Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 3
579
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Construction of N-heterocycles through group 9 (Co, Rh, Ir) metal-catalyzed C-H activation: utilizing alkynes and olefins as coupling partners

, , , & ORCID Icon

References

  • Hili, R.; Yudin, A. K. Making Carbon-Nitrogen Bonds in Biological and Chemical Synthesis. Nat. Chem. Biol 2006, 2(6), 284–287. DOI:10.1038/nchembio0606-284.
  • Gupta, S. S.; Kumari, S.; Kumar, I.; Sharma, U. Eco-Friendly and Sustainable Synthetic Approaches to Biologically Significant Fused N-Heterocycles. Chem. Heterocycl. Compd 2020, 56(4), 433–444. DOI:10.1007/s10593-020-02678-5.
  • Godula, K.; Sames, D. C-H Bond Functionalization in Complex Organic Synthesis. Science. 2006, 312(5770), 67–72. DOI: 10.1126/science.1114731.
  • Davies, H. M.; Manning, J. R. Catalytic C-H Functionalization by Metal Carbenoid and Nitrenoid Insertion. Nature. 2008, 451(7177), 417–424. DOI: 10.1038/nature06485.
  • Labinger, J. A.; Bercaw, J. E. Understanding and Exploiting C-H Bond Activation. Nature. 2002, 417(6888), 507–514. DOI: 10.1038/417507a.
  • Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. A Review on Recent Advances in nitrogen-containing Molecules and Their Biological Applications. Molecules. 2020, 25(8), 1909. DOI: 10.3390/molecules25081909.
  • Heravi, M. M.; Zadsirjan, V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv 2020, 10(72), 44247–44311. DOI: 10.1039/D0RA09198G.
  • Mishra, N. K.; Park, J.; Oh, H.; Han, S. H.; Kim, I. S. Recent Advances in N-heterocycles Synthesis through Catalytic C-H Functionalization of Azobenzenes. Tetrahedron. 2018, 74(47), 6769–6794. DOI: 10.1016/j.tet.2018.10.010.
  • Yamamoto, Y. Synthesis of Heterocycles via Transition-Metal-Catalyzed Hydroarylation of Alkynes. Chem. Soc. Rev 2014, 43(5), 1575–1600. DOI: 10.1039/C3CS60369E.
  • Baccalini, A.; Faita, G.; Zanoni, G.; Maiti, D. Transition Metal Promoted Cascade Heterocycle Synthesis through C-H Functionalization. Chem. Eur. J 2020, 26(44), 9749–9783. DOI: 10.1002/chem.202001832.
  • Solé, D., and Fernández, I. Advances in Transition-Metal Mediated Heterocyclic Synthesis; Academic Press, Cambridge, MA: 2018.
  • Wu, X. F. Transition Metal-Catalyzed Heterocycle Synthesis via C-H Activation; John Wiley & Sons, Hoboken, New Jersey: 2015.
  • Nakamura, I.; Yamamoto, Y. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Chem. Rev 2004, 104(5), 2127–2198. DOI: 10.1021/cr020095i.
  • Li, S. S.; Qin, L.; Dong, L. Rhodium-Catalyzed C-C Coupling Reactions via Double C-H Activation. Org. Biomol. Chem 2016, 14(20), 4554–4570. DOI: 10.1039/C6OB00209A.
  • Rej, S.; Chatani, N. Rhodium-Catalyzed C(sp2) or C(sp3)-H Bond Functionalization Assisted by Removable Directing Groups. Angew. Chem. Int. Ed 2019, 58(25), 8304–8329. DOI: 10.1002/anie.201808159.
  • Qi, X.; Li, Y.; Bai, R.; Lan, Y. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation. Acc. Chem. Res 2017, 50(11), 2799–2808. DOI: 10.1021/acs.accounts.7b00400.
  • Li, J. J. CH Bond Activation in Organic Synthesis; CRC press, Boca Raton, Florida.: 2015.
  • Gellrich, U.; Koslowski, T. Rh Chemistry through the Eyes of Theory. Wiley Interdiscip. Rev. Comput. Mol. Sci 2016, 6(3), 311–320. DOI: 10.1002/wcms.1250.
  • Xu, F.; Song, Y.; Yuan, Z.; Jing, W.; Liu, C.; Sen, L.; Zhou, Y.; Du, M. Rhodium-Catalyzed Multiple C-H Activation/Highly Meta-Selective C-H Amination between Amidines and Alkynes. Chem. Commun 2020, 56(76), 11227–11230. DOI: 10.1039/D0CC04885B.
  • Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N. K. Synthesis of Five-Membered N-Heterocycles Using Rh Based Metal Catalysts. Synth. Commun 2020, 50(2), 137–160. DOI: 10.1080/00397911.2019.1689271.
  • Rakshit, S.; Patureau, F. W.; Glorius, F. Pyrrole Synthesis via Allylic Sp3 C-H Activation of Enamines Followed by Intermolecular Coupling with Unactivated Alkynes. J. Am. Chem. Soc 2010, 132(28), 9585–9587. DOI: 10.1021/ja104305s.
  • Huang, H.; Ji, X.; Wu, W.; Jiang, H. Transition Metal-Catalyzed C-H Functionalization of N-Oxyenamine Internal Oxidants. Chem. Soc. Rev 2015, 44(5), 1155–1171. DOI: 10.1039/C4CS00288A.
  • Wu, X.; Wang, B.; Zhou, Y.; Liu, H. Propargyl Alcohols as One-Carbon Synthons: Redox-Neutral Rhodium(III)-Catalyzed C-H Bond Activation for the Synthesis of Isoindolinones Bearing a Quaternary Carbon. Org. Lett 2017, 19(6), 1294–1297. DOI: 10.1021/acs.orglett.7b00089.
  • Wang, C.; Qiang, Y.; Feng, L.; Loh, C.; Peng, T. C-F Bond Cleavage Enabled Redox-Neutral [4+1] Annulation via C-H Bond Activation. J. Am. Chem. Soc 2017, 139(5), 1762–1765. DOI: 10.1021/jacs.6b12142.
  • Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. Indole Synthesis via Rhodium Catalyzed Oxidative Coupling of Acetanilides and Internal Alkynes. J. Am. Chem. Soc 2008, 130(49), 16474–16475. DOI: 10.1021/ja806955s.
  • Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. Rhodium(III)-Catalyzed Arene and Alkene C-H Bond Functionalization Leading to Indoles and Pyrroles. J. Am. Chem. Soc 2010, 132(51), 18326–18339. DOI: 10.1021/ja1082624.
  • Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K. The Vinyl Moiety as a Handle for Regiocontrol in the Preparation of Unsymmetrical 2,3-Aliphatic-Substituted Indoles and Pyrroles. Angew. Chem. Int. Ed 2011, 50(6), 1338–1341. DOI: 10.1002/anie.201006381.
  • Chen, J.; Song, G.; Pan, C. L.; Li, X. Rh(III)-Catalyzed Oxidative Coupling of N-Aryl-2-Aminopyridine with Alkynes and Alkenes. Org. Lett 2010, 12(23), 5426–5429. DOI: 10.1021/ol1022596.
  • Wang, C.; Sun, H.; Fang, Y.; Huang, Y. General and Efficient Synthesis of Indoles through Triazene‐Directed C-H Annulation. Angew. Chem. Int. Ed 2013, 52(22), 5795–5798. DOI: 10.1002/anie.201301742.
  • Zhao, D.; Shi, Z.; Glorius, F. Indole Synthesis by Rhodium (Iii)‐catalyzed Hydrazine‐Directed C-H Activation: Redox‐Neutral and Traceless by N-N Bond Cleavage. Angew. Chem. Int. Ed 2013, 52(47), 12426–12429. DOI: 10.1002/anie.201306098.
  • Liu, B.; Song, C.; Sun, C.; Zhou, S.; Zhu, J. Rhodium(III)-Catalyzed Indole Synthesis Using N-N Bond as an Internal Oxidant. J. Am. Chem. Soc 2013, 135(44), 16625–16631. DOI: 10.1021/ja408541c.
  • Wang, C.; Huang, Y. Traceless Directing Strategy: Efficient Synthesis of N-Alkyl Indoles via Redox-Neutral C-H Activation. Org. Lett 2013, 15(20), 5294–5297. DOI: 10.1021/ol402523x.
  • Muralirajan, K.; Cheng, C. H. Regioselective Synthesis of Indoles via Rhodium‐Catalyzed C-H Activation Directed by an In‐Situ Generated Redox‐Neutral Group. Adv. Synth. Catal 2014, 356(7), 1571–1576. DOI: 10.1002/adsc.201400224.
  • Zhang, G.; Yu, H.; Qin, G.; Huang, H. Rh-Catalyzed Oxidative C-H Activation/Annulation: Converting Anilines to Indoles Using Molecular Oxygen as the Sole Oxidant. Chem. Commun 2014, 50(33), 4331–4334. DOI: 10.1039/C3CC49751H.
  • Zheng, L.; Hua, R. Rhodium(III)‐Catalyzed C-H Activation and Indole Synthesis with Hydrazone as an Auto‐Formed and Auto‐Cleavable Directing Group. Chem. Eur. J 2014, 20(8), 2352–2356. DOI: 10.1002/chem.201304302.
  • Kong, L.; Xie, F.; Yu, S.; Qi, Z.; Li, X. Rh(III)-Catalyzed Coupling of Nitrones with Alkynes for the Synthesis of Indolines. Chin. J. Catal 2015, 36(7), 925–932. DOI: 10.1016/S1872-2067(15)60866-X.
  • Zhou, Z.; Liu, G.; Chen, Y.; Lu, X. Rhodium(III)‐Catalyzed Redox‐Neutral C-H Annulation of Arylnitrones and Alkynes for the Synthesis of Indole Derivatives. Adv. Synth. Catal 2015, 357(13), 2944–2950. DOI: 10.1002/adsc.201500580.
  • Yan, H.; Wang, H.; Li, X.; Xin, X.; Wang, C.; Wan, B. Rhodium-Catalyzed C-H Annulation of Nitrones with Alkynes: A Regiospecific Route to Unsymmetrical 2,3-Diaryl-Substituted Indoles. Angew. Chem. Int. Ed 2015, 54(36), 10613–10617. DOI: 10.1002/anie.201503997.
  • Zhou, S.; Wang, J.; Zhang, F.; Song, C.; Zhu, J.; Versatile, A. Traceless C-H Activation-Based Approach for the Synthesis of Heterocycles. Org. Lett 2016, 18(10), 2427–2430. DOI: 10.1021/acs.orglett.6b00949.
  • Long, Z.; Yang, Y.; You, J. Rh(III)-Catalyzed [4+1]-annulation of Azoxy Compounds with Alkynes: A Regioselective Approach to 2 H-Indazoles. Org. Lett 2017, 19(11), 2781–2784. DOI: 10.1021/acs.orglett.7b00982.
  • Yamada, T.; Shibata, Y.; Kawauchi, S.; Yoshizaki, S.; Tanaka, K. Formal Lossen Rearrangement/[3+2] Annulation Cascade Catalyzed by a Modified Cyclopentadienyl RhIII Complex. Chem. Eur. J 2018, 24(22), 5723–5727. DOI: 10.1002/chem.201801125.
  • Font, M.; Cendón, B.; Seoane, A.; Mascareñas, J. L.; Gulías, M. Rhodium(III)‐Catalyzed Annulation of 2‐Alkenyl Anilides with Alkynes through C-H Activation: Direct Access to 2‐Substituted Indolines. Angew. Chem. Int. Ed 2018, 57(27), 8255–8259. DOI: 10.1002/anie.201802830.
  • Wu, S.; Wu, X.; Fu, C.; Ma, S. Rhodium(III)-Catalyzed C-H Functionalization in Water for Isoindolin-1-one Synthesis. Org. Lett 2018, 20(10), 2831–2834. DOI: 10.1021/acs.orglett.8b00780.
  • Yan, X.; Ye, R.; Sun, H.; Zhong, J.; Xiang, H.; Zhou, X. Synthesis of 2-Arylindoles by Rhodium-Catalyzed/Copper-Mediated Annulative Coupling of N-Aryl-2-aminopyridines and Propargyl Alcohols via Selective C-H/C-C Activation. Org. Lett 2019, 21(18), 7455–7459. DOI: 10.1021/acs.orglett.9b02767.
  • Parthasarathy, K.; Cheng, C.; Hong. Easy Access to Isoquinolines and Tetrahydroquinolines from Ketoximes and Alkynes via Rhodium-Catalyzed C-H Bond Activation. J. Org. Chem 2009, 74(24), 9359–9364. DOI: 10.1021/jo902084j.
  • Guimond, N.; Fagnou, K. Isoquinoline Synthesis via Rhodium-Catalyzed Oxidative Cross-Coupling/Cyclization of Aryl Aldimines and Alkynes. J. Am. Chem. Soc 2009, 131(34), 12050–12051. DOI: 10.1021/ja904380q.
  • Fukutani, T.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Rhodium-Catalyzed Oxidative Coupling of Aromatic Imines with Internal Alkynes via Regioselective C-H Bond Cleavage. Chem. Commun 2009, 34, 5141–5143. DOI: 10.1039/B910198E.
  • Song, G.; Chen, D.; Pan, C. L.; Crabtree, R. H.; Li, X. Rh-Catalyzed Oxidative Coupling between Primary and Secondary Benzamides and Alkynes: Synthesis of Polycyclic Amides. J. Org. Chem 2010, 75(21), 7487–7490. DOI: 10.1021/jo101596d.
  • Guimond, N.; Gouliaras, C.; Fagnou, K. Rhodium(III)-Catalyzed Isoquinolone Synthesis: The N-O Bond as a Handle for C-N Bond Formation and Catalyst Turnover. J. Am. Chem. Soc 2010, 132(20), 6908–6909. DOI: 10.1021/ja102571b.
  • Too, P. C.; Wang, Y. F.; Chiba, S. Rhodium(III)-Catalyzed Synthesis of Isoquinolines from Aryl Ketone O-Acyloxime Derivatives and Internal Alkynes. Org. Lett 2010, 12(24), 5688–5691. DOI: 10.1021/ol102504b.
  • Hyster, T. K.; Rovis, T. Rhodium-Catalyzed Oxidative Cycloaddition of Benzamides and Alkynes via C-H/N-H Activation. J. Am. Chem. Soc 2010, 132(30), 10565–10569. DOI: 10.1021/ja103776u.
  • Su, Y.; Zhao, M.; Han, K.; Song, G.; Li, X. Synthesis of 2-Pyridones and Iminoesters via Rh(III)-Catalyzed Oxidative Coupling between Acrylamides and Alkynes. Org. Lett 2010, 12(23), 5462–5465. DOI: 10.1021/ol102306c.
  • Guimond, N.; Gorelsky, S. I.; Fagnou, K. Rhodium(III)-Catalyzed Heterocycle Synthesis Using an Internal Oxidant: Improved Reactivity and Mechanistic Studies. J. Am. Chem. Soc 2011, 133(16), 6449–6457. DOI: 10.1021/ja201143v.
  • Hyster, T. K.; Rovis, T. Pyridine Synthesis from Oximes and Alkynes via rhodium(III) Catalysis: Cp* and Cpt Provide Complementary Selectivity. Chem. Commun 2011, 47(43), 11846–11848. DOI: 10.1039/C1CC15248C.
  • Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. Rhodium-Catalyzed Oxidative Coupling of Benzylamines with Alkynes through Dehydrogenation and Dehydrogenative Cyclization. Chem. Lett 2011, 40(6), 600–602. DOI: 10.1246/cl.2011.600.
  • Wei, X.; Zhao, M.; Du, Z.; Li, X. Synthesis of 1-Aminoisoquinolines via Rh(III)-Catalyzed Oxidative Coupling. Org. Lett 2011, 13(17), 4636–4639. DOI: 10.1021/ol2018505.
