Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 5, 1983 - Issue 2
4
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Mathematical Model of Synaptic Facilitation and Depression During and Following Repetitive Stimulation

Pages 45-78 | Published online: 22 Jul 2016

References

  • Akert, K., Pfenninger, K., Sandri, C., Moor, H. (1972). Freeze etching and cytochemistry of vesicles and membrane complexes in synapses of the central nervous system. In G. Pappas, D.P. Purpura (eds.): Structure and Function of Synapses (pp. 67–86). New York: Raven Press.
  • Auerbach, A.A. (1972). Transmitter release at chemical synapses. In G. Pappas, D.P. Purpura (eds.): Struciure and Function of Synapses (pp. 137–159). New York: Raven Press.
  • Bennett, M.R., Fisher, C. (1977). The effect of calcium ions on the binomial parameters that control acetylcholine release during trains of nerve impulses at amphibian neuromuscular synapses. J. Physiol. 271 :673–698.
  • Bennett, M.R., McLachlan, E.M. (1972a). An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals. J. Physiol. (London) 221:657–668.
  • Bennett, M.R., McLachlan, E.M. (1972b). An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals. J. Physiol. (London) 221:669–682.
  • Birks, R.I., Fitch, S.J.G. (1974). Storage and release of acetylcholine in a sympathetic ganglion. J. Physiol. (London) 240: 125–134.
  • Birks, R.I., MacIntosh, F.C. (1961). Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39:787–827.
  • Bourdois, P.S., McCandless, D.L., MacIntosh, F.C. (1970). A prolonged after-effect of high frequency stimulation in a cholinesterase pathway. Proc. Can. Fed. Biol. Soc. 13:148–162.
  • Bourdois, P.S., McCandless, D.L., MacIntosh, F.C. (1975). A prolonged after-effect of intense synaptic activity on acetylcholine in a sympathetic ganglion. Can. J. Physiol. Pharmacol. 53: 155–165.
  • Bowden, R.E.M., Duchen, L.W. (1976). The anatomy and pathology of the neuromuscular junction. In E. Zaimis (ed.): Handbook of Experimental Pharmacology, Volume 42: Neuromuscular Junction (pp. 23–98). New York: Springer-Verlag.
  • Brown, K.M. (1970). Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximations. IBM Philadelphia Scientific Center Technical Report, no. 320–2294.
  • Capek, R., Esplin, B. (1977). Homosynaptic depression and transmitter turnover in spinal monosynaptic pathway. J. Neurophysiol. 40:95–105.
  • Capek, R., Esplin, D.W., Salehmoghaddam, S. (1971). Rates of transmitter turnover at the frog neuromuscular junction estimated by electrophysiological techniques. J. Neurophysiol. 34:831–842.
  • Collier, B. (1969). The preferential release of newly synthesized transmitter by a sympathetic ganglion. J. Physiol. 205:341–352.
  • Collier, B., MacIntosh, F.C. (1969). The source of choline for acetylcholine synthesis in a sympathetic ganglion. Can. J. Physiol. Pharmacol. 47: 127–135.
  • Curtis, D.R., Eccles, J.C. (1960). Synaptic action during and after repetitive stimulation. J. Physiol. (London) 150:374–398.
  • Del Castillo, J., Katz, B. (1954). Quantal components of the endplate potential. J. Physiol. (London) 124:560–573.
  • Del Castillo, J., Katz, B. (1956). Biophysical aspects of neuromuscular transmission. Prog. Biophys. Biophys. Chem. 6: 121–170.
  • Eccles, J.C., Hubbard, J.I., Oscarson, O. (1961). Intracellular recording from cells of the ventral spinocerebellar tract. J. Physiol. (London) 158:485–516.
  • Elmquist, D., Quastel, D.M.S. (1965). A quantitative study of the endplate potentials in isolated human muscle. J. Physiol. (London) 178:505–529.
  • Fatt, P., Katz, B. (1952). Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117: 109–128.
  • Friesen, A.D.J., Khatter, J.C. (1971). The effect of preganglionic stimulation on the acetylcholine and choline content of a sympathetic ganglion. Can. J. Physiol. Pharmacol. 49 :375–381.
  • Friesen, A.D.J., MacConaill, M. (1967). Choline and acetylcholine metabolism in a sympathetic ganglion. Proc. Can. Fed. Biol. Soc. 10:30–42.
  • Ginsborg, B.L., Jenkinson, D.H. (1976). Transmission of impulses from nerve to muscle. In E. Zaimis (ed.): Handbook of Experimental Pharmacology, Volume 42: Neuromuscular Junction (pp. 229–364). New York: Springer-Verlag.
  • Heuser, J.E. (1974). A possible origin of the “giant” spontaneous potentials that occur after prolonged transmitter release at frog neuromuscular junctions. J. Physiol. (London) 239: 106–108.
  • Heuser, J.E., Reese, T.S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57:315–344.
  • Heuser, J.E., Reese, T.S. (1974). Morphology of synaptic vesicle discharge and reformation at the frog neuromuscular junction. In: M.V.L. Bennett (ed.): Synaptic Transmission and Neuronal Interaction (pp. 59–77). New York: Raven Press.
