Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 2
2,331
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: a critical review

, , , , &
Pages 586-639 | Received 12 Nov 2021, Accepted 11 May 2022, Published online: 13 Jun 2022

References

  • Huang, H.; Xu, Y.; Feng, Q.; Leung, D. Y. C. Low Temperature Catalytic Oxidation of Volatile Organic Compounds: A Review. Catal. Sci. Technol. 2015, 5(5), 2649–2669. DOI: 10.1039/c4cy01733a.
  • Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of Various Types of VOCs by Adsorption/catalytic Oxidation: A Review. Chem. Eng. J. 2019, 370, 1128–1153. DOI: 10.1016/j.cej.2019.03.232.
  • Liotta, L. F.; Wu, H.; Pantaleo, G.; Venezia, A. M. Co3O4 Nanocrystals and Co3O4–MOx Binary Oxides for CO, CH4 and VOC Oxidation at Low Temperatures: A Review. Catal. Sci. Technol. 2013, 3(12), 3085. DOI: 10.1039/c3cy00193h.
  • Li, L.; Liu, S.; Liu, J. Surface Modification of Coconut Shell Based Activated Carbon for the Improvement of Hydrophobic VOC Removal. J. Hazard. Mater. 2011, 192(2), 683–690. DOI: 10.1016/j.jhazmat.2011.05.069.
  • Thevenet, F.; Sivachandiran, L.; Guaitella, O.; Barakat, C.; Rousseau, A. Plasma–catalyst Coupling for Volatile Organic Compound Removal and Indoor Air Treatment: A Review. J. Phys. D: Appl. Phys. 2014, 47(22), 224011. DOI: 10.1088/0022-3727/47/22/224011.
  • Malhautier, L.; Quijano, G.; Avezac, M.; Rocher, J.; Fanlo, J. L. Kinetic Characterization of Toluene Biodegradation by Rhodococcus Erythropolis: Towards a Rationale for Microflora Enhancement in Bioreactors Devoted to Air Treatment. Chem. Eng. J. 2014, 247, 199–204. DOI: 10.1016/j.cej.2014.02.099.
  • Héquet, V.; Raillard, C.; Debono, O.; Thévenet, F.; Locoge, N.; Le Coq, L. Photocatalytic Oxidation of VOCs at Ppb Level Using a Closed-loop Reactor: The Mixture Effect. Appl. Catal. B Environ. 2018, 226, 473–486. DOI: 10.1016/j.apcatb.2017.12.041.
  • Jiang, C.; Wang, H.; Wang, Y.; Xue, C.; Yang, Z.; Yu, C.; Ji, H. Modifying Defect States in CeO2 by Fe Doping: A Strategy for Low-temperature Catalytic Oxidation of Toluene with Sunlight. J. Hazard. Mater. 2020, 390, 122182. DOI: 10.1016/j.jhazmat.2020.122182.
  • Wang, A.; Zheng, Z.; Wang, H.; Chen, Y.; Luo, C.; Liang, D.; Hu, B.; Qiu, R.; Yan, K. 3D Hierarchical H2-reduced Mn-doped CeO2 Microflowers Assembled from Nanotubes as a High-performance Fenton-like Photocatalyst for Tetracycline Antibiotics Degradation. Appl. Catal. B Environ. 2020, 277, 119171. DOI: 10.1016/j.apcatb.2020.119171.
  • Liang, X.; Wang, P.; Gao, Y.; Huang, H.; Tong, F.; Zhang, Q.; Wang, Z.; Liu, Y.; Zheng, Z.; Dai, Y., et al. Design and Synthesis of Porous M-ZnO/CeO2 Microspheres as Efficient Plasmonic Photocatalysts for Nonpolar Gaseous Molecules Oxidation: Insight into the Role of Oxygen Vacancy Defects and M=Ag, Au Nanoparticles. Appl. Catal. B Environ. 2020, 260, 118151. DOI: 10.1016/j.apcatb.2019.118151.
  • Zhang, C.; Wang, C.; Zhan, W.; Guo, Y.; Guo, Y.; Lu, G.; Baylet, A.; Giroir-Fendler, A. Catalytic Oxidation of Vinyl Chloride Emission over LaMnO3 and LaB0.2Mn0.8O3 (B=co, Ni, Fe) Catalysts. Appl. Catal. B Environ. 2013, 129, 509–516. DOI: 10.1016/j.apcatb.2012.09.056.
  • Wang, Y.; Xue, Y.; Zhao, C.; Zhao, D.; Liu, F.; Wang, K.; Dionysiou, D. D. Catalytic Combustion of Toluene with La0.8Ce0.2MnO3 Supported on CeO2 with Different Morphologies. Chem. Eng. J. 2016, 300, 300–305. DOI: 10.1016/j.cej.2016.04.007.
  • Kong, J.; Xiang, Z.; Li, G.; An, T. Introduce Oxygen Vacancies into CeO2 Catalyst for Enhanced Coke Resistance during Photothermocatalytic Oxidation of Typical VOCs. Appl. Catal. B Environ. 2020, 269, 118755. DOI: 10.1016/j.apcatb.2020.118755.
  • Jiang, Y.; Gao, J.; Zhang, Q.; Liu, Z.; Fu, M.; Wu, J.; Hu, Y.; Ye, D. Enhanced Oxygen Vacancies to Improve Ethyl Acetate Oxidation over MnOx-CeO2 Catalyst Derived from MOF Template. Chem. Eng. J. 2019, 371, 78–87. DOI: 10.1016/j.cej.2019.03.233.
  • Deng, J.; Song, W.; Chen, L.; Wang, L.; Jing, M.; Ren, Y.; Zhao, Z.; Liu, J. The Effect of Oxygen Vacancies and Water on HCHO Catalytic Oxidation over Co3O4 Catalyst: A Combination of Density Functional Theory and Microkinetic Study. Chem. Eng. J. 2019, 355, 540–550. DOI: 10.1016/j.cej.2018.08.195.
  • Wang, X.; Wang, T.; Si, G.; Li, Y.; Zhang, S.; Deng, X.; Xu, X. Oxygen Vacancy Defects Engineering on Ce-doped α-Fe2O3 Gas Sensor for Reducing Gases. Sens. Actuators B Chem. 2020, 302, 127165. DOI: 10.1016/j.snb.2019.127165.
  • Mo, S.; Zhang, Q.; Li, J.; Sun, Y.; Ren, Q.; Zou, S.; Zhang, Q.; Lu, J.; Fu, M.; Mo, D., et al. Highly Efficient Mesoporous MnO2 Catalysts for the Total Toluene Oxidation: Oxygen-Vacancy Defect Engineering and Involved Intermediates Using in Situ DRIFTS. Appl. Catal. B Environ. 2020, 264, 118464. DOI: 10.1016/j.apcatb.2019.118464.
  • Xing, L.; Liu, J.; Qi, T.; Wang, L.; Wang, Z.; Zhang, S. Superior Energy-saving Catalyst of Mn@ZIF67 for Reclaiming Byproduct in Wet Magnesia Desulfurization. Appl. Catal. B Environ. 2020, 275, 119143. DOI: 10.1016/j.apcatb.2020.119143.
  • Paksoy, A. I.; Caglayan, B. S.; Aksoylu, A. E. An in Situ FTIR-DRIFTS Study on CDRM over Co–Ce/ZrO2: Active Surfaces and Mechanistic Features. Int. J. Hydrogen Energy. 2020, 45(23), 12822–12834. DOI: 10.1016/j.ijhydene.2020.03.012.
  • Zhang, M.; Zhang, J.; Zhou, Z.; Chen, S.; Zhang, T.; Song, F.; Zhang, Q.; Tsubaki, N.; Tan, Y.; Han, Y. Effects of the Surface Adsorbed Oxygen Species Tuned by Rare-earth Metal Doping on Dry Reforming of Methane over Ni/ZrO2 Catalyst. Appl. Catal. B Environ. 2020, 264, 118522. DOI: 10.1016/j.apcatb.2019.118522.
  • Deng, H.; Kang, S.; Ma, J.; Wang, L.; Zhang, C.; He, H. Role of Structural Defects in MnO X Promoted by Ag Doping in the Catalytic Combustion of Volatile Organic Compounds and Ambient Decomposition of O 3. Environ. Sci. Technol. 2019, 53(18), 10871–10879. DOI: 10.1021/acs.est.9b01822.
  • Zhang, X.; Ma, Z. A.; Song, Z.; Zhao, H.; Liu, W.; Zhao, M.; Zhao, J. Role of Cryptomelane in Surface-Adsorbed oxygen and Mn Chemical Valence in MnO X during the Catalytic oxidation of Toluene. J. Phys. Chem. C. 2019, 123(28), 17255–17264. DOI: 10.1021/acs.jpcc.9b02499.
  • Yang, W.; Su, Z. A.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative Study of α-, β-, γ- and δ-MnO2 on Toluene Oxidation: Oxygen Vacancies and Reaction Intermediates. Appl. Catal. B Environ. 2020, 260, 118150. DOI: 10.1016/j.apcatb.2019.118150.
  • Xie, X.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. Low-temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature. 2009, 458(7239), 746–749. DOI: 10.1038/nature07877.
  • Li, Y.; Han, W.; Wang, R.; Weng, L.-T.; Serrano-Lotina, A.; Bañares, M. A.; Wang, Q.; Yeung, K. L. Performance of an Aliovalent-substituted CoCeOx Catalyst from Bimetallic MOF for VOC Oxidation in Air. Appl. Catal. B Environ. 2020, 275, 119121. DOI: 10.1016/j.apcatb.2020.119121.
  • Liu, X.; Zhou, K.; Wang, L.; Wang, B.; Li, Y. Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. J. Am. Chem. Soc. 2009, 131(9), 3140–3141. DOI: 10.1021/ja808433d.