  • Too, P. C.; Chua, S. H.; Wong, S. H.; Chiba, S. Synthesis of Azaheterocycles from Aryl Ketone O-Acetyl Oximes and Internal Alkynes by Cu–Rh Bimetallic Relay Catalysts. J. Org. Chem 2011, 76(15), 6159–6168. DOI: 10.1021/jo200897q.
  • Wang, Y. F.; Toh, K. K.; Lee, J. Y.; Chiba, S. Synthesis of Isoquinolines from α-Aryl Vinyl Azides and Internal Alkynes by Rh-Cu Bimetallic Cooperation. Angew. Chem. Int. Ed 2011, 50(26), 5927–5931. DOI: 10.1002/anie.201101009.
  • Wang, H.; Grohmann, C.; Nimphius, C.; Glorius, F. Mild Rh(III)-Catalyzed C-H Activation and Annulation with Alkyne MIDA Boronates: Short, Efficient Synthesis of Heterocyclic Boronic Acid Derivatives. J. Am. Chem. Soc 2012, 134(48), 19592–19595. DOI: 10.1021/ja310153v.
  • Kim, D. S.; Park, J. W.; Jun, C. H. Pyridine Synthesis by Reactions of Allyl Amines and Alkynes Proceeding through a Cu(OAc)2 Oxidation and Rh(III)-Catalyzed N-Annulation Sequence. Chem. Commun 2012, 48(92), 11334–11336. DOI: 10.1039/C2CC36699A.
  • Zheng, L.; Ju, J.; Bin, Y.; Hua, R. Synthesis of Isoquinolines and Heterocycle-Fused Pyridines via Three-Component Cascade Reaction of Aryl Ketones, Hydroxylamine, and Alkynes. J. Org. Chem 2012, 77(13), 5794–5800. DOI: 10.1021/jo3010414.
  • Huckins, J. R.; Bercot, E. A.; Thiel, O. R.; Hwang, T.-L.; Bio, M. M. Rh(III)-Catalyzed C-H Activation and Double Directing Group Strategy for the Regioselective Synthesis of Naphthyridinones. J. Am. Chem. Soc 2013, 135(39), 14492–14495. DOI: 10.1021/ja405140f.
  • Liu, W.; Hong, X.; Xu, B. Rhodium-Catalyzed Oxidative Coupling of Aryl Hydrazones with Internal Alkynes: Efficient Synthesis of Multisubstituted Isoquinolines. Synthesis. 2013, 45(15), 2137–2149. DOI: 10.1055/s-0033-1338417.
  • Kim, D.-S.; Park, J.-W.; Jun, C.-H. Synthesis of Isoquinoline Derivatives through Rhodium(III)- Catalyzed Reactions of Benzylamines with Non-Terminal Alkynes. Adv. Synth. Catal 2013, 355(13), 2667–2679. DOI: 10.1002/adsc.201300377.
  • Chuang, S. C.; Gandeepan, P.; Cheng, C. H. Synthesis of Isoquinolines via Rh(III)-Catalyzed C-H Activation Using Hydrazone as a New Oxidizing Directing Group. Org. Lett 2013, 15(22), 5750–5753. DOI: 10.1021/ol402796m.
  • Zhang, L.; Zheng, L.; Guo, B.; Hua, R. One-Pot Synthesis of Multisubstituted 2-Aminoquinolines from Annulation of 1-Aryl Tetrazoles with Internal Alkynes via Double C-H Activation and Denitrogenation. J. Org. Chem 2014, 79(23), 11541–11548. DOI: 10.1021/jo502192b.
  • Zhang, Y.; Zheng, J.; Cui, S. Rh(III)-Catalyzed C-H Activation/Cyclization of Indoles and Pyrroles: Divergent Synthesis of Heterocycles. J. Org. Chem 2014, 79(14), 6490–6500. DOI: 10.1021/jo500902n.
  • Han, W.; Zhang, G.; Li, G.; Huang, H. Rh-Catalyzed Sequential Oxidative C-H and N-N Bond Activation: Conversion of Azines into Isoquinolines with Air at Room Temperature. Org. Lett 2014, 16(13), 3532–3535. DOI: 10.1021/ol501483k.
  • Huang, X. C.; Yang, X. H.; Song, R. J.; Li, J. H. Rhodium-Catalyzed Synthesis of Isoquinolines and Indenes from Benzylidenehydrazones and Internal Alkynes. J. Org. Chem 2014, 79(3), 1025–1031. DOI: 10.1021/jo402497v.
  • Midya, S. P.; Sahoo, M. K.; Landge, V. G.; Rajamohanan, P.; Balaraman, E. Reversed Reactivity of Anilines with Alkynes in the Rhodium-Catalysed C-H Activation/Carbonylation Tandem. Nat. Commun 2015, 6(1), 1–10. DOI: 10.1038/ncomms9591.
  • Cajaraville, A.; Suárez, J.; López, S.; Varela, J. A.; Saá, C. , Rh(III)-Catalyzed [5+1] Oxidative Cycloaddition of Arylguanidines with Alkynes: A Novel Access to C4-Disubstituted 1,4-Dihydroquinazolin-2-amines. Chem. Commun 2015, 51(82), 15157–15160. DOI: 10.1039/C5CC06388D.
