Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 38, 2016 - Issue 12
1,161
Views
55
CrossRef citations to date
0
Altmetric
Review

Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease

, , &

References

  • Gautam RK, Tiwari PC, Mansoori AN, et al. Parkinson’s disease – a molecular approach. J Pharm Res. 2012:588–593.
  • Moore DJ, West AB, Dawson VL, et al. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87.10.1146/annurev.neuro.28.061604.135718
  • Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003;991:1–14.
  • Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet. 2006;7:306–18.10.1038/nrg1831
  • https://www.atrainceu.com/course-module/1874200-080_antiparkinson-strategies-module-03.
  • Uhl GR, Hedreen JC, Price DL. Parkinson’s disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology. 1985;35:1215–15.10.1212/WNL.35.8.1215
  • Tanner CM. Is the cause of Parkinson’s disease environmental or hereditary? Evidence from twin studies. Adv Neurol. 2003;91:133–42.
  • Mizuno Y, Hattori N, Mori H, et al. Parkin and Parkinson’s disease. Curr Opin Neurol. 2001;14:477–82.10.1097/00019052-200108000-00008
  • Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157:1015–22.10.1093/aje/kwg068
  • Bonifati V, Rizzu P, Squitieri F, et al. DJ-1(PARK7), a novel gene for autosomal recessive, early onset Parkinsonism. Neurol Sci. 2003;24:159–60.10.1007/s10072-003-0108-0
  • Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304:1158–60.10.1126/science.1096284
  • Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.10.1126/science.276.5321.2045
  • Paisán-Ruı́z C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44:595–600.10.1016/j.neuron.2004.10.023
  • Zimprich A, Müller-Myhsok B, Farrer M, et al. The PARK8 locus in autosomal dominant Parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am J Hum Genet. 2004;74:11–9.10.1086/380647
  • Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989;1(8649):1269.10.1016/S0140-6736(89)92366-0
  • Schapira AH. Evidence for mitochondrial dysfunction in Parkinson’s disease – a critical appraisal. Mov Disord. 1994;9:125–38.
  • Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology. 1996;47:161S–70S.10.1212/WNL.47.6_Suppl_3.161S
  • Sherer TB, Betarbet R, Greenamyre JT. Environment, mitochondria, and Parkinson’s disease. Neuroscientist. 2002;8:192–7.
  • Keeney PM, Xie J, Capaldi RA, et al. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci. 2006;26:5256–64.10.1523/JNEUROSCI.0984-06.2006
  • Schapira AH. Mitochondrial disease. Lancet. 2006;368:70–82.10.1016/S0140-6736(06)68970-8
  • Sherwood CC, Stimpson CD, Raghanti MA, et al. Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA. 2006;103:13606–11.10.1073/pnas.0605843103
  • Vila M, Jackson-Lewis V, Guégan C, et al. The role of glial cells in Parkinson’s disease. Curr Opin Neurol. 2001;14:483–9.10.1097/00019052-200108000-00009
  • http://cobbersonthebrain.areavoices.com/2014/11/05/beyond-the-shakes-brain-pathology-of-parkinsons-disease-and-non-motor-symptoms/.