  • Wang, P.; Wang, J.; Shi, J.; Du, X.; Hao, X.; Tang, B.; Abudula, A.; Guan, G. Low Content of Samarium Doped CeO2 Oxide Catalysts Derived from Metal Organic Framework Precursor for Toluene Oxidation. Mol. Catal. 2020, 492, 111027. DOI: 10.1016/j.mcat.2020.111027.
  • Wang, Y.; Yang, D.; Li, S.; Zhang, L.; Zheng, G.; Guo, L. Layered Copper Manganese Oxide for the Efficient Catalytic CO and VOCs Oxidation. Chem. Eng. J. 2019, 357, 258–268. DOI: 10.1016/j.cej.2018.09.156.
  • Liu, L.; Sun, J.; Ding, J.; Zhang, Y.; Sun, T.; Jia, J. Highly Active Mn 3– X Fe X O 4 Spinel with Defects for Toluene Mineralization: Insights into Regulation of the Oxygen Vacancy and Active Metals. Inorg. Chem. 2019, 58(19), 13241–13249. DOI: 10.1021/acs.inorgchem.9b02105.
  • Dong, C.; Qu, Z.; Jiang, X.; Ren, Y. Tuning Oxygen Vacancy Concentration of MnO2 through Metal Doping for Improved Toluene Oxidation. J. Hazard. Mater. 2020, 391, 122181. DOI: 10.1016/j.jhazmat.2020.122181.
  • Balasubramanian, S.; Viswanath, D. A Model for Catalytic Oxidation of Hydrocarbons in the Vapor Phase. Indus. Eng. Chem. Fund. 1975, 14(3), 158–165. DOI: 10.1021/i160055a004.
  • Grasselli, R. K. Fundamental Principles of Selective Heterogeneous Oxidation Catalysis. Top. Catal. 2002, 21(1/3), 79–88. DOI: 10.1023/A:1020556131984.
  • Burgos, N.; Paulis, M. A.; Antxustegi, M. M.; Montes, M. Deep Oxidation of VOC Mixtures with Platinum Supported on Al2O3/Al Monoliths. Appl. Catal. B Environ. 2002, 38(4), 251–258. DOI: 10.1016/S0926-3373(01)00294-6.
  • Mars, P.; Van Krevelen, D. W. Oxidations Carried Out by Means of Vanadium Oxide Catalysts. Chem. Eng. Sci. 1954, 3, 41–59. DOI: 10.1016/S0009-2509(54)80005-4.
  • Song, K. S.; Klvana, D.; Kirchnerova, J. Kinetics of Propane Combustion over La0.66Sr0.34Ni0.3Co0.7O3 Perovskite. Appl. Catal., A. 2001, 213(1), 113–121. DOI: 10.1016/S0009-2509(54)80005-4.
  • Li, -J.-J.; Yu, E.-Q.; Cai, S.-C.; Chen, X.; Chen, J.; Jia, H.-P.; Xu, Y.-J. Noble Metal Free, CeO2/LaMnO3 Hybrid Achieving Efficient Photo-thermal Catalytic Decomposition of Volatile Organic Compounds under IR Light. Appl. Catal. B Environ. 2019, 240, 141–152. DOI: 10.1016/j.apcatb.2018.08.069.
  • Gatica, J. M.; Castiglioni, J.; de Los Santos, C.; Yeste, M. P.; Cifredo, G.; Torres, M.; Vidal, H. Use of Pillared Clays in the Preparation of Washcoated Clay Honeycomb Monoliths as Support of Manganese Catalysts for the Total Oxidation of VOCs. Catal. Today. 2017, 296, 84–94. DOI: 10.1016/j.cattod.2017.04.025.
  • Kouotou, P. M.; Pan, G.-F.; Weng, -J.-J.; Fan, S.-B.; Tian, Z.-Y. Stainless Steel Grid Mesh-supported CVD Made Co3O4 Thin Films for Catalytic Oxidation of VOCs of Olefins Type at Low Temperature. J. Ind. Eng. Chem. 2016, 35, 253–261. DOI: 10.1016/j.jiec.2015.12.039.
  • Wang, Q.; Yeung, K. L.; Bañares, M. A. Ceria and Its Related Materials for VOC Catalytic Combustion: A Review. Catal. Today. 2019. DOI: 10.1016/j.cattod.2019.05.016.
  • Stoyanova, M.; Konova, P.; Nikolov, P.; Naydenov, A.; Christoskova, S.; Mehandjiev, D. Alumina-supported Nickel Oxide for Ozone Decomposition and Catalytic Ozonation of CO and VOCs. Chem. Eng. J. 2006, 122(1–2), 41–46. DOI: 10.1016/j.cej.2006.05.018.
  • Alvarez-Merino, M.; Ribeiro, M.; Silva, J.; Carrasco-Marin, F.; Maldonado-Hodar, F. Activated Carbon and Tungsten Oxide Supported on Activated Carbon Catalysts for Toluene Catalytic Combustion. Environ. Sci. Technol. 2004, 38(17), 4664–4670. DOI: 10.1021/es034964c.
  • Kaichev, V. V.; Gladky, A. Y.; Prosvirin, I. P.; Saraev, A. A.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; Bukhtiyarov, V. I. In Situ XPS Study of Self-sustained Oscillations in Catalytic Oxidation of Propane over Nickel. Surf. Sci. 2013, 609, 113–118. DOI: 10.1016/j.susc.2012.11.012.
  • Garetto, T. F.; Apesteguıa, C. Structure Sensitivity and in Situ Activation of Benzene Combustion on Pt/Al2O3 Catalysts. Appl. Catal. B Environ. 2001, 32(1–2), 83–94. DOI: 10.1016/S0926-3373(01)00128-X.
  • Tseng, T.-K.; Chu, H. The Kinetics of Catalytic Incineration of Styrene over a MnO/Fe2O3 Catalyst. Sci. Total Environ. 2001, 275(1–3), 83–93. DOI: 10.1016/S0048-9697(00)00856-1.
  • Aranzabal, A.; Ayastuy-Arizti, J.; González-Marcos, J.; González-Velasco, J. Kinetics of the Catalytic Oxidation of Lean Trichloroethylene in Air over Pd/Alumina. Ind. Eng. Chem. Res. 2003, 42(24), 6007–6011. DOI: 10.1021/ie030286r.
  • Banu, I.; Manta, C. M.; Bercaru, G.; Bozga, G. Combustion Kinetics of Cyclooctane and Its Binary Mixture with O-xylene over a Pt/γ-alumina Catalyst. Chemical Engineering Research and Design. 2015, 102, 399–406. DOI: 10.1016/j.cherd.2015.07.012.
  • Aranzabal, A. The Reaction Pathway and Kinetic Mechanism of the Catalytic Oxidation of Gaseous Lean TCE on Pd/alumina Catalysts. J. Catal. 2003, 214(1), 130–135. DOI: 10.1016/s0021-9517(02)00091-x.
  • Everaert, K.; Baeyens, J. Catalytic Combustion of Volatile Organic Compounds. J. Hazard. Mater. 2004, 109(1–3), 113–139. DOI: 10.1016/j.jhazmat.2004.03.019.
  • Tsou, J.; Magnoux, P.; Guisnet, M.; Órfão, J. J. M.; Figueiredo, J. L. Catalytic Oxidation of Volatile Organic Compounds. Appl. Catal. B Environ. 2005, 57(2), 117–123. DOI: 10.1016/j.apcatb.2004.10.013.
  • Behar, S.; Gómez-Mendoza, N.-A.; Gómez-García, M.-Á.; Świerczyński, D.; Quignard, F.; Tanchoux, N. Study and Modelling of Kinetics of the Oxidation of VOC Catalyzed by Nanosized Cu–Mn Spinels Prepared via an Alginate Route. Appl. Catal., A. 2014, 504, 203–210. DOI: 10.1016/j.apcata.2014.12.021.
  • Todorova, S.; Naydenov, A.; Kolev, H.; Holgado, J. P.; Ivanov, G.; Kadinov, G.; Caballero, A. Mechanism of Complete N-hexane Oxidation on Silica Supported Cobalt and Manganese Catalysts. Appl. Catal., A. 2012, 413-414, 43–51. DOI: 10.1016/j.apcata.2011.10.041.
  • Zabihi, M.; Khorasheh, F.; Shayegan, J. Studies on the Catalyst Preparation Methods and Kinetic Behavior of Supported Cobalt Catalysts for the Complete Oxidation of Cyclohexane. React. Kinet., Mech. Catal. 2015, 114(2), 611–628. DOI: 10.1007/s11144-014-0824-x.
  • Yang, J.; Hu, S.; Fang, Y.; Hoang, S.; Li, L.; Yang, W.; Liang, Z.; Wu, J.; Hu, J.; Xiao, W., et al. Oxygen Vacancy Promoted O 2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. ACS Catal. 2019, 9(11), 9751–9763. DOI: 10.1021/acscatal.9b02408.
  • Li, Z.; Yan, Q.; Jiang, Q.; Gao, Y.; Xue, T.; Li, R.; Liu, Y.; Wang, Q. Oxygen Vacancy Mediated CuyCo3-yFe1Ox Mixed Oxide as Highly Active and Stable Toluene Oxidation Catalyst by Multiple Phase Interfaces Formation and Metal Doping Effect. Appl. Catal. B Environ. 2020, 269, 118827. DOI: 10.1016/j.apcatb.2020.118827.
  • Wu, M.; Chen, S.; Xiang, W. Oxygen Vacancy Induced Performance Enhancement of Toluene Catalytic Oxidation Using LaFeO3 Perovskite Oxides. Chem. Eng. J. 2020, 387, 124101. DOI: 10.1016/j.cej.2020.124101.
