DOI: 10.1016/j.apcatb.2019.117790.
  • Parrino, F.; Loddo, V.; Augugliaro, V.; Camera-Roda, G.; Plamisano, G.; Palmisano, L.; , and Yurdakal, S. S.Heterogeneous Photocatalysis: Guidelines on Experimental Setup, Catalyst Characterization, Interpretation, and Assessment of Reactivity. Catal. Rev. Sci. Eng. 2019, 61(2), 163–213. DOI: 10.1080/01614940.2018.1546445.
  • Casado, C.; García-Gil, A.; van Grieken, R.; Marugán, J. Critical Role of the Light Spectrum on the Simulation of Solar Photocatalytic Reactors. Appl. Catal. B. 2019, 252, 1–9. DOI: 10.1016/j.apcatb.2019.04.004.
  • Ramos-Huerta, L.A.; Valadés-Pelayo, P.J.; Llanos, A.G.; Ruiz, R.S.; Cabello, J.J., and Castillo-Araiza, C.O. Development of a New Methodology to Determine Suspended Photocatalyst Optical Properties. Chem. Eng. J. 2021, 413, 127458. DOI: 10.1016/j.cej.2020.127458.
  • Pellegrino, F.; Pellutie, L.; Sordelo, F.; Minero, C.; Ortel, E.; Hodoraba, V.-D.; Maurino, V. Influence of Agglomeration and Aggregation on the Photocatalyticactivity of TiO2 Nanoparticles. Appl. Catal. B. 2017, 216, 80–87. DOI: 10.1016/j.apcatb.2017.05.046.
  • Tolosana-Moranchel, A.; Pecharromán, C.; Faraldos, M.; Bahamonde, A. Strong Effect of Light Scattering by Distribution of TiO2 Particle Aggregates on Photocatalytic Efficiency in Aqueous Suspensions. Chem. Eng. J. 2021, 403, 126186. DOI: 10.1016/j.cej.2020.126186.
  • Ozisik, M.N. ; In Radiative Transfer and Interactions with Conduction and Convection (New York: Wiley) 1–575 1973.
  • Duderstadt, J.J., and Martin, R. Transport Theory; Whiley: New York, 1979.
  • Brucato, A.; Rizzuti, L. Simplified Modeling of Radiant Fields in Heterogeneous Photoreactors. 1. Case of Zero Reflectance. Ind. Eng. Chem. Res. 1997, 36(11), 4740–4747. DOI: 10.1021/ie960259j.
  • Brucato, A.; Rizzuti, L. Simplified Modeling of Radiant Fields in Heterogeneous Photoreactors. 2. Limiting “Two-Flux” Model for the Case of Reflectance Greater than Zero. Ind. Eng. Chem. Res. 1997, 36(11), 4748–4755. DOI: 10.1021/ie960260i.
  • Loddo, V.; Addamo, M.; Augugliaro, V.; Palmisano, L.; Schiavello, M.; Garrone, E. Optical Properties and Quantum Yield Determination in Photocatalytic Suspensions. AIChE J. 2006, 52(7), 2565–2574. DOI: 10.1002/aic.10883.
  • Brucato, A.; Cassano, A. E.; Grisafi, F.; Montante, G.; Rizzuti, L.; Vella, G. Estimating Radiant Fields in Flat Heterogeneous Photoreactors by the Six‐flux Model. AIChE J. 2006, 52(11), 3882–3890. DOI: 10.1002/aic.10984.
  • Grcic, I., and Puma, G.L. Six-flux absorption-scattering Models for Photocatalysis underwide-spectrum Irradiation Sources in Annular and Flat Reactors Usingcatalysts with Different Optical Properties. Appl. Catal. B. 2017, 211, 222–234. DOI: 10.1016/j.apcatb.2017.04.014.
  • Acosta-Herazo, R.; Monterriza-Romero, J.; Mueses, M.A.; Machuca-Martínez, F., and Puma, G.L. Coupling the Six Flux Absorption–Scattering Model to the Henyey–Greenstein Scattering Phase Function: Evaluation and Optimization of Radiation Absorption in Solar Heterogeneous Photoreactors. Chem. Eng. J. 2016, 302, 86–96. DOI: 10.1016/j.cej.2016.04.127.