  • Manan, R. S.; Zhao, P. Merging Rhodium-Catalysed C-H Activation and Hydroamination in a Highly Selective [4+2] Imine/Alkyne Annulation. Nat. Commun 2016, 7(1), 1–11. DOI: 10.1038/ncomms11506.
  • Halskov, K. S.; Roth, H. S.; Ellman, J. A. Synthesis of [5,6]-bicyclic Heterocycles with a Ring-Junction Nitrogen Atom: Rhodium(III)-Catalyzed C-H Functionalization of Alkenyl Azoles. Angew. Chem. Int. Ed 2017, 56(31), 9183–9187. DOI: 10.1002/anie.201703967.
  • Upadhyay, N. S.; Thorat, V. H.; Sato, R.; Annamalai, P.; Chuang, S. C.; Cheng, C. H. Synthesis of Isoquinolones via Rh-Catalyzed C-H Activation of Substituted Benzamides Using Air as the Sole Oxidant in Water. Green Chem 2017, 19(14), 3219–3224. DOI: 10.1039/C7GC01221G.
  • Ren, J.; Pi, C.; Cui, X.; Wu, Y. Rhodium(III)-Catalyzed [4 + 2] Annulation of N-Arylbenzamidines with Propargyl Alcohols: Highly Regioselective Synthesis of 1-Aminoisoquinolines Controlled by Noncovalent Interaction. Org. Lett 2021, 23(17), 6628–6632. DOI: 10.1021/acs.orglett.1c02077.
  • Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Transition-Metal-Catalyzed C-H Alkylation Using Alkenes. Chem. Rev 2017, 117(13), 9333–9403. DOI: 10.1021/acs.chemrev.6b00574.
  • Coombs, J. R.; Morken, J. P. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes. Angew. Chem. Int. Ed 2016, 55(8), 2636–2649. DOI: 10.1002/anie.201507151.
  • Minatti, A.; Muñiz, K. Intramolecular Aminopalladation of Alkenes as a Key Step to Pyrrolidines and Related Heterocycles. Chem. Soc. Rev 2007, 36(7), 1142–1152. DOI: 10.1039/B607474J.
  • Chemler, S. R.; Fuller, P. H. Heterocycle Synthesis by Copper Facilitated Addition of Heteroatoms to Alkenes, Alkynes and Arenes. Chem. Soc. Rev 2007, 36(7), 1153–1160. DOI: 10.1039/B607819M.
  • Peneau, A.; Guillou, C.; Chabaud, L. Recent Advances in [Cp*miii] (M = Co, Rh, Ir)-Catalyzed Intramolecular Annulation through C-H Activation. Eur. J. Org. Chem. 2018, 2018(42), 5777–5794. DOI: 10.1002/ejoc.201800298.
  • Wang, R.; Xie, X.; Liu, H.; Zhou, Y. Rh(III)-Catalyzed C-H Bond Activation for the Construction of Heterocycles with sp3-Carbon Centers. Catalysts. 2019, 9(10), 823. DOI: 10.3390/catal9100823.
  • Chandra, D.; Dhiman, A. K.; Parmar, D.; Sharma, U.; Alkylation. Alkenylation, and Alkynylation of Heterocyclic Compounds through Group 9 (Co, Rh, Ir) metal-catalyzed CH Activation. Catal. Rev 2020, 1–73. DOI:10.1080/01614940.2020.1839849.
  • Isoda, M.; Sato, K.; Funakoshi, M.; Omura, K.; Tarui, A.; Omote, M.; Ando, A. Diastereoselective Synthesis of syn-β-Lactams Using Rh-Catalyzed Reductive Mannich-Type Reaction of α,β-Unsaturated Esters. J. Org. Chem 2015, 80(16), 8398–8405. DOI: 10.1021/acs.joc.5b01233.
  • Cajaraville, A.; López, S.; Varela, J. A.; Saá, C. Rh(III)-Catalyzed Tandem C-H Allylation and Oxidative Cyclization of Anilides: A New Entry to Indoles. Org. Lett 2013, 15(17), 4576–4579. DOI: 10.1021/ol402125t.
  • Kim, M.; Park, J.; Sharma, S.; Han, S.; Han, S. H.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Synthesis and C2-Functionalization of Indoles with Allylic Acetates under Rhodium Catalysis. Org. Biomol. Chem 2013, 11(42), 7427–7434. DOI: 10.1039/C3OB41828F.
  • Zhao, D.; Vásquez-Céspedes, S.; Glorius, F. Rhodium(III)-Catalyzed Cyclative Capture Approach to Diverse 1-Aminoindoline Derivatives at Room Temperature. Angew. Chem. Int. Ed 2015, 54(5), 1657–1661. DOI: 10.1002/anie.201410342.
  • Oh, Y.; Han, S. H.; Mishra, N. K.; De, U.; Lee, J.; Kim, H. S.; Jung, Y. H.; Kim, I. S. Synthesis and Anticancer Evaluation of 2,3-Disubstituted Indoles Derived from Azobenzenes and Internal Olefins. Eur. J. Org. Chem 2017, 2017(42), 6265–6273. DOI: 10.1002/ejoc.201701001.
  • Cai, S.; Lin, S.; Yi, X.; Xi, C. Substrate-Controlled Transformation of Azobenzenes to Indazoles and Indoles via Rh(III)-Catalysis. J. Org. Chem 2017, 82(1), 512–520. DOI: 10.1021/acs.joc.6b02548.
  • Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. Rh(III)-Catalyzed Directed C-H Olefination Using an Oxidizing Directing Group: Mild, Efficient, and Versatile. J. Am. Chem. Soc 2011, 133(8), 2350–2353. DOI: 10.1021/ja109676d.
  • Wang, H.; Glorius, F. Mild Rhodium(III)-Catalyzed C-H Activation and Intermolecular Annulation with Allenes. Angew. Chem. Int. Ed 2012, 51(29), 7318–7322. DOI: 10.1002/anie.201201273.
  • Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T. Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C-H Activation. Science. 2012, 338(6106), 500–503. DOI: 10.1126/science.1226132.
  • Ye, B.; Cramer, N. Chiral Cyclopentadienyl Ligands as Stereocontrolling Element in Asymmetric C-H Functionalization. Science. 2012, 338(6106), 504–506. DOI: 10.1126/science.1226938.
  • Cui, S.; Zhang, Y.; Wu, Q. Rh(III)-Catalyzed C-H Activation/Cycloaddition of Benzamides and Methylenecyclopropanes: Divergence in Ring Formation. Chem. Sci 2013, 4(9), 3421–3426. DOI: 10.1039/C3SC51424B.
  • Zhao, D.; Lied, F.; Glorius, F. Rh(III)-Catalyzed C-H Functionalization/Aromatization Cascade with 1,3-Dienes: A Redox-Neutral and Regioselective Access to Isoquinolines. Chem. Sci 2014, 5(7), 2869–2873. DOI: 10.1039/C4SC00628C.
  • Webb, N. J.; Marsden, S. P.; Raw, S. A. Rhodium(III)-Catalyzed C-H Activation/Annulation with Vinyl Esters as an Acetylene Equivalent. Org. Lett 2014, 16(18), 4718–4721. DOI: 10.1021/ol502095z.
  • Hyster, T. K.; Dalton, D. M.; Rovis, T. Ligand Design for Rh(III)-Catalyzed C-H Activation: An Unsymmetrical Cyclopentadienyl Group Enables a Regioselective Synthesis of Dihydroisoquinolones. Chem. Sci 2015, 6(1), 254–258. DOI: 10.1039/C4SC02590C.
  • Bai, P.; Li, Y.-Q.; Huang, -Z.-Z. A Four-Component Cascade C-H Functionalization/Cyclization/Nucleophilic Substitution Reaction to Construct α-Functionalized Tetrahydroquinolines by the Strategy of in-Situ Directing Group Formation. Org. Lett 2017, 19(6), 1374–1377. DOI: 10.1021/acs.orglett.7b00226.
  • Wu, J. Q.; Zhang, S. S.; Gao, H.; Qi, Z.; Zhou, C. J.; Ji, W. W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X., et al. Experimental and Theoretical Studies on Rhodium-Catalyzed Coupling of Benzamides with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Fluorinated Heterocycles. J. Am. Chem. Soc 2017, 139(9), 3537–3545. DOI: 10.1021/jacs.7b00118.
  • Yang, X.; Liu, S.; Yu, S.; Kong, L.; Lan, Y.; Li, X. Redox-Neutral Access to Isoquinolinones via Rhodium(III)-Catalyzed Annulations of O-Pivaloyl Oximes with Ketenes. Org. Lett 2018, 20(9), 2698–2701. DOI: 10.1021/acs.orglett.8b00906.
  • Wu, S.; Zeng, R.; Fu, C.; Yu, Y.; Zhang, X.; Ma, S. Rhodium-Catalyzed C-H Functionalization-Based Approach to Eight-Membered Lactams. Chem. Sci 2015, 6(4), 2275–2285. DOI: 10.1039/C5SC00092K.
  • Trifonova, E. A.; Ankudinov, N. M.; Mikhaylov, A. A.; Chusov, D. A.; Nelyubina, Y. V.; Perekalin, D. S. A Planar-Chiral Rhodium(III) Catalyst with A Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones. Angew. Chem. Int. Ed 2018, 57(26), 7714–7718. DOI: 10.1002/anie.201801703.
  • Pandey, A. K.; Han, S. H.; Mishra, N. K.; Kang, D.; Lee, S. H.; Chun, R.; Hong, S.; Park, J. S.; Kim, I. S. Synthesis of 2-Benzazepines from Benzylamines and MBH Adducts under Rhodium(III) Catalysis via C(sp2)-H Functionalization. ACS Catal 2018, 8(1), 742–746. DOI: 10.1021/acscatal.7b03812.
  • Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C-H Activation. ACS Catal 2016, 6(2), 498–525. DOI: 10.1021/acscatal.5b02344.
  • Junge, K., and Beller, M. Homogeneous Cobalt-Catalysed Hydrogenation Reactions. Cobalt Catal. Org. Synth 2020, 25–66 DOI: 10.1002/9783527814855.ch2.
  • Zhang, J.; Chen, H.; Lin, C.; Liu, Z.; Wang, C.; Zhang, Y. Cobalt-Catalyzed Cyclization of Aliphatic Amides and Terminal Alkynes with Silver-Cocatalyst. J. Am. Chem. Soc 2015, 137(40), 12990–12996. DOI: 10.1021/jacs.5b07424.