  • Liu, F.; Shen, J.; Xu, D.; Zhou, W.; Zhang, S.; Wan, L. Oxygen Vacancies Enhanced HCHO Oxidation on a Novel NaInO2 Supported Pt Catalyst at Room Temperature. Chem. Eng. J. 2018, 334, 2283–2292. DOI: 10.1016/j.cej.2017.11.114.
  • Liu, F.; Liu, X.; Shen, J.; Bahi, A.; Zhang, S.; Wan, L.; Ko, F. The Role of Oxygen Vacancies on Pt/NaInO2 Catalyst in Improving Formaldehyde Oxidation at Ambient Condition. Chem. Eng. J. 2020, 395, 125131. DOI: 10.1016/j.cej.2020.125131.
  • Zhang, T.; Lang, X.; Dong, A.; Wan, X.; Gao, S.; Wang, L.; Wang, L.; Wang, W. Difference of Oxidation Mechanism between Light C3-C4 Alkane and Alkene over Mullite YMn2O5 Oxides Catalyst. ACS Catal. 2020. DOI: 10.1021/acscatal.0c00703.
  • Wang, Z.; Shen, G.; Li, J.; Liu, H.; Wang, Q.; Chen, Y. Catalytic Removal of Benzene over CeO2–MnOx Composite Oxides Prepared by Hydrothermal Method. Appl. Catal. B Environ. 2013, 138-139, 253–259. DOI: 10.1016/j.apcatb.2013.02.030.
  • Wu, P.; Dai, S.; Chen, G.; Zhao, S.; Xu, Z.; Fu, M.; Chen, P.; Chen, Q.; Jin, X.; Qiu, Y., et al. Interfacial Effects in Hierarchically Porous α-MnO2/Mn3O4 Heterostructures Promote Photocatalytic Oxidation Activity. Appl. Catal. B Environ. 2020, 268, 118418. DOI: 10.1016/j.apcatb.2019.118418.
  • Lin, X.; Li, S.; He, H.; Wu, Z.; Wu, J.; Chen, L.; Ye, D.; Fu, M. Evolution of Oxygen Vacancies in MnOx-CeO2 Mixed Oxides for Soot Oxidation. Appl. Catal. B Environ. 2018, 223, 91–102. DOI: 10.1016/j.apcatb.2017.06.071.
  • Yang, X.; Yu, X.; Jing, M.; Song, W.; Liu, J.; Ge, M. Defective Mn X Zr1– X O 2 Solid Solution for the Catalytic Oxidation of Toluene: Insights into the Oxygen Vacancy Contribution. ACS Appl. Mater. Interfaces. 2019, 11(1), 730–739. DOI: 10.1021/acsami.8b17062.
  • Jing, M.; Song, W.; Chen, L.; Ma, S.; Deng, J.; Zheng, H.; Li, Y.; Liu, J.; Zhao, Z. Density Functional Theory Study of the Formaldehyde Catalytic Oxidation Mechanism on a Au-Doped CeO 2 (111) Surface. J. Phys. Chem. C. 2018, 122(1), 438–448. DOI: 10.1021/acs.jpcc.7b09276.
  • Panta, R.; Ruangpornvisuti, V. Adsorption of Hydrogen Molecule on Noble Metal Doped on Oxygen-vacancy Defect of Anatase TiO2(101) Surface: Periodic DFT Study. Int. J. Hydrogen Energy. 2017, 42(30), 19106–19113. DOI: 10.1016/j.ijhydene.2017.04.251.
  • Carabineiro, S. A. C.; Chen, X.; Konsolakis, M.; Psarras, A. C.; Tavares, P. B.; Órfão, J. J. M.; Pereira, M. F. R.; Figueiredo, J. L. Catalytic Oxidation of Toluene on Ce–Co and La–Co Mixed Oxides Synthesized by Exotemplating and Evaporation Methods. Catal. Today. 2015, 244, 161–171. DOI: 10.1016/j.cattod.2014.06.018.
  • Huang, N.; Qu, Z.; Dong, C.; Qin, Y.; Duan, X. Superior Performance of α@β-MnO2 for the Toluene Oxidation: Active Interface and Oxygen Vacancy. Appl. Catal., A. 2018, 560, 195–205. DOI: 10.1016/j.apcata.2018.05.001.
  • Zhang, J.; Tan, D.; Meng, Q.; Weng, X.; Wu, Z. Structural Modification of LaCoO3 Perovskite for Oxidation Reactions: The Synergistic Effect of Ca2+ and Mg2+ Co-substitution on Phase Formation and Catalytic Performance. Appl. Catal. B Environ. 2015, 172-173, 18–26. DOI: 10.1016/j.apcatb.2015.02.006.
  • Luo, Y.; Zheng, Y.; Zuo, J.; Feng, X.; Wang, X.; Zhang, T.; Zhang, K.; Jiang, L. Insights into the High Performance of Mn-Co Oxides Derived from Metal-organic Frameworks for Total Toluene Oxidation. J. Hazard. Mater. 2018, 349, 119–127. DOI: 10.1016/j.jhazmat.2018.01.053.
  • Zhang, X.; Zhao, H.; Song, Z.; Zhao, J.; Ma, Z. A.; Zhao, M.; Xing, Y.; Zhang, P.; Tsubaki, N. Influence of Hydrothermal Synthesis Temperature on the Redox and Oxygen Mobility Properties of Manganese Oxides in the Catalytic Oxidation of Toluene. Transition Met. Chem. 2019, 44(7), 663–670. DOI: 10.1007/s11243-019-00331-5.
  • Wei, G.; Zhang, Q.; Zhang, D.; Wang, J.; Tang, T.; Wang, H.; Liu, X.; Song, Z.; Ning, P. The Influence of Annealing Temperature on Copper-manganese Catalyst Towards the Catalytic Combustion of Toluene: The Mechanism Study. Appl. Surf. Sci. 2019, 497, 143777. DOI: 10.1016/j.apsusc.2019.143777.
  • Kaewbuddee, C.; Kidkhunthod, P.; Chanlek, N.; Khunphonoi, R.; Wantala, K. Chemical Surface Analysis on Post-thermal Treatment of the K-OMS-2 Catalysts and Catalytic Oxidation Efficiency at Low Temperature. Sains Malays. 2019, 48(7), 1447–1457. DOI: 10.17576/jsm-2019-4807-14.
  • Jiang, Z.; Chen, C.; Ma, M.; Guo, Z.; Yu, Y.; He, C. Rare-earth Element Doping-promoted Toluene Low-temperature Combustion over Mesostructured CuMCeO X (M = Y, Eu, Ho, and Sm) Catalysts: The Indispensable Role of in Situ Generated Oxygen Vacancies. Catal. Sci. Technol. 2018, 8(22), 5933–5942. DOI: 10.1039/c8cy01849a.
  • Chen, X.; Chen, X.; Cai, S.; Chen, J.; Xu, W.; Jia, H.; Chen, J. Catalytic Combustion of Toluene over Mesoporous Cr2O3-supported Platinum Catalysts Prepared by in Situ Pyrolysis of MOFs. Chem. Eng. J. 2018, 334, 768–779. DOI: 10.1016/j.cej.2017.10.091.
  • Peng, R.; Li, S.; Sun, X.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Size Effect of Pt Nanoparticles on the Catalytic Oxidation of Toluene over Pt/CeO2 Catalysts. Appl. Catal. B Environ. 2018, 220, 462–470. DOI: 10.1016/j.apcatb.2017.07.048.
  • Liu, Y.; Dai, H.; Deng, J.; Xie, S.; Yang, H.; Tan, W.; Han, W.; Jiang, Y.; Guo, G. Mesoporous Co3O4-supported Gold Nanocatalysts: Highly Active for the Oxidation of Carbon Monoxide, Benzene, Toluene, and O-xylene. J. Catal. 2014, 309, 408–418. DOI: 10.1016/j.jcat.2013.10.019.
  • Chen, C.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F.-S. Importance of Platinum Particle Size for Complete Oxidation of Toluene over Pt/ZSM-5 Catalysts. Chem. Commun. 2015, 51(27), 5936–5938. DOI: 10.1039/C4CC09383F.
  • Chen, J.; Chen, X.; Xu, W.; Xu, Z.; Chen, J.; Jia, H.; Chen, J. Hydrolysis Driving Redox Reaction to Synthesize Mn-Fe Binary Oxides as Highly Active Catalysts for the Removal of Toluene. Chem. Eng. J. 2017, 330, 281–293. DOI: 10.1016/j.cej.2017.07.147.
  • Peng, R.; Sun, X.; Li, S.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Shape Effect of Pt/CeO2 Catalysts on the Catalytic Oxidation of Toluene. Chem. Eng. J. 2016, 306, 1234–1246. DOI: 10.1016/j.cej.2016.08.056.
  • Yang, X.; Ma, X.; Yu, X.; Ge, M. Exploration of Strong Metal-support Interaction in Zirconia Supported Catalysts for Toluene Oxidation. Appl. Catal. B Environ. 2020, 263, 118355. DOI: 10.1016/j.apcatb.2019.118355.
  • Xie, S.; Deng, J.; Liu, Y.; Zhang, Z.; Yang, H.; Jiang, Y.; Arandiyan, H.; Dai, H.; Au, C. T. Excellent Catalytic Performance, Thermal Stability, and Water Resistance of 3DOM Mn2O3-supported Au–Pd Alloy Nanoparticles for the Complete Oxidation of Toluene. Appl. Catal., A. 2015, 507, 82–90. DOI: 10.1016/j.apcata.2015.09.026.
  • Xie, S.; Deng, J.; Zang, S.; Yang, H.; Guo, G.; Arandiyan, H.; Dai, H. Au–Pd/3DOM Co3O4: Highly Active and Stable Nanocatalysts for Toluene Oxidation. J. Catal. 2015, 322, 38–48. DOI: 10.1016/j.jcat.2014.09.024.