  • Brusciglio, A.; Alfano, O. M.; Scargiali, F.; Brucato, A. A Probabilistic Approach to Radiant Field Modeling in Dense Particulate Systems. Chem. Eng. Sci. 2016, 142, 79–88. DOI: 10.1016/j.ces.2015.11.025.
  • Turolla, A.; Santoro, D.; de Bruyn, J.R.; Crapulli, F., and Antonelli, M. Nanoparticle Scattering Characterization and Mechanistic Modeling of UV-TiO2 Photocatalytic Reactors Using Computational Fluid Dynamics. Water Res. 2016, 88, 117–126. DOI: 10.1016/j.watres.2015.09.039.
  • Ramírez-Cabrera, M.A.; Valadés-Velayo, P.J.; Arancibia-Bulnes, C.A., and Ramos, E. Validity of the Six-Flux Model for Photoreactors. Chem. Eng. J. 2017, 330, 272–280. DOI: 10.1016/j.cej.2017.07.120.
  • Romero, R.L.; Alfano, O.M., and Cassano, A.E. Cylindrical Photocatalytic Reactors. Radiation Absorption and Scattering Effects Produced by Suspended Fine Particles in an Annular Space. Ind. Eng. Chem. Res. 1997, 36(8), 3094–3098. DOI: 10.1021/ie960664a.
  • Sgalari, G.; Camera-Roda, G.; Santarelli, F. Int. Commun. Discrete Ordinate Method in the Analysis of Radiative Transfer in Photocatalytically Reacting Media. Heat Mass Transfer. 1998, 25(5), 651–660. DOI: 10.1016/S0735-1933(98)00052-9.
  • Camera-Roda, G.; Santarelli, F. A Rational Approach to the Design of Photocatalytic Reactors. Ind. Eng. Chem. Res. 2007, 46, 7637–7644. DOI: 10.1021/ie070302a.
  • Pareek, V.; Chong, S.; Tadé, M., and Adesina, A.A. Light Intensity Distribution in Heterogenous Photocatalytic Reactors. Asia Pac. J. Chem. Eng. 2008, 3(2), 171–201. DOI: 10.1002/apj.129.
  • Spadoni, G.; Bandino, E.; Santarelli, F. Scattering Effects in Photosensitized Reactions. Chem. Eng. Sci. 1978, 33(4), 517–524. DOI: 10.1016/0009-2509(78)80012-8.
  • Pasquali, M.; Santarelli, F.; Porter, J.F., and Yue, P.L. Radiative Transfer in Photocatalytic Systems. AIChE J. 1996, 42(2), 532–537. DOI: 10.1002/aic.690420222.
  • Pareek, V.K.; Cox, S.J.; Brungs, M.P.; Young, B., and Adesina, A.A. Computational Fluid Dynamic (CFD) Simulation of a pilot-scale Annular Bubble Column Photocatalytic Reactor. Chem. Eng. Sci. 2003, 58(3–6), 859–865. DOI: 10.1016/S0009-2509(02)00617-6.
  • Marugán, J.; van Grieken, R.; Pablos, C.; Satuf, M.L.; Cassano, A.E., and Alfano, O.M. Modeling of a bench-scale Photocatalytic Reactor for Water Disinfection from laboratory-scale Kinetic Data. Chem. Eng. J. 2013, 224, 39–45. DOI: 10.1016/j.cej.2012.11.082.
  • Fontelles-Carceller, O.; Muñoz-Batista, M.J.; Rodríguez-Castellón, E.; Conesa, J.C.; Fernández-García, M., and Kubacka, A. Measuring and Interpreting Quantum Efficiency for Hydrogen Photoproduction Using Pt-titania Catalysts. J. Catal. 2017, 347, 157–169. DOI: 10.1016/j.jcat.2017.01.012.
  • Duran, J.E.; Taghipour, F., and Mosheni, M. Irradiance Modeling in Annular Photoreactors Using the finite-volume Method. J. Photochem. Photobiol. A. 2010, 215(1), 81–89. DOI: 10.1016/j.jphotochem.2010.07.027.
  • Huang, Q.; Liu, T.; Yang, J.; Yao, L.; Gao, L. Evaluation of Radiative Transfer Using the Finite Volume Method in Cylindrical Photoreactors. Chem. Eng. Sci. 2011, 66(17), 3930–3940. DOI: 10.1016/j.ces.2011.05.032.
  • Yang, Q.; Ang, P.L.; Ray, M.B., and Pehkonen, S.O. Light Distribution Field in Catalyst Suspensions within an Annular Photoreactor. Chem. Eng. Sci. 2005, 60(19), 5255–5268. DOI: 10.1016/j.ces.2005.02.067.
  • Zekri, M.; Juntin-Colbeau, C. A Mathematical Model to Describe the Photocatalytic Reality: What Is the Probability that A Photon Does Its Job? Chem. Eng. J. 2013, 225, 547–557. DOI: 10.1016/j.cej.2013.03.129.
  • Moreira, J.; Serrano, B.; Ortíz, A.; de Lasa, H. Evaluation of Photon Absorption in an Aqueous TiO 2 Slurry Reactor Using Monte Carlo Simulations and Macroscopic Balance. Ind. Eng. Chem. Res. 2010, 49(21), 10524–10529. DOI: 10.1021/ie100374f.
  • Valadés-Pelayo, P.J.; Moreira Del Rio, J.; Solano-Flores, P.; Serrano, B., and de Lasa, H. Establishing Photon Absorption Fields in a Photo-CREC Water II Reactor Using a CREC-spectroradiometric Probe. Chem. Eng. Sci. 2014, 116, 406–417. DOI: 10.1016/j.ces.2014.04.041.
  • Tong, K.; Yang, L.; Du, X. Modelling of TiO2-based Packing Bed Photocatalytic Reactor with Raschig Rings for Phenol Degradation by Coupled CFD and DEM. Chem. Eng. J. 2020, 400, 125988. DOI: 10.1016/j.cej.2020.125988.
  • Zhang, L., and Anderson, W.A. A Finite Model for the Prediction of the UV Radiation Field around A Linear Lamp. Chem. Eng. Sci. 2010, 65(5), 1513–1521. DOI: 10.1016/j.ces.2009.10.013.
  • Esteban Durán, J.; Taghipour, F.; Mohseni, M. Irradiance Modeling in Annular Photoreactors Using the finite-volume Method. J. Photochem. Photobiol. A. 2010, 215(1), 81–89. DOI: 10.1016/j.jphotochem.2010.07.027.
  • Boyjoo, Y.; Ang, M.; Pareek, V. Lamp Emission and Quartz Sleeve Modeling in Slurry Photocatalytic Reactors. Chem. Eng. Sci. 2014, 111, 34–40. DOI: 10.1016/j.ces.2014.02.023.
  • Moreno, J.; Casada, C.; Marugán, J. Improved Discrete Ordinate Method for Accurate Simulation Radiation Transport Using Solar and LED Light Sources. Chem. Eng. J. 2019, 205, 151–164. DOI: 10.1016/j.ces.2019.04.034.
  • Lugo-Vega, C.S.; Serrano-Rosales, B., and de Lasa, H. Immobilized Particle Coating for Optimum Photon and TiO2 Utilization in Scaled Air Treatment Photo Reactors. Appl. Catal. B. 2016, 198, 211–223. DOI: 10.1016/j.apcatb.2016.05.063.
  • Bolton, J.R. Calculation of Ultraviolet Fluence Rate Distributions in an Annular Reactor: Significance of Refraction and Reflection. Water Res. 2000, 34(13), 3315–3324. DOI: 10.1016/S0043-1354(00)00087-7.
  • Muñoz-Batista, M.J.; Kubacka, A.; Hungría, A.B., and Fernández-García, M. Heterogeneous Photocatalysis: Light-matter Interaction and Chemical effects in Quantum Efficiency Calculations. J. Catal. 2015, 330, 154–166. DOI: 10.1016/j.jcat.2015.06.021.
  • Alexadis, A.; Baldi, G.; Mazzarino, I. Modeling of a Photocatalytic Reactor with A fixed Bed Supported Catalyst. Catal. Today. 2001, 66(2–4), 467–474. DOI: 10.1016/S0920-5861(01)00255-3.
  • Vaiano, V.; Sacco, O.; Pisano, D.; Sannino, D.; Ciambelli, P. From the Design to the Development of a Continuous Fixed Bed Photoreactor for Photocatalytic Degradation of Organic Pollutants in Wastewater. Chem. Eng. Sci. 2015, 137, 152–160. DOI: 10.1016/j.ces.2015.06.023.0009-2509.