  • Zhang, L. B.; Hao, X. Q.; Liu, Z. J.; Zheng, X. X.; Zhang, S. K.; Niu, J. L.; Song, M. P. Cobalt(II)-Catalyzed C-H Alkynylation/Annulation with Terminal Alkynes: Selective Access to 3-Methyleneisoindolin-1-one. Angew. Chem. Int. Ed 2015, 54(34), 10012–10015. DOI: 10.1002/anie.201504962.
  • Liang, Y.; Jiao, N. Cationic Cobalt(III) Catalyzed Indole Synthesis: The Regioselective Intermolecular Cyclization of N-Nitrosoanilines and Alkynes. Angew. Chem. Int. Ed 2016, 55(12), 4035–4039. DOI: 10.1002/anie.201511002.
  • Zhou, S.; Wang, J.; Wang, L.; Chen, K.; Song, C.; Zhu, J. Co(III)-Catalyzed, Internal and Terminal Alkyne-Compatible Synthesis of Indoles. Org. Lett 2016, 18(15), 3806–3809. DOI: 10.1021/acs.orglett.6b01805.
  • Wang, H.; Moselage, M.; González, M. J.; Ackermann, L. Selective Synthesis of Indoles by Cobalt(III)-Catalyzed C-H/N-O Functionalization with Nitrones. ACS Catal 2016, 6(4), 2705–2709. DOI: 10.1021/acscatal.5b02937.
  • Yu, W.; Zhang, W.; Liu, Y.; Zhou, Y.; Liu, Z.; Zhang, Y. Cobalt(III)-Catalyzed Synthesis of Pyrroles from Enamides and Alkynes. RSC Adv 2016, 6(29), 24768–24772. DOI: 10.1039/C6RA01992G.
  • Lade, D. M.; Pawar, A. B. Cp*Co(III)-Catalyzed Vinylic C-H Bond Activation under Mild Conditions: Expedient Pyrrole Synthesis via (3 + 2) Annulation of Enamides and Alkynes. Org. Chem. Front. 2016, 3(7), 836–840. DOI: 10.1039/C6QO00108D.
  • Grigorjeva, L.; Daugulis, O. Cobalt-Catalyzed, Aminoquinoline-Directed C(sp2)-H Bond Alkenylation by Alkynes. Angew. Chem. Int. Ed 2014, 53(38), 10209–10212. DOI: 10.1002/anie.201404579.
  • Mei, R.; Wang, H.; Warratz, S.; Macgregor, S. A.; Ackermann, L. Cobalt-Catalyzed Oxidase C-H/N-H Alkyne Annulation: Mechanistic Insights and Access to Anticancer Agents. Chem. Eur. J 2016, 22(20), 6759–6763. DOI: 10.1002/chem.201601101.
  • Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. Pyrroloindolone Synthesis via a Cp*CoIII-Catalyzed Redox-Neutral Directed C-H Alkenylation/Annulation Sequence. J. Am. Chem. Soc 2014, 136(14), 5424–5431. DOI: 10.1021/ja5008432.
  • Yan, Q.; Chen, Z.; Liu, Z.; Zhang, Y. Cobalt-Catalyzed Synthesis of Quinolines from the Redox-Neutral Annulation of Anilides and Alkynes. Org. Chem. Front. 2016, 3(6), 678–682. DOI: 10.1039/C6QO00059B.
  • Kong, L.; Yu, S.; Zhou, X.; Li, X. Redox-Neutral Couplings between Amides and Alkynes via Cobalt(III)-Catalyzed C-H Activation. Org. Lett 2016, 18(3), 588–591. DOI: 10.1021/acs.orglett.5b03629.
  • Lu, Q.; Vásquez-Céspedes, S.; Gensch, T.; Glorius, F. Control over Organometallic Intermediate Enables Cp*Co(III) Catalyzed Switchable Cyclization to Quinolines and Indoles. ACS Catal 2016, 6(4), 2352–2356. DOI: 10.1021/acscatal.6b00367.
  • Sen, M.; Kalsi, D.; Sundararaju, B. Cobalt(III)-Catalyzed Dehydrative [4+2] Annulation of Oxime with Alkyne by C-H and N-OH Activation. Chem. Eur. J 2015, 21(44), 15529–15533. DOI: 10.1002/chem.201503643.
  • Gong, S.; Xi, W.; Ding, Z.; Sun, H. Synthesis of Isoquinolines from Benzimidates and Alkynes via Cobalt(III)-Catalyzed C-H Functionalization/Cyclization. J. Org. Chem 2017, 82(14), 7643–7647. DOI: 10.1021/acs.joc.7b01052.
  • Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C. H. Easy Access to 1-Amino and 1-Carbon Substituted Isoquinolines via Cobalt-Catalyzed C-H/N-O Bond Activation. Adv. Synth. Catal 2016, 358(5), 774–783. DOI: 10.1002/adsc.201501056.
  • Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Cobalt-Catalyzed Cyclization of N-Methoxy Benzamides with Alkynes Using an Internal Oxidant through C-H/N-O Bond Activation. Chem. Eur. J 2016, 22(17), 5899–5903. DOI: 10.1002/chem.201600471.
  • Kuai, C.; Wang, L.; Li, B.; Yang, Z.; Cui, X. Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group. Org. Lett 2017, 19(8), 2102–2105. DOI: 10.1021/acs.orglett.7b00702.