  • Mo, S.; Zhang, Q.; Zhang, M.; Zhang, Q.; Li, J.; Fu, M.; Wu, J.; Chen, P.; Ye, D. Elucidating the Special Role of Strong Metal–support Interactions in Pt/MnO 2 Catalysts for Total Toluene Oxidation. Nanoscale Horizons. 2019, 4(6), 1425–1433. DOI: 10.1039/c9nh00303g.
  • Zhang, Q.; Mo, S.; Li, J.; Sun, Y.; Zhang, M.; Chen, P.; Fu, M.; Wu, J.; Chen, L.; Ye, D. In Situ DRIFT Spectroscopy Insights into the Reaction Mechanism of CO and Toluene CO-oxidation over Pt-based Catalysts. Catal. Sci. Technol. 2019, 9(17), 4538–4551. DOI: 10.1039/c9cy00751b.
  • Pei, W.; Liu, Y.; Deng, J.; Zhang, K.; Hou, Z.; Zhao, X.; Dai, H. Partially Embedding Pt Nanoparticles in the Skeleton of 3DOM Mn2O3: An Effective Strategy for Enhancing Catalytic Stability in Toluene Combustion. Appl. Catal. B Environ. 2019, 256, 117814. DOI: 10.1016/j.apcatb.2019.117814.
  • Liu, L.; Li, J.; Zhang, H.; Li, L.; Zhou, P.; Meng, X.; Guo, M.; Jia, J.; Sun, T. In Situ Fabrication of Highly Active γ-MnO2/SmMnO3 Catalyst for Deep Catalytic Oxidation of Gaseous Benzene, Ethylbenzene, Toluene, and O-xylene. J. Hazard. Mater. 2019, 362, 178–186. DOI: 10.1016/j.jhazmat.2018.09.012.
  • Hu, J.; Li, W. B.; Liu, R. F. Highly Efficient Copper-doped Manganese Oxide Nanorod Catalysts Derived from CuMnO Hierarchical Nanowire for Catalytic Combustion of VOCs. Catal. Today. 2018, 314, 147–153. DOI: 10.1016/j.cattod.2018.02.009.
  • Zeng, X.; Cheng, G.; Liu, Q.; Yu, W.; Yang, R.; Wu, H.; Li, Y.; Sun, M.; Zhang, C.; Yu, L. Novel Ordered Mesoporous γ-MnO 2 Catalyst for High-Performance Catalytic Oxidation of Toluene and O -xylene. Ind. Eng. Chem. Res. 2019, 58(31), 13926–13934. DOI: 10.1021/acs.iecr.9b02087.
  • Yang, Q.; Wang, D.; Wang, C.; Li, X.; Li, K.; Peng, Y.; Li, J. Facile Surface Improvement Method for LaCoO 3 for Toluene Oxidation. Catal. Sci. Technol. 2018, 8(12), 3166–3173. DOI: 10.1039/c8cy00765a.
  • Hu, F.; Peng, Y.; Chen, J.; Liu, S.; Song, H.; Li, J. Low Content of CoOx Supported on Nanocrystalline CeO2 for Toluene Combustion: The Importance of Interfaces between Active Sites and Supports. Appl. Catal. B Environ. 2019, 240, 329–336. DOI: 10.1016/j.apcatb.2018.06.024.
  • Wang, S.; Liu, Q.; Zhao, Z.; Fan, C.; Chen, X.; Xu, G.; Wu, M.; Chen, J.; Li, J. Enhanced Low-Temperature Activity of Toluene Oxidation over the Rod-like MnO 2 /Lamno 3 Perovskites with Alkaline Hydrothermal and Acid-Etching Treatment. Ind. Eng. Chem. Res. 2020, 59(14), 6556–6564. DOI: 10.1021/acs.iecr.0c00373.
  • Wang, P.; Wang, J.; An, X.; Shi, J.; Shangguan, W.; Hao, X.; Xu, G.; Tang, B.; Abudula, A.; Guan, G. Generation of Abundant Defects in Mn-Co Mixed Oxides by a Facile Agar-gel Method for Highly Efficient Catalysis of Total Toluene Oxidation. Appl. Catal. B Environ. 2020, 282, 119560. DOI: 10.1016/j.apcatb.2020.119560.
  • Liu, X.; Wang, J.; Zeng, J.; Wang, X.; Zhu, T. Catalytic Oxidation of Toluene over a Porous Co 3 O 4 -supported Ruthenium Catalyst. RSC Adv. 2015, 5(64), 52066–52071. DOI: 10.1039/c5ra07072d.
  • Ren, Q.; Feng, Z.; Mo, S.; Huang, C.; Li, S.; Zhang, W.; Chen, L.; Fu, M.; Wu, J.; Ye, D. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for Catalytic Oxidation of Toluene. Catal. Today. 2019, 332, 160–167. DOI: 10.1016/j.cattod.2018.06.053.
  • Chen, J.; Chen, X.; Chen, X.; Xu, W.; Xu, Z.; Jia, H.; Chen, J. Homogeneous Introduction of CeOy into MnOx-based Catalyst for Oxidation of Aromatic VOCs. Appl. Catal. B Environ. 2018, 224, 825–835. DOI: 10.1016/j.apcatb.2017.11.036.
  • Yang, X.; Yu, X.; Lin, M.; Ma, X.; Ge, M. Enhancement Effect of Acid Treatment on Mn2O3 Catalyst for Toluene Oxidation. Catal. Today. 2019, 327, 254–261. DOI: 10.1016/j.cattod.2018.04.041.
  • Zeng, J.; Xie, H.; Zhang, G.; Cheng, X.; Zhou, G.; Jiang, Y. Facile Synthesis of CuCo Spinel Composite Oxides for Toluene Oxidation in Air. Ceram. Int. 2020, 46(13), 21542–21550. DOI: 10.1016/j.ceramint.2020.05.257.
  • Pan, J.; Du, W.; Liu, Y.; Cheng, Y.; Yuan, S. Lanthanum-doped Cu Mn Composite Oxide Catalysts for Catalytic Oxidation of Toluene. J. Rare Earths. 2019, 37, 602–608. DOI: 10.1016/j.jre.2018.10.004.
  • Si, W.; Wang, Y.; Peng, Y.; Li, X.; Li, K.; Li, J. A High-efficiency γ-MnO 2 -like Catalyst in Toluene Combustion. Chem. Commun. 2015, 51(81), 14977–14980. DOI: 10.1039/c5cc04528b.
  • Yang, W.; Peng, Y.; Wang, Y.; Wang, Y.; Liu, H.; Su, Z. A.; Yang, W.; Chen, J.; Si, W.; Li, J. Controllable Redox-induced In-situ Growth of MnO2 over Mn2O3 for Toluene Oxidation: Active Heterostructure Interfaces. Appl. Catal. B Environ. 2020, 278, 119279. DOI: 10.1016/j.apcatb.2020.119279.
  • Feng, X.; Guo, J.; Wen, X.; Xu, M.; Chu, Y.; Yuan, S. Enhancing Performance of Co/CeO2 Catalyst by Sr Doping for Catalytic Combustion of Toluene. Appl. Surf. Sci. 2018, 445, 145–153. DOI: 10.1016/j.apsusc.2018.03.070.
  • Li, L.; Luo, J.; Liu, Y.; Jing, F.; Su, D.; Chu, W. Self-Propagated Flaming Synthesis of Highly Active Layered CuO-δ-MnO 2 Hybrid Composites for Catalytic Total Oxidation of Toluene Pollutant. ACS Appl. Mater. Interfaces. 2017, 9(26), 21798–21808. DOI: 10.1021/acsami.7b04380.
  • Jiang, X.; Xu, W.; Lai, S.; Chen, X. Integral Structured Co–Mn Composite Oxides Grown on Interconnected Ni Foam for Catalytic Toluene Oxidation. RSC Adv. 2019, 9(12), 6533–6541. DOI: 10.1039/c8ra10102g.
  • Zhang, Q.; Mo, S.; Chen, B.; Zhang, W.; Huang, C.; Ye, D. Hierarchical Co3O4 Nanostructures In-situ Grown on 3D Nickel Foam Towards Toluene Oxidation. Mol. Catal. 2018, 454, 12–20. DOI: 10.1016/j.mcat.2018.05.006.
  • Sun, M.; Zhang, B.; Liu, H.; He, B.; Ye, F.; Yu, L.; Sun, C.; Wen, H. The Effect of Acid/alkali Treatment on the Catalytic Combustion Activity of Manganese Oxide Octahedral Molecular Sieves. RSC Adv. 2017, 7(7), 3958–3965. DOI: 10.1039/c6ra27700d.
  • Lu, H.; Kong, X.; Huang, H.; Zhou, Y.; Chen, Y. Cu-Mn-Ce Ternary Mixed-oxide Catalysts for Catalytic Combustion of Toluene. J Environ Sci. 2015, 32, 102–107. DOI: 10.1016/j.jes.2014.11.015.
  • Hu, X.; Zhang, Z.; Zhang, Y.; Sun, L.; Tian, H.; Yang, X. Synthesis of a Highly Active and Stable Pt/Co 3 O 4 Catalyst and Its Application for the Catalytic Combustion of Toluene. Eur. J. Inorg. Chem. 2019, 2019(24), 2933–2939. DOI: 10.1002/ejic.201900372.
  • Aboukaïs, A.; Skaf, M.; Hany, S.; Cousin, R.; Aouad, S.; Labaki, M.; Abi-Aad, E. A Comparative Study of Cu, Ag and Au Doped CeO2 in the Total Oxidation of Volatile Organic Compounds (Vocs. Mater. Chem. Phys. 2016, 177, 570–576. DOI: 10.1016/j.matchemphys.2016.04.072.
