Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 43, 2021 - Issue 7
215
Views
6
CrossRef citations to date
0
Altmetric
Original Research Paper

Mitochondrial dysfunction and serum lactate as a biomarker for the progression and disability in MS and its correlation with the radiological findings

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 582-590 | Received 04 Nov 2020, Accepted 16 Feb 2021, Published online: 04 Mar 2021

References

  • Kobelt G, Thompson A, Berg J, et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler. 2017;23(8):1123–1136. .
  • Kozin MS, Kulakova OG, Favorova OO. Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis. Biochem (Mosc). 2018;83(7):813–830.
  • Barcelos IP, Troxell RM, Graves JS. Mitochondrial Dysfunction and Multiple Sclerosis. Biology (Basel). 2019;8(2):37.
  • Rafael H. Omental transplantation for neurodegenerative diseases. Am J Neurodegener Dis. 2014;3(2):50–63.
  • Burnside SW, Hardingham GE. Transcriptional regulators of redox balance and other homeostatic processes with the potential to alter neurodegenerative disease trajectory. Biochem Soc Trans. 2017;45(6):1295–1303.
  • Ziemann U, Wahl M, Hattingen E, et al. Development of biomarkers for multiple sclerosis as a neurodegenerative disorder. Prog Neurobiol. 2011;95(4):670–685.
  • Pravica V, Popadic D, Savic E, et al. Single nucleotide polymorphisms in multiple sclerosis: disease susceptibility and treatment response biomarkers. Immunol Res. 2012;52(1–2):42–52.
  • Tourdias T, Dousset V. Neuroinflammatory imaging biomarkers: relevance to multiple sclerosis and its therapy. