Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 40, 2018 - Issue 4
626
Views
18
CrossRef citations to date
0
Altmetric
Original Research Paper

β-amyloid inhibits hippocampal LTP through TNFR/IKK/NF-κB pathway

, &
Pages 268-276 | Received 20 Nov 2017, Accepted 29 Jan 2018, Published online: 20 Feb 2018

References

  • Selkoe DJ. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008 Sep 01;192(1):106–113. doi:10.1016/j.bbr.2008.02.016. PubMed PMID: 18359102; PubMed Central PMCID: PMC2601528.
  • Ivins KJ, Thornton PL, Rohn TT, et al. Neuronal apoptosis induced by beta-amyloid is mediated by caspase-8. Neurobiol Dis. 1999 Oct;6(5):440–449. doi:10.1006/nbdi.1999.0268. PubMed PMID: 10527810.
  • Harada J, Sugimoto M. Activation of caspase-3 in β-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res. 1999 Sep 25;842(2):311–323. PubMed PMID: 10526127.10.1016/S0006-8993(99)01808-9
  • Shankar GM, Li S, Mehta TH, et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008 Aug;14(8):837–842. doi:10.1038/nm1782. PubMed PMID: 18568035; PubMed Central PMCID: PMC2772133.
  • Jo J, Whitcomb DJ, Olsen KM, et al. Aβ1–42 inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat Neurosci. 2011 May;14(5):545–547. doi:10.1038/nn.2785. PubMed PMID: 21441921.
  • Chiba T, Yamada M, Sasabe J, et al. Amyloid-β causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons. Mol Psychiatry. 2009 Feb;14(2):206–222. doi:10.1038/mp.2008.105. PubMed PMID: 18813209.
  • Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015 Jun;16(6):358–372. doi:10.1038/nrn3880. PubMed PMID: 25991443.
  • Wang Q, Wu J, Rowan MJ, et al. β-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. Eur J Neurosci. 2005 Dec;22(11):2827–2832. doi:10.1111/j.1460-9568.2005.04457.x. PubMed PMID: 16324117.
  • Butler MP, O’Connor JJ, Moynagh PN. Dissection of tumor-necrosis factor-α inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early—but not late—phase LTP. Neuroscience. 2004;124(2):319–326. doi:10.1016/j.neuroscience.2003.11.040. PubMed PMID: 14980382.
  • Leonoudakis D, Braithwaite SP, Beattie MS, et al. TNFalpha-induced AMPA-receptor trafficking in CNS neurons; relevance to excitotoxicity? Neuron Glia Biol. 2004 Aug;1(3):263–273. doi:10.1017/S1740925X05000608. PubMed PMID: 16520832; PubMed Central PMCID: PMC1389713.
  • Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci. 2005 Mar 09;25(10):2566–2575. doi:10.1523/JNEUROSCI.4998-04.2005. PubMed PMID: 15758166.
  • Rossol M, Meusch U, Pierer M, et al. Interaction between transmembrane TNF and TNFR1/2 mediates the activation of monocytes by contact with T cells. J Immunol. 2007 Sep 15;179(6):4239–4248. PubMed PMID: 17785864.10.4049/jimmunol.179.6.4239
  • Sakurai H, Suzuki S, Kawasaki N, et al. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem. 2003 Sep 19;278(38):36916–36923. doi:10.1074/jbc.M301598200. PubMed PMID: 12842894.
  • Luo JL, Kamata H, Karin M. IKK/NF- B signaling: balancing life and death – a new approach to cancer therapy. J Clin Invest. 2005 Oct;115(10):2625–2632. doi:10.1172/JCI26322. PubMed PMID: 16200195; PubMed Central PMCID: PMC1236696.
  • Kwon HJ, Breese EH, Vig-Varga E, et al. Tumor necrosis factor alpha induction of NF-kappaB requires the novel coactivator SIMPL. Mol Cell Biol. 2004 Nov;24(21):9317–9326. doi:10.1128/MCB.24.21.9317-9326.2004. PubMed PMID: 15485901; PubMed Central PMCID: PMC522234.
  • Bonaiuto C, McDonald PP, Rossi F, et al. Activation of nuclear factor-κB by β-amyloid peptides and interferon-γ in murine microglia. J Neuroimmunol. 1997 Jul;77(1):51–56. PubMed PMID: 9209268.10.1016/S0165-5728(97)00054-4
  • Valerio A, Boroni F, Benarese M, et al. NF-κB pathway: a target for preventing β-amyloid (Aβ)-induced neuronal damage and Aβ42 production. Eur J Neurosci. 2006 Apr;23(7):1711–1720. doi:10.1111/j.1460-9568.2006.04722.x. PubMed PMID: 16623827.
  • Terai K, Matsuo A, McGeer PL. Enhancement of immunoreactivity for NF-κB in the hippocampal formation and cerebral cortex of Alzheimer's disease. Brain Res. 1996 Sep 30;735(1):159–168. PubMed PMID: 8905182.10.1016/0006-8993(96)00310-1
  • Boissière F, Hunot S, Faucheux B, et al. Nuclear translocation of NF-κB in cholinergic neurons of patients with Alzheimerʼs disease. NeuroReport. 1997 Sep 08;8(13):2849–2852. PubMed PMID: 9376517.10.1097/00001756-199709080-00009
  • Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013 Aug;12(1):86. doi:10.1186/1476-4598-12-86. PubMed PMID: 23915189; PubMed Central PMCID: PMC3750319.
  • Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol. 2014 Jun;26(3):253–266. doi:10.1016/j.smim.2014.05.004. PubMed PMID: 24958609; PubMed Central PMCID: PMC4156877.
  • Kempe S, Kestler H, Lasar A, et al. NF- B controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 2005;33(16):5308–5319. doi:10.1093/nar/gki836. PubMed PMID: 16177180; PubMed Central PMCID: PMC1226313.
  • Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor perspectives in biology. 2009 Dec;1(6):a001651. doi:10.1101/cshperspect.a001651. PubMed PMID: 20457564; PubMed Central PMCID: PMC2882124.
  • Westerman MA, Cooper-Blacketer D, Mariash A, et al. The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci. 2002;22(5):1858–1867.
  • Oakley H, Cole SL, Logan S, et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J Neurosci. 2006;26(40):10129–10140. doi:10.1523/jneurosci.1202-06.2006.
  • Landel V, Baranger K, Virard I, et al. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease. Mol Neurodegener. 2014 Sep;9(1):33. doi:10.1186/1750-1326-9-33. PubMed PMID: 25213090; PubMed Central PMCID: PMC4237952.
  • Ardestani PM, Evans AK, Yi B, et al. Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer’s disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology. 2017 Apr;116:371–386. doi:10.1016/j.neuropharm.2017.01.010. PubMed PMID: 28089846; PubMed Central PMCID: PMC5385159.
  • Tehranian R, Hasanvan H, Iverfeldt K, et al. Early induction of interleukin-6 mRNA in the hippocampus and cortex of APPsw transgenic mice Tg2576. Neurosci Lett. 2001 Mar 23;301(1):54–58. PubMed PMID: 11239715.10.1016/S0304-3940(01)01592-0
  • Chami L, Buggia-Prévot V, Duplan E, et al. Nuclear factor-kappaB regulates betaAPP and beta- and gamma-secretases differently at physiological and supraphysiological Abeta concentrations. J Biol Chem. 2012 Jul 13;287(29):24573–24584. doi:10.1074/jbc.M111.333054. PubMed PMID: 22654105; PubMed Central PMCID: PMC3397882.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.