  • Han, W.; Zhao, H.; Dong, F.; Tang, Z. Morphology-controlled Synthesis of 3D, Mesoporous, Rosette-like <sub>cecoox Catalysts by Pyrolysis of Ce[Co(CN) 6] and Application for the Catalytic Combustion of Toluene. Nanoscale. 2018, 10(45), 21307–21319. DOI: 10.1039/c8nr07882c.
  • Jakubek, T.; Hudy, C.; Indyka, P.; Nowicka, E.; Golunski, S.; Kotarba, A. Effect of Noble Metal Addition to Alkali-exchanged Cryptomelane on the Simultaneous Soot and VOC Combustion Activity. Catal. Commun. 2019, 132, 105807. DOI: 10.1016/j.catcom.2019.105807.
  • Xu, F.; Le, Y.; Cheng, B.; Jiang, C. Effect of Calcination Temperature on Formaldehyde Oxidation Performance of Pt/TiO2 Nanofiber Composite at Room Temperature. Appl. Surf. Sci. 2017, 426, 333–341. DOI: 10.1016/j.apsusc.2017.07.096.
  • Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H. Catalytic Oxidation of Formaldehyde over Manganese Oxides with Different Crystal Structures. Catal. Sci. Technol. 2015, 5(4), 2305–2313. DOI: 10.1039/c4cy01461h.
  • Xu, Y.; Dhainaut, J.; Rochard, G.; Dacquin, J.-P.; Mamede, A.-S.; Giraudon, J.-M.; Lamonier, J.-F.; Zhang, H.; Royer, S. Hierarchical Porous ε-MnO2 from Perovskite Precursor: Application to the Formaldehyde Total Oxidation. Chem. Eng. J. 2020, 388, 124146. DOI: 10.1016/j.cej.2020.124146.
  • Quiroz, J.; Giraudon, J.-M.; Gervasini, A.; Dujardin, C.; Lancelot, C.; Trentesaux, M.; Lamonier, J.-F. Total Oxidation of Formaldehyde over MnO X -ceo 2 Catalysts: The Effect of Acid Treatment. ACS Catal. 2015, 5(4), 2260–2269. DOI: 10.1021/cs501879j.
  • Zhang, C.; Wang, J.; Yang, S.; Liang, H.; Men, Y. Boosting Total Oxidation of Acetone over Spinel MCo2O4 (M=co, Ni, Cu) Hollow Mesoporous Spheres by Cation-substituting Effect. J. Colloid Interface Sci. 2019, 539, 65–75. DOI: 10.1016/j.jcis.2018.12.061.
  • Zhao, Q.; Ge, Y.; Fu, K.; Ji, N.; Song, C.; Liu, Q. Oxidation of Acetone over Co-based Catalysts Derived from Hierarchical Layer Hydrotalcite: Influence of Co/Al Molar Ratios and Calcination Temperatures. Chemosphere. 2018, 204, 257–266. DOI: 10.1016/j.chemosphere.2018.03.198.
  • Dissanayake, S.; Wasalathanthri, N.; Shirazi Amin, A.; He, J.; Poges, S.; Rathnayake, D.; Suib, S. L. Mesoporous Co3O4 Catalysts for VOC Elimination: Oxidation of 2-propanol. Appl. Catal., A. 2020, 590, 117366. DOI: 10.1016/j.apcata.2019.117366.
  • Rida, K.; Peña, M. A.; Sastre, E.; Martinez-Arias, A. Effect of Calcination Temperature on Structural Properties and Catalytic Activity in Oxidation Reactions of LaNiO3 Perovskite Prepared by Pechini Method. J. Rare Earths. 2012, 30(3), 210–216. DOI: 10.1016/s1002-0721(12)60025-8.
  • Xie, Y.; Guo, Y.; Guo, Y.; Wang, L.; Zhan, W.; Wang, Y.; Gong, X.; Lu, G. A Highly Effective Ni-modified MnO X Catalyst for Total Oxidation of Propane: The Promotional Role of Nickel Oxide. RSC Adv. 2016, 6(55), 50228–50237. DOI: 10.1039/c6ra09039g.
  • Morales, M.; Barbero, B.; Cadus, L. Total Oxidation of Ethanol and Propane over Mn-Cu Mixed Oxide Catalysts. Appl. Catal. B Environ. 2006, 67(3–4), 229–236. DOI: 10.1016/j.apcatb.2006.05.006.
  • Wu, Y.; Yuan, S.; Feng, R.; Ma, Z.; Gao, Y.; Xing, S. Comparative Study for Low-temperature Catalytic Oxidation of O-xylene over Doped OMS-2 Catalysts: Role of Ag and Cu. Mol. Catal. 2017, 442, 164–172. DOI: 10.1016/j.mcat.2017.09.020.
  • Wang, H.; Liu, M.; Guo, S.; Wang, Y.; Han, X.; Bai, Y. Efficient Oxidation of O-xylene over CeO2 Catalyst Prepared from a Ce-MOF Template: The Promotion of K+ Embedding Substitution. Mol. Catal. 2017, 436, 120–127. DOI: 10.1016/j.mcat.2017.04.017.
  • Xie, S.; Liu, Y.; Deng, J.; Yang, J.; Zhao, X.; Han, Z.; Zhang, K.; Wang, Y.; Arandiyan, H.; Dai, H. Mesoporous CoO-supported Palladium Nanocatalysts with High Performance for O -xylene Combustion. Catal. Sci. Technol. 2018, 8(3), 806–816. DOI: 10.1039/c7cy02007d.
  • Wang, L.; Yu, Y.; He, H.; Zhang, Y.; Qin, X.; Wang, B. Oxygen Vacancy Clusters Essential for the Catalytic Activity of CeO2 Nanocubes for O-xylene Oxidation. Sci. Rep. 2017, 7(1), 12845. DOI: 10.1038/s41598-017-13178-6.
  • Santos, V. P.; Soares, O. S. G. P.; Bakker, J. J. W.; Pereira, M. F. R.; Órfão, J. J. M.; Gascon, J.; Kapteijn, F.; Figueiredo, J. L. Structural and Chemical Disorder of Cryptomelane Promoted by Alkali Doping: Influence on Catalytic Properties. J. Catal. 2012, 293, 165–174. DOI: 10.1016/j.jcat.2012.06.020.
  • Konsolakis, M.; Carabineiro, S. A.; Tavares, P. B.; Figueiredo, J. L. Redox Properties and VOC Oxidation Activity of Cu Catalysts Supported on Ce1-xSmxOδ Mixed Oxides. J. Hazard. Mater. 2013, 261, 512–521. DOI: 10.1016/j.jhazmat.2013.08.016.
  • Wang, W. L.; Meng, Q.; Xue, Y.; Weng, X.; Sun, P.; Wu, Z. Lanthanide Perovskite Catalysts for Oxidation of Chloroaromatics: Secondary Pollution and Modifications. J. Catal. 2018, 366, 213–222. DOI: 10.1016/j.jcat.2018.07.022.
  • Sun, M.; Li, W.; Zhang, B.; Cheng, G.; Lan, B.; Ye, F.; Zheng, Y.; Cheng, X.; Yu, L. Enhanced Catalytic Performance by Oxygen Vacancy and Active Interface Originated from Facile Reduction of OMS-2. Chem. Eng. J. 2018, 331, 626–635. DOI: 10.1016/j.cej.2017.09.028.
  • Jiang, Y.; Cheng, G.; Yang, R.; Liu, H.; Sun, M.; Yu, L.; Hao, Z. Influence of Preparation Temperature and Acid Treatment on the Catalytic Activity of MnO2. J. Solid State Chem. 2019, 272, 173–181. DOI: 10.1016/j.jssc.2019.01.031.
  • Weng, X.; Meng, Q.; Liu, J.; Jiang, W.; Pattisson, S.; Wu, Z. Catalytic Oxidation of Chlorinated Organics over Lanthanide Perovskites: Effects of Phosphoric Acid Etching and Water Vapor on Chlorine Desorption Behavior. Environ. Sci. Technol. 2019, 53(2), 884–893. DOI: 10.1021/acs.est.8b04582.
  • Wang, X.; Li, Y. Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/nanorods. Chemistry. 2003, 9(1), 300–306. DOI: 10.1002/chem.200390024.
  • Tang, W.-X.; Liu, H.-D.; Wu, X.-F.; Chen, Y.-F. Higher Oxidation State Responsible for Ozone Decomposition at Room Temperature over Manganese and Cobalt Oxides: Effect of Calcination Temperature, Ozone. Sci. Eng. 2014, 36, 502–512. DOI: 10.1080/01919512.2014.894454.
  • Wang, J.; Zhao, H.; Song, J.; Zhu, T., and Xu, W. Structure-activity Relationship of Manganese Oxide Catalysts for the Catalytic Oxidation of (Chloro)-vocs. Catalysts. 2019, 9, 726. doi:10.3390/catal9090726
  • Sutradhar, N.; Sinhamahapatra, A.; Pahari, S.; Jayachandran, M.; Subramanian, B.; Bajaj, H. C.; Panda, A. B. Synthesis of a Highly Active and Stable Pt/Co 3 O 4 Catalyst and Its Application for the Catalytic Combustion of Toluene. J. Phys. Chem. C. 2011, 115(15), 7628–7637. DOI: 10.1021/jp200645q.
  • Said, -A. E.-A.-A.; Abd El-Wahab, M. M. M.; Goda, M. N. Synthesis and Characterization of Pure and (Ce, Zr, Ag) Doped Mesoporous CuO-Fe2O3 as Highly Efficient and Stable Nanocatalysts for CO Oxidation at Low Temperature. Appl. Surf. Sci. 2016, 390, 649–665. DOI: 10.1016/j.apsusc.2016.08.114.