  • Eduards, D.K. Solar Absorption by Each Element in an absorber-coverglass Array. Sol. Ener. 1977, 19, 401–402. DOI: 10.1016/0038-092X(77)90013-5.
  • Salvadores, F.; Minen, R.J.; Carballada, J.; Alfano, O.M., and Ballari, M.M. Kinetic Study of Acetaldehyde Degradation in Gas Phase Applying Visible Light Photocatalysis. Chem. Eng. Technol. 2016, 39(1), 166–174. DOI: 10.1002/ceat.201500507.
  • Changrani, R.G., and Raupp, G.B. Monte Carlo Simulation of the Radiation Field in a Reticulated Foam Photocatalytic Reactor. AIChE J. 1999, 45(5), 829–842. DOI: 10.1002/aic.690450516.
  • Loddo, V.; Yurdakal, S.; Palmisano, G.; Imoberdorf, G.E.; Irazoqui, H.A.; Alfano, O.M.; Augugliaro, V.; Berber, H., and Palmisano, L. Selective Photocatalytic Oxidation of 4-methoxybenzyl Alcohol Tp p-anisaldehyde in organic-free Water in a Continuous Annular Fixed Bed Reactor. Int. J. Chem. Reactor Eng. 2007, 5(1), A57. DOI: 10.2202/1542-6580.1500.
  • Zazueta, A.L.L.; Destaillats, H., and Li Puma, G. Radiation Field Modeling and Optimization of a Compact and Modular multi-plate Photocatalytic Reactor (MPPR) for air/water Purification by Monte Carlo Method. Chem. Eng. J. 2013, 217, 475–485. DOI: 10.1016/j.cej.2012.11.085.
  • Padoin, N.; Soares, C. An Explicit Correlation for Optimal TiO2 Film Thickness in Immobilized Photocatalytic Reaction Systems. Chem. Eng. J. 2017, 310, 381–388. DOI: 10.1016/j.cej.2016.06.013.
  • Emeline, A.V.; Frolov, A.V.; Ryabchuk, V.K., and Serpone, N. Spectral Dependencies of the Quantum Yield of Photochemical Processes on the Surface of Nano/Micro-Particulates of Wide-Band-Gap Metal Oxides. IV. Theoretical Modeling of the Activity and Selectivity of Semiconductor Photocatalysts with Inclusion of a Sub. J. Phys. Chem. B. 2003, 107, 7109–7119. DOI: 10.1021/jp030126t.
  • Caudillo-Flores, U.; Muñoz-Batista, M.J.; Hungría, A.B.; López Haro, M.; Fernández-García, M., and Kubacka, A. Toluene and Styrene photo-oxidation Quantum Efficiency: Comparison between Doped and Composite tungsten-containing anatase-based Catalysts. Appl. Catal. B. 2019, 245, 49–61. DOI: 10.1016/j.apcatb.2018.12.032.
  • Fontelles-Carceller, O.; Muñoz-Batista, M.J.; Fernández-García, M., and Kubacka, A. Interface Effects in Sunlight-Driven Ag/g-C 3 N 4 Composite Catalysts: Study of the Toluene Photodegradation Quantum Efficiency. ACS Appl. Mater. Interfaces. 2016, 8(4), 2617–2627. DOI: 10.1021/acsami.5b10434.
  • Fontelles-Carceller, O.; Muñoz-Batista, M.J.; Conesa, J.C.; Kubacka, A., and Fernández-García, M. H 2 photo-production from Methanol, Ethanol and 2-propanol:Pt-(Nb)TiO 2 Performance under UV and Visible Light. Mol. Catal. 2018, 446, 88–97. DOI: 10.1016/j.mcat.2017.12.023.
  • Caudillo-Flores, U.; Muñoz-Batista, M.J.; Fernández-García, M., and Kubacka, A. Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 Materials for H2 photo-production under UV and Visible Light Illumination. Appl. Catal. B. 2018, 238, 533–545. DOI: 10.1016/j.apcatb.2018.07.047.
  • Narayanan, N.; Nair, M. V. H.; Viswanathan, B. On the Current Status of the Mechanism Aspects of Photocatalytic Reduction of Carbon Doixide. Indian J. Chem. 2017, 36A, 251–269. http://nopr.niscair.res.ind/123456789/40911.