  • Lindqvist D, Kaufman E, Brundin L, et al. Non-motor symptoms in patients with Parkinson’s disease – correlations with inflammatory cytokines in serum. PLoS ONE. 2012;7:e47387.10.1371/journal.pone.0047387
  • Mogi M, Harada M, Kondo T, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett. 1994;180:147–50.10.1016/0304-3940(94)90508-8
  • McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord. 2008;23:474–83.10.1002/(ISSN)1531-8257
  • Zeng KW, Zhao MB, Ma ZZ, et al. Protosappanin A inhibits oxidative and nitrative stress via interfering the interaction of transmembrane protein CD14 with Toll-like receptor-4 in lipopolysaccharide-induced BV-2 microglia. Int Immunopharmacol. 2012;14:558–69.10.1016/j.intimp.2012.09.004
  • Bové J, Perier C. Neurotoxin-based models of Parkinson’s disease. Neuroscience. 2012;211:51–76.10.1016/j.neuroscience.2011.10.057
  • Pal R, Chaudhary MJ, Tiwari PC, et al. Protective role of theophylline and their interaction with nitric oxide (NO) in adjuvant-induced rheumatoid arthritis in rats. Int Immunopharmacol. 2015;29:854–62.10.1016/j.intimp.2015.08.031
  • Pal R, Gulati K, Banerjee BD, et al. Pharmacological and biochemical studies on the protective effects of melatonin during stress-induced behavioral and immunological changes in relation to oxidative stress in rats. Can J Physiol Pharmacol. 2016;94:296–301.10.1139/cjpp-2015-0240
  • Jung CH, Seo M, Otto NM, et al. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy. 2011;7:1212–21.10.4161/auto.7.10.16660
  • Forno LS, DeLanney LE, Irwin I, et al. Astrocytes and Parkinson’s disease. Prog brain res. 1992;94:429–36.10.1016/S0079-6123(08)61770-7
  • Damier P, Hirsch EC, Zhang P, et al. Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience. 1993;52:1–6.10.1016/0306-4522(93)90175-F
  • Teismann P, Schulz JB. Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res. 2004;318:149–61.10.1007/s00441-004-0944-0
  • Saura J, Parés M, Bové J, et al. Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem. 2003;85:651–61.10.1046/j.1471-4159.2003.01676.x
  • Kanaan NM, Kordower JH, Collier TJ. Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys. Neurobiol Aging. 2010;31:937–52.10.1016/j.neurobiolaging.2008.07.006
  • Kanaan NM, Kordower JH, Collier TJ. Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. Glia. 2008;56:1199–214.10.1002/glia.20690
  • Chao Y, Wong SC, Tan EK. Evidence of inflammatory system involvement in Parkinson’s disease. BioMed Res Int. 2014;2014:308654.
  • Pal R, Ahmed T, Kumar V, et al. Protective effects of different antioxidants against endosulfan-induced oxidative stress and immunotoxicity in albino rats. Indian J Exp Biol. 2009;47:723–9.
  • Pal R, Gulati K, Chakraborti A, et al. Role of free radicals in stress-induced neurobehavioural changes in rats. Indian J Exp Biol. 2006;44:816–20.
  • Pal R, Gulati K, Banerjee B, et al. Pharmacological and biochemical studies on the role of free radicals during stress-induced immunomodulation in rats. Int Immunopharmacol. 2011;11:1680–4.10.1016/j.intimp.2011.05.026
  • Dobbs RJ, Charlett A, Purkiss AG, et al. Association of circulating TNF-alpha and IL-6 with ageing and Parkinsonism. Acta Neurol Scand. 1999;100:34–41.10.1111/ane.1999.100.issue-1
  • Reale M, Greig NH, Kamal MA. Peripheral chemo-cytokine profiles in Alzheimer’s and Parkinson’s diseases. Mini Rev Med Chem. 2009;9:1229–41.10.2174/138955709789055199
  • Tang P, Chong L, Li X, et al. Correlation between serum RANTES levels and the severity of Parkinson’s disease. Oxid Med Cell Longev. 2014;2014:208408.
  • Hunot S, Boissière F, Faucheux B, et al. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience. 1996;72:355–63.10.1016/0306-4522(95)00578-1
  • Orr CF, Rowe DB, Mizuno Y, et al. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain J Neurol. 2005;128:2665–74.10.1093/brain/awh625
  • Wilms H, Zecca L, Rosenstiel P, et al. Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des. 2007;13:1925–8.10.2174/138161207780858429
  • McGeer PL, McGeer EG. The alpha-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp Neurol. 2008;212:235–8.10.1016/j.expneurol.2008.04.008
  • Pott Godoy MC, Tarelli R, Ferrari CC, et al. Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain J Neurol. 2008;131:1880–94.10.1093/brain/awn101
  • Liu M, Bing G. Lipopolysaccharide animal models for Parkinson’s disease. Parkinson’s Dis. 2011;2011:327089.
  • Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 2011;26:6–17.10.1002/mds.23455
  • Dzamko N, Geczy CL, Halliday GM. Inflammation is genetically implicated in Parkinson’s disease. Neuroscience. 2015;302:89–102. doi:10.1016/j.neuroscience.2014.10.028.