  • Kim, I. H.; Seo, H. O.; Park, E. J.; Han, S. W.; Kim, Y. D. Low Temperature CO Oxidation over Iron Oxide Nanoparticles Decorating Internal Structures of a Mesoporous Alumina. Sci. Rep. 2017, 7(1), 40497. DOI: 10.1038/srep40497.
  • Li, Q.; Odoom-Wubah, T.; Zhou, Y.; Mulka, R.; Zheng, Y.; Huang, J.; Sun, D.; Li, Q. Coral-like CoMnO X as a Highly Active Catalyst for Benzene Catalytic Oxidation. Ind. Eng. Chem. Res. 2019, 58(8), 2882–2890. DOI: 10.1021/acs.iecr.8b06258.
  • Zhang, X.; Junhui, Y.; Jing, Y.; Ting, C.; Bei, X.; Zhe, L.; Kunfeng, Z.; Ling, Y.; Dannong, H. Excellent Low-temperature Catalytic Performance of Nanosheet Co-Mn Oxides for Total Benzene Oxidation. Appl. Catal., A. 2018, 566, 104–112. DOI: 10.1016/j.apcata.2018.05.039.
  • Zhang, W.; Díez-Ramírez, J.; Anguita, P.; Descorme, C.; Valverde, J. L.; Giroir-Fendler, A. Nanocrystalline Co3O4 Catalysts for Toluene and Propane Oxidation: Effect of the Precipitation Agent. Appl. Catal. B Environ. 2020, 273, 118894. DOI: 10.1016/j.apcatb.2020.118894.
  • Li, S.; Wang, H.; Li, W.; Wu, X.; Tang, W.; Chen, Y. Effect of Cu Substitution on Promoted Benzene Oxidation over Porous CuCo-based Catalysts Derived from Layered Double Hydroxide with Resistance of Water Vapor. Appl. Catal. B Environ. 2015, 166-167, 260–269. DOI: 10.1016/j.apcatb.2014.11.040.
  • Wang, X.; Zhao, W.; Wu, X.; Zhang, T.; Liu, Y.; Zhang, K.; Xiao, Y.; Jiang, L. Total Oxidation of Benzene over ACo2O4 (A = Cu, Ni and Mn) Catalysts: In Situ DRIFTS Account for Understanding the Reaction Mechanism. Appl. Surf. Sci. 2017, 426, 1198–1205. DOI: 10.1016/j.apsusc.2017.07.269.
  • Chen, B.; Yang, X.; Zeng, X.; Huang, Z.; Xiao, J.; Wang, J.; Zhan, G. Multicomponent Metal Oxides Derived from Mn-BTC Anchoring with Metal Acetylacetonate Complexes as Excellent Catalysts for VOCs and CO Oxidation. Chem. Eng. J. 2020, 397, 125424. DOI: 10.1016/j.cej.2020.125424.
  • Deng, H.; Kang, S.; Ma, J.; Zhang, C.; He, H. Silver Incorporated into Cryptomelane-type Manganese Oxide Boosts the Catalytic Oxidation of Benzene. Appl. Catal. B Environ. 2018, 239, 214–222. DOI: 10.1016/j.apcatb.2018.08.006.
  • Liu, Y.; Hou, J. Ce Ion Substitution Position Effect on Catalytic Activity of OMS-2 for Benzene Oxidation. Mater. Res. Bull. 2019, 118, 110497. DOI: 10.1016/j.materresbull.2019.110497.
  • Wang, Q.; Li, Z.; Banares, M. A.; Weng, L. T.; Gu, Q.; Price, J.; Han, W.; Yeung, K. L. A Novel Approach to High-Performance Aliovalent-Substituted Catalysts—2D Bimetallic MOF-Derived CeCuO X Microsheets. Small. 2019, 15(42), 1903525. DOI: 10.1002/smll.201903525.
  • Deng, L.; Ding, Y.; Duan, B.; Chen, Y.; Li, P.; Zhu, S.; Shen, S. Catalytic Deep Combustion Characteristics of Benzene over Cobalt Doped Mn-Ce Solid Solution Catalysts at Lower Temperatures. Mol. Catal. 2018, 446, 72–80. DOI: 10.1016/j.mcat.2017.12.020.
  • Yin, C.; Liu, Y.; Xia, Q.; Kang, S.; Li, X.; Wang, Y.; Cui, L. Oxygen Vacancy-rich Nitrogen-doped Co3O4 Nanosheets as an Efficient Water-resistant Catalyst for Low Temperature CO Oxidation. J. Colloid Interface Sci. 2019, 553, 427–435. DOI: 10.1016/j.jcis.2019.06.046.
  • He, T.; Zeng, X.; Rong, S. The Controllable Synthesis of Substitutional and Interstitial Nitrogen-doped Manganese Dioxide: The Effects of Doping Sites on Enhancing the Catalytic Activity. J. Mater. Chem. A. 2020, 8(17), 8383–8396. DOI: 10.1039/d0ta01346c.
  • Liu, Y.; Wang, W.; Xu, X.; Marcel Veder, J.-P.; Shao, Z. Recent Advances in Anion-doped Metal Oxides for Catalytic Applications. J. Mater. Chem. A. 2019, 7, 7280–7300. DOI: 10.1039/c8ta09913h.
  • Chen, X.; Chen, X.; Yu, E.; Cai, S.; Jia, H.; Chen, J.; Liang, P. In Situ Pyrolysis of Ce-MOF to Prepare CeO2 Catalyst with Obviously Improved Catalytic Performance for Toluene Combustion. Chem. Eng. J. 2018, 344, 469–479. DOI: 10.1016/j.cej.2018.03.091.
  • Shu, Y.; Ji, J.; Xu, Y.; Deng, J.; Huang, H.; He, M.; Leung, D. Y. C.; Wu, M.; Liu, S.; Liu, S., et al. Promotional Role of Mn Doping on Catalytic Oxidation of VOCs over Mesoporous TiO2 under Vacuum Ultraviolet (VUV) Irradiation. Appl. Catal. B Environ. 2018, 220, 78–87. DOI: 10.1016/j.apcatb.2017.08.019.
  • Wang, M.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Highly Efficient Catalysts of Bimetallic Pt–Ru Nanocrystals Supported on Ordered ZrO 2 Nanotube for Toluene Oxidation. ACS Appl. Mater. Interfaces. 2020, 12(12), 13781–13789. DOI: 10.1021/acsami.9b20929.
  • Guo, Y.; Gao, Y.; Li, X.; Zhuang, G.; Wang, K.; Zheng, Y.; Sun, D.; Huang, J.; Li, Q. Catalytic Benzene Oxidation by Biogenic Pd Nanoparticles over 3D-ordered Mesoporous CeO2. Chem. Eng. J. 2019, 362, 41–52. DOI: 10.1016/j.cej.2019.01.012.
  • Dai, J.; Guo, Y.; Xu, L.; Zhuang, G.; Zheng, Y.; Sun, D.; Huang, J.; Li, Q. Bovine Serum Albumin Templated Porous CeO2 to Support Au Catalyst for Benzene Oxidation. Mol. Catal. 2020, 486, 110849. DOI: 10.1016/j.mcat.2020.110849.
  • Carreon, M. A.; Guliants, V. V. Ordered Meso- and Macroporous Binary and Mixed Metal Oxides. Eur. J. Inorg. Chem. 2005, 2005(6), 1189. DOI: 10.1002/ejic.200500137.
  • Zhu, J.; Mu, W.; Su, L.; Li, X.; Guo, Y.; Zhang, S.; Li, Z. Al-doped TiO2 Mesoporous Material Supported Pd with Enhanced Catalytic Activity for Complete Oxidation of Ethanol. J. Solid State Chem. 2017, 248, 142–149. DOI: 10.1016/j.jssc.2017.01.028.
  • Guo, Y.; Sun, Y.; Yang, D.-P.; Dai, J.; Liu, Z.; Chen, Y.; Huang, J.; Li, Q. Biogenic Pt/CaCO3 Nanocomposite as a Robust Catalyst toward Benzene Oxidation. ACS Appl. Mater. Interfaces. 2019, 12, 2469–2480.
  • Lee, J.-H.; Black, R.; Popov, G.; Pomerantseva, E.; Nan, F.; Botton, G. A.; Nazar, L. F. The Role of Vacancies and Defects in Na0.44MnO2 Nanowire Catalysts for Lithium–oxygen Batteries. Energy Environ. Sci. 2012, 5(11), 9558. DOI: 10.1039/c2ee21543h.
  • Ngala, J. K.; Alia, S.; Dobley, A.; Crisostomo, V. M. B.; Suib, S. L. Characterization and Electrocatalytic Behavior of Layered Li 2 MnO 3 and Its Acid-Treated Form. Chem. Mater. 2007, 19(2), 229–234. DOI: 10.1021/cm0616937.
  • Sui, S.; Zhang, P.; Zhang, H.; Cao, R. Low-temperature Catalytic Degradation of the Odorous Pollutant Hexanal by γ-MnOOH: The Effect of Mn Vacancies. Chin. J. Catal. 2019, 40(10), 1525–1533. DOI: 10.1016/s1872-2067(19)63415-7.
  • Si, W.; Wang, Y.; Zhao, S.; Hu, F.; Li, J.; Said, A. E.-A.-A. A Facile Method for in Situ Preparation of the MnO 2 /Lamno 3 Catalyst for the Removal of Toluene. Environ. Sci. Technol. 2016, 50(8), 4572–4578. DOI: 10.1021/acs.est.5b06255.
  • Kumar, R.; Sithambaram, S.; Suib, S. L. Cyclohexane Oxidation Catalyzed by Manganese Oxide Octahedral Molecular sieves—Effect of Acidity of the Catalyst. J. Catal. 2009, 262(2), 304–313. DOI: 10.1016/j.jcat.2009.01.007.