  • Caudillo-Flores, U.; Avilés-García, O.; Alonso-Núñez, G.; Kubacka, K.; Fernández-García, M. Assessing Quantitatively Charge Carrier Fate in 4-Chlorophenol Photocatalytic Degradation Using Globular Titania Catalysts: Implications in Quantum Efficiency Calculation. J. Environ. Chem. Eng. 2021, 9, 106074. DOI:10.1016/j.jece.2021.106074. 5
  • Ismael, M. Latest Progress on the Key Operating Parameters Affecting the Photocatalytic Activity of TiO2-based Photocatalysts for Hydrogen Fuel Production: A Comprehensive Review. Fuel. 2021, 303, 121207. DOI: 10.1016/j.fuel.2021.121207.
  • Imoberdorf, G.E.; Cassano, A.E.; Irazoqui, H.A., and Alfano, O.M. Simulation of a multi-annular Photocatalytic Reactor for Degradation of Perchloroethylene in Air: Parametric Analysis of Radiative Energy Efficiencies. Chem. Eng. Sci. 2007, 64(4), 1138–1154. DOI: 10.1016/j.ces.2006.10.024.
  • Passalía, C.; Alfano, O.M., and Brandi, R.J. Optimal Design of a corrugated-wall Photocatalytic Reactor Using Efficiencies in Series and Computational Fluid Dynamics (CFD) Modeling. Ind. Eng. Chem. Res. 2013, 52(21), 6916–6922. DOI: 10.1021/ie302838m.
  • Muñoz-Batista, M.J.; Ballari, M.M.; Kubacka, A.; Cassano, A.E.; Alfano, O.M., and Fernández-García, M. Acetaldehyde Degradation under UV and Visible Irradiation Using CeO2–TiO2 Composite Systems: Evaluation of the Photocatalytic Efficiencies. Chem. Eng. J. 2014, 255, 297–306. DOI: 10.1016/j.cej.2014.06.056.
  • Martín-Sómer, M.; Pablos, C.; van Grieken, R.; Marugán, J. Influence of Light Distribution on the Performance of Photocatalytic Reactors: LED Vs Mercury Lamps. Appl. Catal. B. 2017, 215, 1–7. DOI: 10.1016/j.apcatb.2017.05.048.
  • Tokode, O.; Prabhu, R.; Lawton, L.A., and Robertson, P.K.J. UV LED Sources for Heterogeneous Photocatalysis, in. In Environ. Photochem. Part III, Springer Verlag: 2014; Vol. , pp 159–179.
  • Khodadadian, F.; De Boer, M.W.; Poursaeidesfahani, A.; Van Ommen, J.R.; Stankiewicz, A.I., and Lakerveld, R. Design, Characterization and Model Validation of a LED-based Photocatalytic Reactor for Gas Phase Applications. Chem. Eng. J. 2018, 333, 456–466. DOI: 10.1016/j.cej.2017.09.108.
  • Bandala, E.R.; Arancibia-Bulnes, C.A.; Orozco, S.L., and Estrada, C.A. Solar Photoreactors Comparison Based on Oxalic Acid Photocatalytic Degradation. Sol. Energy. 2004, 77(5), 503–512. DOI: 10.1016/j.solener.2004.03.021.
  • Imoberdorf, G.E.; Cassano, A.E.; Irazoqui, H.A., and Alfano, O.M. Optimal Design and Modeling of Annular Photocatalytic Wall Reactors. Catal. Today. 2007, 129(1–2), 118–126. DOI: 10.1016/j.cattod.2007.06.057.
  • De Lasa, H.I.; Serrano, B., and Salaices, M. Photocatalytic Reaction Engineering.New York, USA: Springer Science+Business Media, LLC;2005.
  • Hisatomi, T.; Domen, K. Reaction Systems for Solar Hydrogen Production via Water Splitting with Particulate Semiconductor Photocatalysts. Nat. Catal. 2020, 2(5), 387–399. DOI: 10.1038/s41929-019-0242-6.
  • Muñoz-Batista, M.J.; Eslava-Castillo, A.M.; Kubacka, A., and Fernández-García, M. Thermo-photo Degradation of 2-propanol Using a Composite ceria-titania Catalyst: Physico-chemical Interpretation from a Kinetic Model. Appl. Catal. B. 2018, 225, 298–306. DOI: 10.1016/j.apcatb.2017.11.073.