  • Iannaccone S, Cerami C, Alessio M, et al. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:47–52.10.1016/j.parkreldis.2012.07.002
  • Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 2005;57:168–75.10.1002/(ISSN)1531-8249
  • Gillardon F, Schmid R, Draheim H. Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience. 2012;208:41–8.10.1016/j.neuroscience.2012.02.001
  • Moehle MS, Webber PJ, Tse T, et al. LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci. 2012;32:1602–11.10.1523/JNEUROSCI.5601-11.2012
  • Harms AS, Cao S, Rowse AL, et al. MHCII is required for alpha-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci. 2013;33:9592–600.10.1523/JNEUROSCI.5610-12.2013
  • Su X, Federoff HJ. Immune responses in Parkinson’s disease: interplay between central and peripheral immune systems. BioMed Res Int. 2014;2014:275178.
  • Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.10.1038/nrn2038
  • Stolp HB, Dziegielewska KM. Review: role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol. 2009;35:132–46.10.1111/nan.2009.35.issue-2
  • Cabezas R, Avila M, Gonzalez J, et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci. 2014;8:1–11.
  • Monahan AJ, Warren M, Carvey PM. Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: an autoimmune hypothesis. Cell transplant. 2008;17:363–72.
  • Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE. 2011;6:e28032.10.1371/journal.pone.0028032
  • Devos D, Lebouvier T, Lardeux B, et al. Colonic inflammation in Parkinson’s disease. Neurobiol Dis. 2013;50:42–8.10.1016/j.nbd.2012.09.007
  • Braak H, Rub U, Gai WP, et al. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003;110:517–36.10.1007/s00702-002-0808-2
  • Sharkey KA, Savidge TC. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Autono Neurosci Basic Clin. 2014;181:94–106.10.1016/j.autneu.2013.12.006
  • Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: the dual hit theory revisited. Ann N Y Acad Sci. 2009;1170:615–22.10.1111/j.1749-6632.2009.04365.x
  • Ahmed I, Tamouza R, Delord M, et al. Association between Parkinson’s disease and the HLA-DRB1 locus. Mov Disord. 2012;27:1104–10.10.1002/mds.25035
  • Wissemann WT, Hill-Burns EM, Zabetian CP, et al. Association of Parkinson disease with structural and regulatory variants in the HLA region. Am J Hum Genet. 2013;93:984–93.10.1016/j.ajhg.2013.10.009
  • Maetzler W, Apel A, Langkamp M, et al. Comparable autoantibody serum levels against amyloid- and inflammation-associated proteins in Parkinson’s disease patients and controls. PLoS ONE. 2014;9:e88604.10.1371/journal.pone.0088604
  • Barcia C, Ros CM, Annese V, et al. ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep. 2012;2:1–13.
  • Barcia C, Bahillo A, Fernández-Villalba E, et al. Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia. 2004;46:402–9.10.1002/glia.v46:4
  • Jackson-Lewis V, Smeyne RJ. MPTP and SNpc DA neuronal vulnerability: role of dopamine, superoxide and nitric oxide in neurotoxicity. Minireview. Neurotox Res. 2005;7:193–201.10.1007/BF03036449
  • Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.10.1038/nrn2038
  • Simi A, Lerouet D, Pinteaux E, et al. Mechanisms of regulation for interleukin-1beta in neurodegenerative disease. Neuropharmacology. 2007;52:1563–9.10.1016/j.neuropharm.2007.02.011
  • Chakraborty S, Kaushik DK, Gupta M, et al. Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res. 2010;88:1615–31.
  • Singhal G, Jaehne EJ, Corrigan F, et al. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci. 2014;8:1–13.
  • Mawhinney LJ, de Vaccari Rivero JP, Dale GA, et al. Heightened inflammasome activation is linked to age-related cognitive impairment in Fischer 344 rats. BMC Neurosci. 2011;12:1–10.10.1186/1471-2202-12-123
  • Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev. 2014;15:6–15.10.1016/j.arr.2013.12.007
  • Cribbs DH, Berchtold NC, Perreau V, et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflamm. 2012;9:1–18.
  • van de Veerdonk F, Netea M. Toll-like receptors and inflammasomes. In: Couillin I, Pétrilli V, Martinon F, eds. The Inflammasomes. Basel: Springer Basel; 2011. p. 123–32.