  • Liu, M.; Niu, J. L.; Yang, D.; Song, M. P. Development of a Traceless Directing Group: Cp*-Free Cobalt-Catalyzed C-H Activation/Annulations to Access Isoquinolinones. J. Org. Chem 2020, 85(6), 4067–4078. DOI: 10.1021/acs.joc.9b03073.
  • Li, X.-C.; Du, C.; Zhang, H.; Niu, J.-L.; Song, M.-P. Cp*-Free Cobalt-Catalyzed C-H Activation/Annulations by Traceless N,O-Bidentate Directing Group: Access to Isoquinolines. Org. Lett 2019, 21(8), 2863–2866. DOI: 10.1021/acs.orglett.9b00866.
  • Deshmukh, D. S.; Gangwar, N.; Bhanage, B. M. N-Tosylhydrazone as an Oxidizing Directing Group for the Redox-Neutral Access to Isoquinolines via Cp*Co(III)-Catalyzed C-H/N-N Activation. J. Indian Chem. Soc. 2021, 98(2), 100001. DOI: 10.1016/j.jics.2021.100001.
  • Tian, C.; Massignan, L.; Meyer, T. H.; Ackermann, L. Electrochemical C-H/N-H Activation by Water-Tolerant Cobalt Catalysis at Room Temperature. Angew. Chem. Int. Ed 2018, 57(9), 2383–2387. DOI: 10.1002/anie.201712647.
  • Meyer, T. H.; Oliveira, J. C. A.; Sau, S. C.; Ang, N. W. J.; Ackermann, L. Electrooxidative Allene Annulations by Mild Cobalt-Catalyzed C-H Activation. ACS Catal 2018, 8(10), 9140–9147. DOI: 10.1021/acscatal.8b03066.
  • Mei, R.; Sauermann, N.; Oliveira, J. C. A.; Ackermann, L. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes. J. Am. Chem. Soc 2018, 140(25), 7913–7921. DOI: 10.1021/jacs.8b03521.
  • Mei, R.; Fang, X.; He, L.; Sun, J.; Zou, L.; Ma, W.; Ackermann, L. Cobaltaelectro-Catalyzed Oxidative Allene Annulation by Electro-Removable Hydrazides. Chem. Commun 2020, 56(9), 1393–1396. DOI: 10.1039/C9CC09076B.
  • Cao, Y.; Yuan, Y.; Lin, Y.; Jiang, X.; Weng, Y.; Wang, T.; Bu, F.; Zeng, L.; Lei, A. Cobalt Catalyzed Electrochemical [4 + 2] Annulation for the Synthesis of Sultams. Green Chem 2020, 22(5), 1548–1552. DOI: 10.1039/D0GC00289E.
  • Kalsi, D.; Dutta, S.; Barsu, N.; Rueping, M.; Sundararaju, B. Room-Temperature C-H Bond Functionalization by Merging Cobalt and Photoredox Catalysis. ACS Catal 2018, 8(9), 8115–8120. DOI: 10.1021/acscatal.8b02118.
  • Chavan, L. N.; Gollapelli, K. K.; Chegondi, R.; Pawar, A. B. Cp*Co(III)-Catalyzed C-H Functionalization Cascade of N-Methoxyamides with Alkynedione for the Synthesis of Indolizidines. Org. Lett 2017, 19(8), 2186–2189. DOI: 10.1021/acs.orglett.7b00904.
  • Grigorjeva, L.; Daugulis, O. Cobalt-Catalyzed, Aminoquinoline-Directed Coupling of sp2 C-H Bonds with Alkenes. Org. Lett 2014, 16(17), 4684–4687. DOI: 10.1021/ol502005g.
  • Kalsi, D.; Barsu, N.; Chakrabarti, S.; Dahiya, P.; Rueping, M.; Sundararaju, B. C-H and N-H Bond Annulation of Aryl Amides with Unactivated Olefins by Merging Cobalt(III) and Photoredox Catalysis. Chem. Commun 2019, 55(77), 11626–11629. DOI: 10.1039/C9CC05744G.
  • Ozols, K.; Jang, Y. S.; Cramer, N. Chiral Cyclopentadienyl Cobalt(III) Complexes Enable Highly Enantioselective 3d-Metal-Catalyzed C-H Functionalizations. J. Am. Chem. Soc 2019, 141(14), 5675–5680. DOI: 10.1021/jacs.9b02569.
  • Choi, J., and Goldman, A. S. Ir-Catalyzed Functionalization of C-H Bonds. Iridium Catal 2011, 34, 139–167. Springer
  • Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Mild Metal-Catalyzed C-H Activation: Examples and Concepts. Chem. Soc. Rev 2016, 45(10), 2900–2936. DOI: 10.1039/C6CS00075D.
  • Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. Mechanism of the Mild Functionalization of Arenes by Diboron Reagents Catalyzed by Iridium Complexes. Intermediacy and Chemistry of Bipyridine-Ligated Iridium Trisboryl Complexes. J. Am. Chem. Soc 2005, 127(41), 14263–14278. DOI: 10.1021/ja053433g.
  • Zhu, F.; Li, Y.; Wang, Z.; Wu, X. F. Iridium-Catalyzed Carbonylative Synthesis of Halogen-Containing Quinolin-2(1H)-ones from Internal Alkynes and Simple Anilines. Adv. Synth. Catal 2016, 358(21), 3350–3354. DOI: 10.1002/adsc.201600680.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.