Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 39, 2017 - Issue 7
347
Views
9
CrossRef citations to date
0
Altmetric
Original Research Paper

Protective action of B1R antagonist against cerebral ischemia-reperfusion injury through suppressing miR-200c expression of Microglia-derived microvesicles

, , , , &
Pages 612-620 | Received 12 May 2016, Accepted 13 Dec 2016, Published online: 11 Apr 2017

References

  • Cheripelli BK, Huang X, MacIsaac R, et al. Interaction of recanalization, intracerebral hemorrhage, and cerebral edema after intravenous thrombolysis. Stroke. 2016;47:1761–1767.
  • Shi Y, Zhang L, Pu H, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523.10.1038/ncomms10523
  • Xian W, Wu Y, Xiong W, et al. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response. Biochem Biophys Res Commun. 2016;472:175–181.10.1016/j.bbrc.2016.02.090
  • Yao Y, Chen L, Xiao J, et al. Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation. Int J Mol Sci. 2014;15:20913–20926.10.3390/ijms151120913
  • Baintner K. Contribution of the kallikrein/kinin system to the mediation of ConA-Induced inflammatory ascites. Acta Microbiol Immunol Hung. 2016;63:131–137.10.1556/030.63.2016.1.10
  • Zhang R, Ran H, Peng L, et al. Farnesoid X receptor regulates vasoreactivity via Angiotensin II type 2 receptor and the kallikrein-kinin system in vascular endothelial cells. Clin Exp Pharmacol Physiol. 2016;43:327–334.10.1111/cep.2016.43.issue-3
  • Ponitz V, Govers-Riemslag JW, Brugger-Andersen T, et al. Inhibitor complexes of the plasma kallikrein-kinin system and outcome prediction in patients following admission for chest pain. J Thromb Haemost. 2009;7:1231–1233.10.1111/jth.2009.7.issue-7
  • Albert-Weissenberger C, Siren AL, Kleinschnitz C. Ischemic stroke and traumatic brain injury: The role of the kallikrein–kinin system. Prog Neurobiol. 2013;101–102:65–82.10.1016/j.pneurobio.2012.11.004
  • Naaldijk YM, Bittencourt MC, Sack U, et al. Kinins and microglial responses in bipolar disorder: a neuroinflammation hypothesis. Biol Chem. 2016;397:283–296.
  • Talbot S, Dias JP, Lahjouji K, et al. Activation of TRPV1 by capsaicin induces functional kinin B(1) receptor in rat spinal cord microglia. J Neuroinflammation. 2012;9:16. DOI:10.1186/1742-2094-9-16
  • Basrai HS, Christie KJ, Turbic A, et al. Suppressor of cytokine signaling-2 (SOCS2) regulates the microglial response and improves functional outcome after traumatic brain injury in mice. PLoS One. 2016;11:e0153418.10.1371/journal.pone.0153418
  • Lacoste B, Tong XK, Lahjouji K, et al. Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation. 2013;10:57. DOI:10.1186/1742-2094-10-57
  • Gobel K, Pankratz S, Schneider-Hohendorf T, et al. Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. J Autoimmun. 2011;36:106–114.10.1016/j.jaut.2010.11.004
  • Lu D, Xu AD. Mini review: circular RNAs as potential clinical biomarkers for disorders in the central nervous system. Front Genet. 2016;7:53. DOI:10.3389/fgene.2016.00053
  • Lee ST, Chu K, Jung KH, et al. MicroRNAs induced during ischemic preconditioning. Stroke. 2010;41:1646–1651.10.1161/STROKEAHA.110.579649
  • Stary CM, Xu L, Sun X, et al. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting reelin. Stroke. 2015;46:551–556.10.1161/STROKEAHA.114.007041
  • Radisky DC. miR-200c at the nexus of epithelial-mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Res. 2011;13:110. DOI:10.1186/bcr2885
  • Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011;18:1628–1639.10.1038/cdd.2011.42
  • Watanabe Y, Katayama N, Takeuchi K, et al. Point mutation in syntaxin-1A causes abnormal vesicle recycling, behaviors, and short term plasticity. J Biol Chem. 2013;288:34906–34919.10.1074/jbc.M113.504050
  • Davis S, Rodger J, Stephan A, et al. Increase in syntaxin 1B mRNA in hippocampal and cortical circuits during spatial learning reflects a mechanism of trans-synaptic plasticity involved in establishing a memory trace. Learn Mem. 1998;5:375–390.
  • Rong R, Yang H, Rong L, et al. Proteomic analysis of PSD-93 knockout mice following the induction of ischemic cerebral injury. NeuroToxicology. 2016;53:1–11.10.1016/j.neuro.2015.12.005
  • Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microrna dysregulation. Front Cell Neurosci. 2015;9:476. DOI:10.3389/fncel.2015.00476
  • Porro C, Trotta T, Panaro MA. Microvesicles in the brain: Biomarker, messenger or mediator? J Neuroimmunol. 2015;288:70–78.10.1016/j.jneuroim.2015.09.006
  • Patz S, Trattnig C, Grunbacher G, et al. More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs, and proteins. J Neurotrauma. 2013;30:1232–1242.10.1089/neu.2012.2596
  • Cantaluppi V, Gatti S, Medica D, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 2012;82:412–427.10.1038/ki.2012.105
  • Wang J, Chen S, Ma X, et al. Effects of endothelial progenitor cell-derived microvesicles on hypoxia/reoxygenation-induced endothelial dysfunction and apoptosis. Oxid Med Cell Longev. 2013;2013:572729.
  • Wong R, Gibson CL, Kendall DA, et al. Evaluating the translational potential of progesterone treatment following transient cerebral ischaemia in male mice. BMC Neurosci. 2014;15:131. DOI:10.1186/s12868-014-0131-5
  • Austinat M, Braeuninger S, Pesquero JB, et al. Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009;40:285–293.10.1161/STROKEAHA.108.526673
  • Wang J, Zhong Y, Ma X, et al. Analyses of endothelial cells and endothelial progenitor cells released microvesicles by using microbead and Q-dot based nanoparticle tracking analysis. Sci Rep. 2016;6:24679.10.1038/srep24679
  • Egashira Y, Suzuki Y, Azuma Y, et al. The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. J Neuroinflammation. 2013;10:105. DOI:10.1186/1742-2094-10-105
  • Osthoff M, Katan M, Fluri F, et al. Mannose-binding lectin deficiency is associated with smaller infarction size and favorable outcome in ischemic stroke patients. PLoS One. 2011;6:e21338.10.1371/journal.pone.0021338
  • Sang H, Liu L, Wang L, et al. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci. 2016;43:53–65.10.1111/ejn.13133
  • Benakis C, Garcia-Bonilla L, Iadecola C, et al. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci. 2014;8:461.
  • Noda M, Kariura Y, Amano T, et al. Expression and function of bradykinin receptors in microglia. Life Sci. 2003;72:1573–1581.10.1016/S0024-3205(02)02449-9
  • Wang Q, Oyarzabal E, Wilson B, et al. Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice. Clin Sci (Lond). 2015;129:757–767.10.1042/CS20150008
  • Turola E, Furlan R, Bianco F, et al. Microglial microvesicle secretion and intercellular signaling. Front Physiol. 2012;3:149. DOI:10.3389/fphys.2012.00149
  • Kofuji T, Fujiwara T, Sanada M, et al. HPC-1/syntaxin 1A and syntaxin 1B play distinct roles in neuronal survival. J Neurochem. 2014;130:514–525.10.1111/jnc.2014.130.issue-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.