  • Salminen A, Ojala J, Kaarniranta K, et al. Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci. 2012;69:2999–3013.10.1007/s00018-012-0962-0
  • Salminen A, Ojala J, Kauppinen A, et al. Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol. 2009;87:181–94.10.1016/j.pneurobio.2009.01.001
  • Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10:210–5.10.1038/nri2725
  • Yan Y, Jiang W, Liu L, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 2015;160:62–73.10.1016/j.cell.2014.11.047
  • Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705–16.10.1016/0092-8674(86)90346-6
  • Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986;47:921–8.10.1016/0092-8674(86)90807-X
  • Tsoulfas G, Geller DA. NF-kappaB in transplantation: friend or foe? Transpl Infect Dis. 2001;3:212–9.10.1034/j.1399-3062.2001.30405.x
  • Roebuck KA, Carpenter LR, Lakshminarayanan V, et al. Stimulus-specific regulation of chemokine expression involves differential activation of the redox-responsive transcription factors AP-1 and NF-kappaB. J Leukoc. 1999;65:291–8.
  • Roebuck KA. Regulation of interleukin-8 gene expression. J Interf Cytok Res. 1999;19:429–38.10.1089/107999099313866
  • Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.
  • Gauss KA, Nelson-Overton LK, Siemsen DW, et al. Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha. J Leukoc Biol. 2007;82:729–41.10.1189/jlb.1206735
  • Chen CC, Manning AM. Transcriptional regulation of endothelial cell adhesion molecules: a dominant role for NF-kappa B. Agents Actions Suppl. 1995;47:135–41.
  • Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107:7–11.10.1172/JCI11830
  • Lawrence T, Fong C. The resolution of inflammation: anti-inflammatory roles for NF-kappaB. Int J Biochem Cell Biol. 2010;42:519–23.10.1016/j.biocel.2009.12.016
  • Huxford T, Ghosh G. A structural guide to proteins of the NF-kappaB signaling module. Cold Spring Harb Perspect Biol. 2009;1:a000075.
  • May MJ, Marienfeld RB, Ghosh S. Characterization of the Ikappa B-kinase NEMO binding domain. J Biol Chem. 2002;277:45992–6000.10.1074/jbc.M206494200
  • Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034.
  • Xia ZP, Chen ZJ. TRAF2: a double-edged sword? Science’s STKE : signal transduction knowledge environment. 2005;2005:pe7.
  • Neumann M, Naumann M. Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J. 2007;21:2642–54.10.1096/fj.06-7615rev
  • Brown KD, Claudio E, Siebenlist U. The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res Ther. 2008;10:1–14.10.1186/ar2457
  • Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.
  • Bakkar N, Guttridge DC. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis. Physiol Rev. 2010;90:495–511.10.1152/physrev.00040.2009
  • Pomerantz JL, Baltimore D. Two pathways to NF-kappaB. Mol Cell. 2002;10:693–5.10.1016/S1097-2765(02)00697-4
  • Yamamoto Y, Verma UN, Prajapati S, et al. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature. 2003;423:655–9.10.1038/nature01576
  • Anest V, Hanson JL, Cogswell PC, et al. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature. 2003;423:659–63.10.1038/nature01648
  • Hunot S, Brugg B, Ricard D, et al. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA. 1997;94:7531–6.10.1073/pnas.94.14.7531
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.10.1016/0003-2697(79)90738-3
  • Ryan KM, Ernst MK, Rice NR, et al. Role of NF-kappaB in p53-mediated programmed cell death. Nature. 2000;404:892–7.10.1038/35009130
  • Mogi M, Kondo T, Mizuno Y, et al. p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett. 2007;414:94–7.10.1016/j.neulet.2006.12.003
  • Peterson PK, Hu S, Salak-Johnson J, et al. Differential production of and migratory response to beta chemokines by human microglia and astrocytes. J Infect Dis. 1997;175:478–81.10.1093/infdis/175.2.478
  • Anwar MA, Basith S, Choi S. Negative regulatory approaches to the attenuation of Toll-like receptor signaling. Exp Mol Med. 2013;45:e11.10.1038/emm.2013.28
  • Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.10.1146/annurev.immunol.21.120601.141126
  • Przanowski P, Dabrowski M, Ellert-Miklaszewska A, et al. The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. J Mol Med (Berl). 2014;92:239–54.10.1007/s00109-013-1090-5
  • Tanaka S, Ishii A, Ohtaki H, et al. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflamm. 2013;10:1–11.