  • Yu, X.; Liu, S.; Lin, G.; Yang, Y.; Zhang, S.; Zhao, H.; Zheng, C.; Gao, X. Promotion Effect of KOH Surface Etching on Sucrose-based Hydrochar for Acetone Adsorption. Appl. Surf. Sci. 2019, 496, 143617. DOI: 10.1016/j.apsusc.2019.143617.
  • Solsona, B.; García, T.; Sanchis, R.; Soriano, M. D.; Moreno, M.; Rodríguez-Castellón, E.; Agouram, S.; Dejoz, A.; López Nieto, J. M. Total Oxidation of VOCs on Mesoporous Iron Oxide Catalysts: Soft Chemistry Route versus Hard Template Method. Chem. Eng. J. 2016, 290, 273–281. DOI: 10.1016/j.cej.2015.12.109.
  • Nie, L.; Yu, J.; Li, X.; Cheng, B.; Liu, G.; Jaroniec, M. Enhanced Performance of NaOH-Modified Pt/TiO 2 toward Room Temperature Selective Oxidation of Formaldehyde. Environ. Sci. Technol. 2013, 47(6), 2777–2783. DOI: 10.1021/es3045949.
  • Dai, T.; Zhou, H.; Liu, Y.; Cao, R.; Zhan, J.; Liu, L.; Jang, B. W. L. Synergy of Lithium, Cobalt, and Oxygen Vacancies in Lithium Cobalt Oxide for Airborne Benzene Oxidation: A Concept of Reusing Electronic Wastes for Air Pollutant Removal. ACS Sustainable Chem. Eng. 2019, 7(5), 5072–5081. DOI: 10.1021/acssuschemeng.8b05894.
  • Chen, S.; Li, L.; Hu, W.; Huang, X.; Li, Q.; Xu, Y.; Zuo, Y.; Li, G. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO<sub>2– X/Cu toward Enhanced Activity for Preferential CO Oxidation. ACS Appl. Mater. Interfaces. 2015, 7(41), 22999–23007. DOI: 10.1021/acsami.5b06302.
  • Wang, N.; Yue, J.; Chen, L.; Qian, Y.; Yang, J. Hydrogenated TiO 2 Branches Coated Mn 3 O 4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS Appl. Mater. Interfaces. 2015, 7(19), 10348–10355. DOI: 10.1021/acsami.5b01208.
  • Xu, Q.; Jiang, H.; Zhang, H.; Jiang, H.; Li, C. Phosphorus-driven Mesoporous Co3O4 Nanosheets with Tunable Oxygen Vacancies for the Enhanced Oxygen Evolution Reaction. Electrochim. Acta. 2018, 259, 962–967. DOI: 10.1016/j.electacta.2017.11.028.
  • Ou, G.; Xu, Y.; Wen, B.; Lin, R.; Ge, B.; Tang, Y.; Liang, Y.; Yang, C.; Huang, K.; Zu, D., et al. Tuning Defects in Oxides at Room Temperature by Lithium Reduction. Nat. Commun. 2018, 9(1), 1302. DOI: 10.1038/s41467-018-03765-0.
  • Zhao, Z.; Tan, H.; Zhao, H.; Lv, Y.; Zhou, L. J.; Song, Y.; Sun, Z. Reduced TiO 2 Rutile Nanorods with Well-defined Facets and Their Visible-light Photocatalytic Activity. Chem. Commun. 2014, 50(21), 2755–2757. DOI: 10.1039/c3cc49182j.
  • Sinhamahapatra, A.; Jeon, J. P.; Kang, J.; Han, B.; Yu, J. S. Oxygen-deficient Zirconia (Zro2-x): A New Material for Solar Light Absorption. Sci. Rep. 2016, 6(1), 27218. DOI: 10.1038/srep27218.
  • Chen, H.; Yang, M.; Tao, S.; Chen, G. Oxygen Vacancy Enhanced Catalytic Activity of Reduced Co3O4 Towards P-nitrophenol Reduction. Appl. Catal. B Environ. 2017, 209, 648–656. DOI: 10.1016/j.apcatb.2017.03.038.
  • Lee, S.; Nam, G.; Sun, J.; Lee, J. S.; Lee, H. W.; Chen, W.; Cho, J.; Cui, Y. Enhanced Intrinsic Catalytic Activity of λ-MnO 2 by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie. 2016, 55(30), 8599–8604. DOI: 10.1002/anie.201602851.
  • Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-Engraved Co 3 O 4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie. 2016, 55(17), 5277–5281. DOI: 10.1002/anie.201600687.
  • Liu, N.; Haublein, V.; Zhou, X.; Venkatesan, U.; Hartmann, M.; Mackovic, M.; Nakajima, T.; Spiecker, E.; Osvet, A.; Frey, L., et al. “Black” TiO 2 Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal- Co -catalyst Free Photocatalytic H 2 –evolution. Nano Lett. 2015, 15(10), 6815–6820. DOI: 10.1021/acs.nanolett.5b02663.
  • Zhou, Y.; Liu, Y.; Liu, P.; Zhang, W.; Xing, M.; Zhang, J. A Facile Approach to Further Improve the Substitution of Nitrogen into Reduced TiO2−with an Enhanced Photocatalytic Activity. Appl. Catal. B Environ. 2015, 170-171, 66–73. DOI: 10.1016/j.apcatb.2015.01.036.
  • Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P. MnO2-x Nanosheets on Stainless Steel Felt as a Carbon- and Binder-free Cathode for Non-aqueous Lithium-oxygen Batteries. J. Power Sources. 2016, 306, 724–732. DOI: 10.1016/j.jpowsour.2015.12.095.
  • Ou, G.; Li, D.; Pan, W.; Zhang, Q.; Xu, B.; Gu, L.; Nan, C.; Wu, H. Arc-melting to Narrow the Bandgap of Oxide Semiconductors. Adv.Mate. 2015, 27(16), 2589–2594. DOI: 10.1002/adma.201405763.
  • Wei, H.; Ma, X.; Gu, L.; Li, J.; Si, W.; Ou, G.; Yu, W.; Zhao, C.; Li, J.; Song, M., et al. Aerodynamic Levitated Laser Annealing Method to Defective Titanium Dioxide with Enhanced Photocatalytic Performance. Nano Res. 2016, 9, 3839–3847. DOI: 10.1007/s12274-016-1253-0.
  • Wang, R.; Li, J. Effects of Precursor and Sulfation on OMS-2 Catalyst for Oxidation of Ethanol and Acetaldehyde at Low Temperatures. Environ. Sci. Technol. 2010, 44(11), 4282–4287. DOI: 10.1021/es100253c.
  • Schaub, R.; Wahlström, E.; Rønnau, A.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO 2 (110) Surface. Science. 2003, 299(5605), 377–379. DOI: 10.1126/science.1078962.
  • Ma, T. Y.; Zheng, Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Mesoporous MnCo 2 O 4 with Abundant Oxygen Vacancy Defects as High-performance Oxygen Reduction Catalysts. J. Mater. Chem. A. 2014, 2(23), 8676–8682. DOI: 10.1039/c4ta01672f.
  • Jeong, H. Y.; Lee, J. Y.; Choi, S.-Y. Direct Observation of Microscopic Change Induced by Oxygen Vacancy Drift in Amorphous TiO2 Thin Films. Appl. Phys. Lett. 2010, 97, 042109. DOI: 10.1063/1.3467854.
  • Chen, D.; Niu, F.; Qin, L.; Wang, S.; Zhang, N.; Huang, Y. Defective BiFeO3 with Surface Oxygen Vacancies: Facile Synthesis and Mechanism Insight into Photocatalytic Performance. Solar Energy Mater. Solar Cells. 2017, 171, 24–32. DOI: 10.1016/j.solmat.2017.06.021.
  • Zhang, S.; Wang, G.; Jin, J.; Zhang, L.; Wen, Z.; Yang, J. Self-catalyzed Decomposition of Discharge Products on the Oxygen Vacancy Sites of MoO3 Nanosheets for Low-overpotential Li-O2 Batteries. Nano Energy. 2017, 36, 186–196. DOI: 10.1016/j.nanoen.2017.04.038.
  • Ziatdinov, M.; Dyck, O.; Li, X.; Sumpter, B. G.; Jesse, S.; Vasudevan, R. K.; Kalinin, S. V. Building and Exploring Libraries of Atomic Defects in Graphene: Scanning Transmission Electron and Scanning Tunneling Microscopy Study. Science Advances. 2019, 5(9), eaaw8989. DOI: 10.1126/sciadv.aaw8989.
  • Sutter, P.;. Scanning Tunneling Microscopy in Surface Science. In Springer Handbook of Microscopy, Springer, 2019; pp 2.
  • Diebold, U.; Lehman, J.; Mahmoud, T.; Kuhn, M.; Leonardelli, G.; Hebenstreit, W.; Schmid, M.; Varga, P. Intrinsic Defects on a TiO2 (110)(1×1) Surface and Their Reaction with Oxygen: A Scanning Tunneling Microscopy Study. Surf. Sci. 1998, 411, 137–153. DOI: 10.1016/S0039-6028(98)00356-2.
  • Aizawa, M.; Morikawa, Y.; Namai, Y.; Morikawa, H.; Iwasawa, Y. Oxygen Vacancy Promoting Catalytic Dehydration of Formic Acid on TiO 2 (110) by in Situ Scanning Tunneling Microscopic Observation. J. Phys. Chem. B. 2005, 109(40), 18831–18838. DOI: 10.1021/jp0523773.
  • Lu, J. L.; Gao, H. J.; Shaikhutdinov, S.; Freund, H. J. Morphology and Defect Structure of the CeO2(111) Films Grown on Ru(0001) as Studied by Scanning Tunneling Microscopy. Surf. Sci. 2006, 600(22), 5004–5010. DOI: 10.1016/j.susc.2006.08.023.