  • Horn, G. (1971). Habituation and memory. In G. Adam (ed.): Biology of Memory (pp. 259–263). New York: Plenum Press.
  • Hubbard, J.I. (1963). Repetitive stimulation at the mammalian neuromuscular junction, and the mobilization of transmitter. J. Physiol. 169: 641–662.
  • Hubbard, J.I. (1970). Mechanism of transmitter release. Prog. Biophys. Mol. Biol. 21 :33–124.
  • Hubbard, J.I. (1971). Mechanism of transmitter release from nerve terminals. Ann. N.Y. Acad. Sci. 183:131–147.
  • Hubbard, J.I., Kwanbunbumpen, S. (1968). Evidence for the vesicle hypothesis. J. Physiol. (London) 194:407–421.
  • Hubbard, J.I., Jones, S.F., Landau, E.M. (1968a). On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals. J. Physiol. (London) 194:355–380.
  • Hubbard, J.I., Jones, S.F., Landau, E.M. (1968b). On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses. J. Physiol. (London) 196:75–90.
  • Jenkinson, D .H. (1957). The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J. Physiol. 138 :434–444.
  • Jones, D.G. (1975). Synapses and Synaptosomes: Morphological Aspects. London: Chapman and Hall.
  • Jones, S.F., Kwanbunbumpen, S. (1970a). The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction. J. Physiol. 207: 31–60.
  • Jones, S.F., Kwanbunbumpen, S. (1970b). Some effects of nerve stimulation and hemicholinium on quantal transmitter release at the mammalian neuromuscular junction. J. Physiol. 207: 51–61.
  • Katz, B., Miledi, R. (1965). The effect of calcium on acetylcholine release from motor nerve terminals. Proc. Roy. Soc. B 161 :496–503.
  • Katz, B., Miledi, R. (1968). The role of calcium in neuromuscular facilitation. J. Physiol. 195:481–492.
  • Korneliussen, H. (1972). Ultrastructure of normal and stimulated endplates. Zeitschr. Zellforsch. 130:28–57.
  • Liley, A.W. (1956). The quanta! components of the mammalian endplate potential. J. Physiol. 133: 571–587.
  • Liley, A.W., North, K.A.K. (1953). An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junctiqn. J. Neurophysiol. 16:509–527.
  • MacIntosh, F.C., Collier, B. (1976). Neurochemistry of cholinergic terminals. In E. Zaimis (ed.): Handbook of Experimental Pharmacology, Volume 42: Neuromuscular Junction (pp. 99–228). New York: Springer-Verlag.
  • Maeno, T. (1969). Analysis of mobilization and demobilization processes in neuromuscular transmission in the frog. J. Neurophysiol. 32:793–800.
  • Maeno, T., Edwards, C. (1969). Neuromuscular facilitation with low-frequency stimulation and effects of some drugs. J. Neurophysiol. 32:785–792.
  • Magleby, K.L. (1973a). The effect of repetitive stimulation on facilitation of transmitter release at the frog neuromuscular junction. J. Physiol. 234:327–352.
  • Magleby, K.L. (1973b). The effect of tetanic and post-tetanic potentiation on facilitation of transmitter release at the frog neuromuscular junction. J. Physiol. 234: 353–371.
  • Mallart, A., Martin, A.R. (1967). An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J. Physiol. 196: 593:604.
  • Martin, A.R. (1966). Quantal nature of synaptic transmission. Physiol. Rev. 46:51–66.
  • Miledi, R., Thies, R. (1971). Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions. J. Physiol. (London) 212:245–257.
  • Potter, L.T. (1970). Synthesis, storage and release of [14C] acetylcholine in isolated rat diaphragm muscles. J. Physiol. (London) 206:145–166.
  • Rahamimoff, R. (1968). A dual effect of calcium ions on neuromuscular facilitation. J. Physiol. 195:471–480.
  • Richards, C.D. (1968). Potentiation and depression of synaptic transmission in the olfactory cortex of the guinea-pig. J. Physiol. (London) 195: 481–492.
  • Rosenthal, J. (1969). Post-tetanic potentiation at the neuromuscular junction of the frog. J. Physiol. 203: 121–133.
  • Schlapfer, W., Tremblay, J.P., Woodson, P.B.S., Barondes, S.H. (1976). Frequency facilitation and post-tetanic potentiation of a unitary synaptic potential in Aplysia California are limited by different processes. Brain Res. 109: 1–20.
  • Stjarne, L. (1976). Basic mechanisms and local feedback control of secretion of adrenergic and cholinergic neurotransmitters. In L.L. Iverson, S.D. Iverson, S.H. Snyder (ed.): Handbook of Psychopharmacology, Volume 6 (pp. 179–233). New York: Plenum.
  • Thies, R.E. (1965). Neuromuscular depression and the apparent depletion of transmitter in mammalian muscle. J. Neurophysiol. 28:427–442.
  • Zaimis, E. (1976). The neuromuscular junction: areas of uncertainty, In E. Zaimis (ed.): Handbook of Experimental Pharmacology, Volume 42: Neuromuscular Junction (pp. 1–22). New York: Springer-Verlag.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.