  • Wahl SM. Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med. 1994;180:1587–90.10.1084/jem.180.5.1587
  • Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.10.1146/annurev.immunol.16.1.137
  • Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737–40.10.1016/S0092-8674(00)81696-7
  • Abdollah S, Macias-Silva M, Tsukazaki T, et al. TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem. 1997;272:27678–85.10.1074/jbc.272.44.27678
  • Dennler S, Itoh S, Vivien D, et al. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998;17:3091–100.10.1093/emboj/17.11.3091
  • Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 1999;18:1280–91.10.1093/emboj/18.5.1280
  • Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997;89:1165–73.10.1016/S0092-8674(00)80303-7
  • Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389:631–5.
  • Bitzer M, von Gersdorff G, Liang D, et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev. 2000;14:187–97.
  • Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature. 1999;397:710–3.
  • Zhu Y, Yang GY, Ahlemeyer B, et al. Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci. 2002;22:3898–909.
  • Prehn JH, Bindokas VP, Marcuccilli CJ, et al. Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons. Proc Natl Acad Sci USA. 1994;91:12599–603.10.1073/pnas.91.26.12599
  • Wyss-Coray T, Borrow P, Brooker MJ, et al. Astroglial overproduction of TGF-beta 1 enhances inflammatory central nervous system disease in transgenic mice. J Neuroimmunol. 1997;77:45–50.10.1016/S0165-5728(97)00049-0
  • Unsicker K, Krieglstein K. Co-activation of TGF-ß and cytokine signaling pathways are required for neurotrophic functions. Cytokine Growth Factor Rev. 2000;11:97–102.10.1016/S1359-6101(99)00033-7
  • Unsicker K, Krieglstein K. TGF-betas and their roles in the regulation of neuron survival. Adv Exp Med Biol. 2002;513:353–74.
  • Dowling RJ, Topisirovic I, Fonseca BD, et al. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010;1804:433–9.10.1016/j.bbapap.2009.12.001
  • Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Cell Neurosci. 2014;7:1–12.
  • Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal. 2009;21:827–35.10.1016/j.cellsig.2009.01.012
  • Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75.10.1016/j.tins.2009.11.003
  • Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122:3589–94.10.1242/jcs.051011
  • Neufeld TP. TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol. 2010;22:157–68.10.1016/j.ceb.2009.11.005
  • Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.10.1101/gad.1256804
  • Canal M, Romani-Aumedes J, Martin-Flores N, et al. RTP801/REDD1: a stress coping regulator that turns into a troublemaker in neurodegenerative disorders. Front Cell Neurosci. 2014;8:1–8.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.10.1038/nri1391
  • Banerjee A, Gerondakis S. Coordinating TLR-activated signaling pathways in cells of the immune system. Immunol Cell Biol. 2007;85:420–4.10.1038/sj.icb.7100098
  • Wagner H. Endogenous TLR ligands and autoimmunity. Adv Immunol. 2006;91:159–73.10.1016/S0065-2776(06)91004-9
  • Beraud D, Twomey M, Bloom B, et al. Alpha-synuclein alters toll-like receptor expression. Front neurosci. 2011;5:89–102.
  • Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–3.10.1126/science.1087262
  • Li G, Pleasure SJ. Morphogenesis of the dentate gyrus: what we are learning from mouse mutants. Dev Neurosci. 2005;27:93–9.10.1159/000085980
  • Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci. 2005;6:351–62.10.1038/nrn1665
  • Buechling T, Boutros M. Wnt signaling signaling at and above the receptor level. Curr Top Dev Biol. 2011;97:21–53.10.1016/B978-0-12-385975-4.00008-5
  • Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11:3286–305.10.1101/gad.11.24.3286
  • Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.