  • Genty, E.; Brunet, J.; Poupin, C.; Ojala, S.; Siffert, S.; Cousin, R. Influence of CO Addition on the Toluene Total Oxidation over CO Based Mixed Oxide Catalysts. Appl. Catal. B Environ. 2019, 247, 163–172. DOI: 10.1016/j.apcatb.2019.01.081.
  • Hou, J.; Li, Y.; Liu, L.; Ren, L.; Zhao, X. Effect of Giant Oxygen Vacancy Defects on the Catalytic Oxidation of OMS-2 Nanorods. J. Mater. Chem. A. 2013, 1(23), 6736. DOI: 10.1039/c3ta11566f.
  • Peng, S.; Han, X.; Li, L.; Chou, S.; Ji, D.; Huang, H.; Du, Y.; Liu, J.; Ramakrishna, S. Electronic and Defective Engineering of Electrospun CaMnO 3 Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable Zinc-Air Batteries. Adv. Energy Mater. 2018, 8(22), 1800612. DOI: 10.1002/aenm.201800612.
  • Li, S.; Mo, S.; Li, J.; Liu, H.; Chen, Y. Promoted VOC Oxidation over Homogeneous Porous Co X NiAlO Composite Oxides Derived from Hydrotalcites: Effect of Preparation Method and Doping. RSC Adv. 2016, 6(62), 56874–56884. DOI: 10.1039/c6ra08394c.
  • Larkin, P.;. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier, 2017.
  • Moskovits, M. Surface-enhanced Raman Spectroscopy: A Brief Retrospective. J. Raman Spectrosc. 2005, 36, 485–496. DOI: 10.1002/jrs.1362.
  • Kong, X. Y.; Choo, Y. Y.; Chai, S. P.; Soh, A. K.; Mohamed, A. R. Oxygen Vacancy Induced Bi 2 WO 6 for the Realization of Photocatalytic CO 2 Reduction over the Full Solar Spectrum: From the UV to the NIR Region. Chem. Commun. 2016, 52(99), 14242–14245. DOI: 10.1039/c6cc07750a.
  • Li, J.; Wu, X.; Pan, W.; Zhang, G.; Chen, H. Vacancy-Rich Monolayer BiO 2− X as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst. Angewandte Chemie. 2018, 57(2), 491–495. DOI: 10.1002/anie.201708709.
  • Huang, Y.; Li, H.; Fan, W.; Zhao, F.; Qiu, W.; Ji, H.; Tong, Y. Defect Engineering of Bismuth Oxyiodide by IO 3 Doping for Increasing Charge Transport in Photocatalysis. ACS Appl. Mater. Interfaces. 2016, 8(41), 27859–27867. DOI: 10.1021/acsami.6b10653.
  • Huang, Y.; Long, B.; Tang, M.; Rui, Z.; Balogun, M.-S.; Tong, Y.; Ji, H. Bifunctional Catalytic Material: An Ultrastable and High-performance Surface Defect CeO2 Nanosheets for Formaldehyde Thermal Oxidation and Photocatalytic Oxidation. Appl. Catal. B Environ. 2016, 181, 779–787. DOI: 10.1016/j.apcatb.2015.08.047.
  • Yang, W.; Zhu, Y.; You, F.; Yan, L.; Ma, Y.; Lu, C.; Gao, P.; Hao, Q.; Li, W. Insights into the Surface-defect Dependence of Molecular Oxygen Activation over Birnessite-type MnO2. Appl. Catal. B Environ. 2018, 233, 184–193. DOI: 10.1016/j.apcatb.2018.03.107.
  • Ye, K.; Li, K.; Lu, Y.; Guo, Z.; Ni, N.; Liu, H.; Huang, Y.; Ji, H.; Wang, P. An Overview of Advanced Methods for the Characterization of Oxygen Vacancies in Materials. TrAC Trends Anal. Chem. 2019, 116, 102–108. DOI: 10.1016/j.trac.2019.05.002.
  • Antuzevics, A.; Kemere, M.; Krieke, G.; Ignatans, R. Electron Paramagnetic Resonance and Photoluminescence Investigation of Europium Local Structure in Oxyfluoride Glass Ceramics Containing SrF2 Nanocrystals. Opt. Mater. 2017, 72, 749–755. DOI: 10.1016/j.optmat.2017.07.024.
  • Siegel, R. Positron Annihilation Spectroscopy. Ann.l Rev. Of Mater. Sci. 1980, 10(1), 393–425. DOI: 10.1146/annurev.ms.10.080180.002141.
  • Jiang, X.; Zhang, Y.; Jiang, J.; Rong, Y.; Wang, Y.; Wu, Y.; Pan, C. Characterization of Oxygen Vacancy Associates within Hydrogenated TiO 2: A Positron Annihilation Study. J. Phys. Chem. C. 2012, 116(42), 22619–22624. DOI: 10.1021/jp307573c.
  • Li, J.; Zhang, M.; Guan, Z.; Li, Q.; He, C.; Yang, J. Synergistic Effect of Surface and Bulk Single-electron-trapped Oxygen Vacancy of TiO2 in the Photocatalytic Reduction of CO2. Appl. Catal. B Environ. 2017, 206, 300–307. DOI: 10.1016/j.apcatb.2017.01.025.
  • Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.; Zeng, J. Oxygen Vacancies in ZnO Nanosheets Enhance CO 2 Electrochemical Reduction to CO. Angewandte Chemie. 2018, 130(21), 6162–6167. DOI: 10.1002/ange.201711255.
  • Sudarshan, K.; Tiwari, V.; Utpalla, P.; Gupta, S. K. Defect Evolution in Eu 3+, Nb 5+ Doped and Co-doped CeO 2: X-ray Diffraction, Positron Annihilation Lifetime and Photoluminescence Studies. Inorg. Chem. Front. 2019, 6(8), 2167–2177. DOI: 10.1039/c9qi00668k.
  • Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.; Tang, D.; Cao, X.; Liu, C., et al. Chemically Activating MoS2 via Spontaneous Atomic Palladium Interfacial Doping Towards Efficient Hydrogen Evolution. Nat. Commun. 2018, 9, 2120. DOI: 10.1038/s41467-018-04501-4.
  • Li, J.; Wu, X.; Pan, W.; Zhang, G.; Chen, H. Vacancy-Rich Monolayer BiO 2− X as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst. Angew. Chem. Int. Ed. 2018, 57(2), 491–495. DOI: 10.1002/anie.201708709.
  • Steinsvik, S.; Bugge, R.; Gjønnes, J.; Taftø, J.; Norby, T. Vacancy-Rich Monolayer BiO 2− X as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst). J. Phys. Chem. Solids. 1997, 58(6), 969–976. DOI: 10.1016/S0022-3697(96)00200-4.
  • Hanson, E. D.; Lajaunie, L.; Hao, S.; Myers, B. D.; Shi, F.; Murthy, A. A.; Wolverton, C.; Arenal, R.; Dravid, V. P. Systematic Study of Oxygen Vacancy Tunable Transport Properties of Few-Layer MoO3− X Enabled by Vapor-Based Synthesis. Adv. Funct. Mater. 2017, 27(17), 1605380. DOI: 10.1002/adfm.201605380.
  • D’Angelo, A. M.; Liu, A. C. Y.; Chaffee, A. L. Oxygen Uptake of Tb–CeO 2: Analysis of Ce 3+ and Oxygen Vacancies. J. Phys. Chem. C. 2016, 120(26), 14382–14389. DOI: 10.1021/acs.jpcc.6b04063.
  • Sun, Z.; Liu, Q.; Yao, T.; Yan, W.; Wei, S. X-ray Absorption Fine Structure Spectroscopy in Nanomaterials. Sci. China Mater. 2015, 58(4), 313–341. DOI: 10.1007/s40843-015-0043-4.
  • Mastelaro, V. R.; Zanotto, E. D. X-ray Absorption Fine Structure (XAFS) Studies of Oxide glasses-A 45-year Overview. Materials. 2018, 11(2), 204. DOI: 10.3390/ma11020204.
  • Zhang, N.; Li, X.; Ye, H.; Chen, S.; Ju, H.; Liu, D.; Lin, Y.; Ye, W.; Wang, C.; Xu, Q., et al. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation. J. Am. Chem. Soc. 2016, 138, 8928–8935. DOI: 10.1021/jacs.6b04629.
  • Li, Z.; Sibudjing, K. Facile Synthesis of Multi-Ni-Core@Ni Phyllosilicate@CeO 2 Shell Hollow Spheres with High Oxygen Vacancy Concentration for Dry Reforming of CH 4. ChemCatChem. 2018, 10(14), 2994–3001. DOI: 10.1002/cctc.201800335.
  • D’Angelo, A. M.; Chaffee, A. L. Correlations between Oxygen Uptake and Vacancy Concentration in Pr-Doped CeO 2. ACS omega. 2017, 2(6), 2544–2551. DOI: 10.1021/acsomega.7b00550.
  • Santos, V. P.; Pereira, M. F. R.; Órfão, J. J. M.; Figueiredo, J. L. The Role of Lattice Oxygen on the Activity of Manganese Oxides Towards the Oxidation of Volatile Organic Compounds. Appl. Catal. B Environ. 2010, 99(1–2), 353–363. DOI: 10.1016/j.apcatb.2010.07.007.
  • Cui, Z.; Wang, W.; Zhao, C.; Chen, C.; Han, M.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Spontaneous Redox Approach to the Self-Assembly Synthesis of Au/CeO 2 Plasmonic Photocatalysts with Rich Oxygen Vacancies for Selective Photocatalytic Conversion of Alcohols. ACS Appl. Mater. Interfaces. 2018, 10(37), 31394–31403. DOI: 10.1021/acsami.8b10705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.