  • Zhang, J.; Nosaka, Y. Quantitative Detection of OH Radicals for Investigating the Reaction Mechanism of Various Visible-Light TiO 2 Photocatalysts in Aqueous Suspension. J. Phys. Chem. C. 2013, 117(3), 1383–1391. DOI: 10.1021/jp3105166.
  • Muñoz-Batista, M.J.; Ballari, M.M.; Cassano, A.E.; Alfano, O.M.; Kubacka, A., and Fernández-García, M. Ceria Promotion of Acetaldehyde photo-oxidation in a TiO 2 -based Catalyst: A Spectroscopic and Kinetic Study. Catal. Sci. Technol. 2014, 5(3), 1521–1531. DOI: 10.1039/C4CY01293C.
  • Muñoz-Batista, M.J.; Gómez-Cerezo, M.N.; Kubacka, A.; Tudela, D., and Fernández-García, M. Role of Interface Contact in CeO 2 –tio 2 Photocatalytic Composite Materials. ACS Catal. 2014, 4(1), 63–72. DOI: 10.1021/cs400878b.
  • Muñoz-Batista, M.J.; Kubacka, A., and Fernández-García, M. Effective Enhancement of TiO 2 Photocatalysis by Synergistic Interaction of Surface Species: From Promoters to Co-catalysts. ACS Catal. 2014, 4(12), 4277–4288. DOI: 10.1021/cs501408u.
  • Gu, Q.; Long, J.; Fan, L.; Chen, L.; Zhao, L.; Lin, H.; Wan, X. Single-site Sn-grafted Ru/TiO2 Photocatalysts for Biomass Reforming: Synergistic Effect of Dual co-catalysts and Molecular Mechanism. J. Catal. 2013, 303, 141–155. DOI: 10.1016/j.jcat.2013.03.014.
  • Muñoz-Batista, M.J.; Kubacka, A.; Gómez-Cerezo, M.N.; Tudela, D., and Fernández-García, M. Sunlight-driven Toluene photo-elimination Using CeO2-TiO2 Composite Systems: A Kinetic Study. Appl. Catal. B. 2013, 140–141, 626–635. DOI: 10.1016/j.apcatb.2013.04.071.
  • Cunningham, J.; Srijaranai, S. Isotope-effect Evidence for Hydroxyl Radical Involvement in Alcohol photo-oxidation Sensitized by TiO2 in Aqueous Suspension. J. Photochem. Photobiol. A. 1988, 43(3), 329–335. DOI: 10.1016/1010-6030(88)80029-7.
  • Lin, X.H.; Miao, Y., and Li, S.F.Y. Location of Photocatalytic Oxidation Processes on Anatase Titanium Dioxide. Catal. Sci. Technol. 2017, 7(2), 441–451. DOI: 10.1039/C6CY02214F.
  • Chiarello, G.L.; Ferri, D., and Selli, E. Effect of the CH3OH/H2O Ratio on the Mechanism of the gas-phase Photocatalytic Reforming of Methanol on Noble metal-modified TiO2. J. Catal. 2011, 289(2), 168–177. DOI: 10.1016/j.jcat.2011.03.013.
  • Yin, G.; Huang, X.; Chen, T.; Zhao, W.; Bi, Q.; Xu, J.; Han, Y.; Huang, F. Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions: Preparation, Characterization, and Reaction Mechanism of CO 2 Reduction. ACS Catal. 2018, 8(2), 1009–1017. DOI: 10.1021/acscatal.7b03473.
  • Arsac, F.; Bianchi, D.; Chovelon, J. M.; Ferronato, C.; Herrman, J. M. Experimental Microkinetic Approach of the Photocatalytic Oxidation of Isopropyl Alcohol on TiO 2 . Part 2. From the Surface Elementary Steps to the Rates of Oxidation of the C 3 H X O Species. J. Phys. Chem. A. 2006, 110(12), 4213–4222. DOI: 10.1021/jp057255p.
  • Topalian, Z.; Stefanov, B.I.; Granqvist, C.G., and Osterlund, L. Adsorption and photo-oxidation of Acetaldehyde on TiO2 and sulfate-modified TiO2: Studies by in Situ FTIR Spectroscopy and micro-kinetic Modeling. J. Catal. 2013, 307, 265–274. DOI: 10.1016/j.jcat.2013.08.004.