  • Castelo-Branco G, Wagner J, Rodriguez FJ, et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA. 2003;100:12747–52.10.1073/pnas.1534900100
  • Andersson ER, Salto C, Villaescusa JC, et al. Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proc Natl Acad Sci USA. 2013;110:E602–10.10.1073/pnas.1208524110
  • Parish CL, Castelo-Branco G, Rawal N, et al. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J Clin Invest. 2008;118:149–60.10.1172/JCI32273
  • Kitagawa H, Ray WJ, Glantschnig H, et al. A regulatory circuit mediating convergence between Nurr1 transcriptional regulation and Wnt signaling. Mol Cell Biol. 2007;27:7486–96.10.1128/MCB.00409-07
  • Ohnuki T, Nakamura A, Okuyama S, et al. Gene expression profiling in progressively MPTP-lesioned macaques reveals molecular pathways associated with sporadic Parkinson’s disease. Brain Res. 2010;1346:26–42.10.1016/j.brainres.2010.05.066
  • L’Episcopo F, Tirolo C, Testa N, et al. Reactive astrocytes and Wnt/beta-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiol Dis. 2011;41:508–27.10.1016/j.nbd.2010.10.023
  • Gollamudi S, Johri A, Calingasan NY, et al. Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson’s disease. PLoS ONE. 2012;7:e36191.10.1371/journal.pone.0036191
  • Dun Y, Li G, Yang Y, et al. Inhibition of the canonical Wnt pathway by Dickkopf-1 contributes to the neurodegeneration in 6-OHDA-lesioned rats. Neurosci Lett. 2012;525:83–8.10.1016/j.neulet.2012.07.030
  • Wei L, Sun C, Lei M, et al. Activation of Wnt/beta-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity. J Mol Neurosci. 2013;49:105–15.10.1007/s12031-012-9900-8
  • Krebs DL, Hilton DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells. 2001;19:378–87.10.1634/stemcells.19-5-378
  • Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev Immunol. 2000;18:143–64.10.1146/annurev.immunol.18.1.143
  • Song MM, Shuai K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but Not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem. 1998;273:35056–62.10.1074/jbc.273.52.35056
  • Crespo A, Filla MB, Russell SW, et al. Indirect induction of suppressor of cytokine signalling-1 in macrophages stimulated with bacterial lipopolysaccharide: partial role of autocrine/paracrine interferon-alpha/beta. Biochem J. 2000;349:99–104.10.1042/bj3490099
  • Ji KA, Yang MS, Jou I, et al. Thrombin induces expression of cytokine-induced SH2 protein (CIS) in rat brain astrocytes: involvement of phospholipase A2, cyclooxygenase, and lipoxygenase. Glia. 2004;48:102–11.10.1002/(ISSN)1098-1136
  • Yang MS, Lee J, Ji KA, et al. Thrombin induces suppressor of cytokine signaling 3 expression in brain microglia via protein kinase Cdelta activation. Biochem Biophys Res Commun. 2004;317:811–6.10.1016/j.bbrc.2004.03.118
  • Dalpke AH, Opper S, Zimmermann S, et al. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J Immunol. 2001;166:7082–9.10.4049/jimmunol.166.12.7082
  • Kim JH, Choi DJ, Jeong HK, et al. DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: a novel anti-inflammatory function of DJ-1. Neurobiol Dis. 2013;60:1–10.10.1016/j.nbd.2013.08.007
  • He Y, Casaccia-Bonnefil P. The Yin and Yang of YY1 in the nervous system. J Neurochem. 2008;106:1493–502.10.1111/jnc.2008.106.issue-4
  • Hyde-DeRuyscher RP, Jennings E, Shenk T. DNA binding sites for the transcriptional activator/repressor YY1. Nucleic Acids Res. 1995;23:4457–65.10.1093/nar/23.21.4457
  • Yant SR, Zhu W, Millinoff D, et al. High affinity YY1 binding motifs: identification of two core types (ACAT and CCAT) and distribution of potential binding sites within the human beta globin cluster. Nucleic Acids Res. 1995;23:4353–62.10.1093/nar/23.21.4353
  • Shi Y, Lee JS, Galvin KM. Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta. 1997;1332:F49–66.
  • Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol. 2001;21:5979–91.10.1128/MCB.21.17.5979-5991.2001
  • Brown JL, Mucci D, Whiteley M, et al. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell. 1998;1:1057–64.10.1016/S1097-2765(00)80106-9
  • Wang L, Brown JL, Cao R, et al. Hierarchical recruitment of Polycomb group silencing complexes. Mol Cell. 2004;14:637–46.10.1016/j.molcel.2004.05.009
  • Bhattacharyya S, Ratajczak CK, Vogt SK, et al. TAK1 targeting by glucocorticoids determines JNK and IkappaB regulation in Toll-like receptor-stimulated macrophages. Blood. 2010;115:1921–31.10.1182/blood-2009-06-224782
  • Hicks AA, Pétursson H, Jónsson T, et al. A susceptibility gene for late-onset idiopathic Parkinson’s disease. Ann Neurol. 2002;52:549–55.10.1002/ana.v52:5
  • Betarbet R, Anderson LR, Gearing M, et al. Fas-associated factor 1 and Parkinson’s disease. Neurobiol Dis. 2008;31:309–15.10.1016/j.nbd.2008.05.006
  • Yu YT, Breitbart RE, Smoot LB, et al. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992;6:1783–98.10.1101/gad.6.9.1783
  • Leifer D, Krainc D, Yu YT, et al. MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc Natl Acad Sci USA. 1993;90:1546–50.10.1073/pnas.90.4.1546
  • Mao Z, Bonni A, Xia F, et al. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 1999;286:785–90.10.1126/science.286.5440.785
  • Gong X, Tang X, Wiedmann M, et al. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron. 2003;38:33–46.10.1016/S0896-6273(03)00191-0
  • Smith PD, Mount MP, Shree R, et al. Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci. 2006;26:440–7.10.1523/JNEUROSCI.2875-05.2006
  • Yang Q, She H, Gearing M, et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science. 2009;323:124–7.10.1126/science.1166088
  • Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997;386:296–9.10.1038/386296a0
  • Liu L, Cavanaugh JE, Wang Y, et al. ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc Natl Acad Sci USA. 2003;100:8532–7.10.1073/pnas.1332804100
  • Wang X, She H, Mao Z. Phosphorylation of neuronal survival factor MEF2D by glycogen synthase kinase 3beta in neuronal apoptosis. J Biol Chem. 2009;284:32619–26.10.1074/jbc.M109.067785
  • Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7.10.1016/j.neuron.2004.11.005
  • Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17.10.1042/BJ20100323
  • Gaestel M. MAPKAP kinases – MKs – two’s company, three’s a crowd. Nat Rev Mol Cell Biol. 2006;7:120–30.10.1038/nrm1834
  • Yang Y, Liu H, Yao X. Understanding the molecular basis of MK2-p38alpha signaling complex assembly: insights into protein–protein interaction by molecular dynamics and free energy studies. Mol BioSyst. 2012;8:2106–18.10.1039/c2mb25042j
  • Harper SJ, LoGrasso P. Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal. 2001;13:299–310.10.1016/S0898-6568(01)00148-6
  • Choi SJ, Paek HJ, Yu J. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-kappaB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells. Int J Nanomed. 2015;10:3217–29.10.2147/IJN
  • Kotlyarov A, Neininger A, Schubert C, et al. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol. 1999;1:94–7.
  • Fyhrquist N, Matikainen S, Lauerma A. MK2 signaling: lessons on tissue specificity in modulation of inflammation. J Invest Dermatol. 2010;130:342–4.10.1038/jid.2009.372
  • Neininger A, Kontoyiannis D, Kotlyarov A, et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem. 2002;277:3065–8.10.1074/jbc.C100685200
  • Culbert AA, Skaper SD, Howlett DR, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem. 2006;281:23658–67.10.1074/jbc.M513646200
  • Krejci P, Prochazkova J, Bryja V, et al. Molecular pathology of the fibroblast growth factor family. Hum Mutat. 2009;30:1245–55.10.1002/humu.v30:9
  • Murase S, McKay RD. A specific survival response in dopamine neurons at most risk in Parkinson’s disease. J Neurosci. 2006;26:9750–60.10.1523/JNEUROSCI.2745-06.2006
  • Ohmachi S, Mikami T, Konishi M, et al. Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. J Neurosci Res. 2003;72:436–43.10.1002/(ISSN)1097-4547
  • Ohmachi S, Watanabe Y, Mikami T, et al. FGF-20, a novel neurotrophic factor, preferentially expressed in the substantia nigra pars compacta of rat brain. Biochem Biophys Res Commun. 2000;277:355–60.10.1006/bbrc.2000.3675
  • Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.10.1038/42166
  • Wang G, van der Walt JM, Mayhew G, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet. 2008;82:283–9.10.1016/j.ajhg.2007.09.021
  • van der Walt JM, Noureddine MA, Kittappa R, et al. Fibroblast growth factor 20 Polymorphisms and Haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet. 2004;74:1121–7.10.1086/421052
  • Satake W, Mizuta I, Suzuki S, et al. Fibroblast growth factor 20 gene and Parkinson’s disease in the Japanese population. NeuroReport. 2007;18:937–40.10.1097/WNR.0b013e328133265b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.