  • Mattsson, A.; Leideborg, M.; Larsson, K.; Westing, G.; Osterlund, L. Adsorption and Solar Light Decomposition of Acetone on Anatase TiO 2 and Niobium Doped TiO 2 Thin Films. J. Phys. Chem. B. 2006, 110(3), 1210–1220. DOI: 10.1021/jp055656z.
  • Walenta, C.A.; Courtois, C.; Kollmannsberger, S.L.; Eder, M.; Tschurl, M., and Heiz, U. Surface Species in Photocatalytic Methanol Reforming on Pt/TiO 2 (110): Learning from Surface Science Experiments for Catalytically Relevant Conditions. ACS Catal. 2020, 10(7), 4080–4091. DOI: 10.1021/acscatal.0c00260.
  • Ollis, D.F. Kinetics of Liquid Phase Photocatalyzed Reactions:  An Illuminating Approach. J. Phys. Chem. B. 2005, 109(6), 2439–2444. DOI: 10.1021/jp040236f.
  • Nosaka, Y., and Nosaka, A.Y. Langmuir-Hinshelwood and Light-Intensity Dependence Analyses of Photocatalytic Oxidation Rates by Two-Dimensional-Ladder Kinetic Simulation. J. Phys. Chem. C. 2018, 122(50), 28748–28756. DOI: 10.1021/acs.jpcc.8b09421.
  • Herrmann, J.M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today. 1999, 53(1), 115–129. DOI: 10.1016/S0920-5861(99)00107-8.
  • Migani, A.; Blancafort, L. Excitonic Interfacial Proton-Coupled Electron Transfer Mechanism in the Photocatalytic Oxidation of Methanol to Formaldehyde on TiO 2 (110). J. Am. Chem. Soc. 2016, 138(49), 16165–16173. DOI: 10.1021/jacs.6b11067.
  • Migani, A.; Blancafort, L. What Controls Photocatalytic Water Oxidation on Rutile TiO 2 (110) under Ultra-High-Vacuum Conditions? J. Am. Chem. Soc. 2017, 139(34), 11845–11856. DOI: 10.1021/jacs.7b05121.
  • Satuf, M.L.; Bradi, R.J.; Cassano, A.E., and Alfano, O.M. Photocatalytic Degradation of 4-chlorophenol: A Kinetic Study. Appl. Catal. B. 2008, 82(1–2), 37–49. DOI: 10.1016/j.apcatb.2008.01.003.
  • Marugán, J.; van Grieken, R.; Cassano, A.E., and Alfano, O.M. Intrinsic Kinetic Modeling with Explicit Radiation Absorption Effects of the Photocatalytic Oxidation of Cyanide with TiO2 and silica-supported TiO2 Suspensions. Appl. Catal. B. 2008, 85(1–2), 48–60. DOI: 10.1016/j.apcatb.2008.06.026.
  • Mueses, M.A.; Machuca-Martínez, F., and Puma, G.L. Effective Quantum Yield and Reaction Rate Model for Evaluation of Photocatalytic Degradation of Water Contaminants in Heterogeneous pilot-scale Solar Photoreactors. Chem. Eng. J. 2013, 215–216, 937–947. DOI: 10.1016/j.cej.2012.11.076.
  • Salvadores, F.; Minen, R.I.; Carballada, J.; Alfano, O.M., and Ballari, M.M. Kinetic Study of Acetaldehyde Degradation Applying Visible Light Photocatalysis. Chem. Eng. Technol. 2016, 39(1), 166–174. DOI: 10.1002/ceat.201500507.
  • Zalazar, C.S.; Romero, R.L.; Martín, C.A., and Cassano, A.E. Photocatalytic Intrinsic Reaction Kinetics I: Mineralization of Dichloroacetic Acid. Chem. Eng. Sci. 2005, 60(19), 5240–5254. DOI: 10.1016/j.ces.2005.04.050.
  • Ballari, M.M.; Cassano, A.E., and Alfano, O.M. Photocatalytic Degradation of Dichloroacetic Acid. A Kinetic Study with A Mechanistically Based Reaction Model. Ind. Eng. Chem. Res. 2009, 48(4), 1847–1858. DOI: 10.1021/ie801194f.
  • Barba-Nieto, I.; Caudillo-Flores, U.; Gómez-Cerezo, M.N.; Kubacka, A., and Fernández-García, M. Boosting Pt/TiO2 Hydrogen Photoproduction through Zr Doping of the Anatase Structure: A Spectroscopic and Mechanistic Study. Chem. Eng. J. 2020, 398, 125665. DOI: 10.1016/j.cej.2020.125665.
  • Monllor-Satoca, D.; Gómez, R.; González-Hidalgo, M.; Salvador, P. The “Direct–Indirect” Model: An Alternative Kinetic Approach in Heterogeneous Photocatalysis Based on the Degree of Interaction of Dissolved Pollutant Species with the Semiconductor Surface. Catal. Today. 2007, 129(1–2), 247–255. DOI: 10.1016/j.cattod.2007.08.002.
  • Montolla, J.F.; Peral, J., and Salvador, P. The direct–indirect Kinetic Model in Photocatalysis: A Reanalysis of Phenol and Formic Acid Degradation Rate Dependence on Photon Flow and Concentration in TiO2 Aqueous Dispersions. Appl. Catal. B. 2009, 88(1–2), 50–59. DOI: 10.1016/j.apcatb.2008.09.035.
  • Montolla, J.F.; Peral, J., and Salvador, P. Comprehensive Kinetic and Mechanistic Analysis of TiO 2 Photocatalytic Reactions according to the Direct–Indirect Model: (I) Theoretical Approach. J. Phys. Chem. C. 2014, 118(26), 14266–14275. DOI: 10.1021/jp4121645.
  • Turchi, C., and Ollis, D.F. Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. J. Catal. 1990, 122(1), 178–192. DOI: 10.1016/0021-9517(90)90269-P.
  • Acosta-Herazo, R.; Cañaveral-Velásquez, B.; Pérez-Giraldo, K.; Mueses, M.A.; Pinzón-Cárdenas, M.H., and Machuca-Martínez, F. A MATLAB-Based Application for Modeling and Simulation of Solar Slurry Photocatalytic Reactors for Environmental Applications. Water. 2020, 12(8), 2196–2212. DOI: 10.3390/w12082196.
  • Mul, G.; Wasylenko, W.; Handy, M.S., and Frey, H. Cyclohexene photo-oxidation over Vanadia Catalyst Analyzed by Time Resolved ATR-FT-IR Spectroscopy. Phys. Chem. Chem. Phys. 2008, 10(21), 3131–3137. DOI: 10.1039/B800314A.
  • Elser, M. J.; Diwald, O. Facilitated Lattice Oxygen Depletion in Consolidated TiO2 Nanocrystal Ensembles: A Quantitative Spectroscopic O2 Adsorption Study.J. Phys. Chem. C 2012, 116, 2896–2903.DOI:10.1021/jp208707p
  • Sobanska, K.; Krasowka, A.; Mazur, T.; Podolska-Serafin, K.; Pietrzyk, P., and Sojka, Z. Diagnostic Features of EPR Spectra of Superoxide Intermediates on Catalytic Surfaces and Molecular Interpretation of Their g and A Tensors. Top. Catal. 2015, 58(12–13), 796–810. DOI: 10.1007/s11244-015-0420-y.
  • Malayeri, M.; Haghighat, F.; Lee, C.-S. Kinetic Modeling of the photocatalytic degradation of methyl ethyl ketone in air for a continuous-flow reactor. Chem. Eng. J. 2021, 404, 126602. DOI: 10.1016/j.cej.2020.126602.
  • Caudillo-Flores, U.; Muñoz-Batista, M.J.; Luque, R.; Fernández-García, M., and Kubacka, A. g-C3N4/TiO2 composite catalysts for the photo-oxidation of toluene:Chemical and charge handling effects. Chem. Eng. J. 2019, 378, 122228. DOI: 10.1016/j.cej.2019.122228.
  • Caudillo-Flores, U.; Fernández-García, M.; Kubacka, A. Photocatalytic toluene degradation: Braiding physico-chemical and Intrinsic Kinetic Analyses. React. Chem. Eng. 2020, 5(8), 1429–1440. DOI: 10.1039/d0re00211a.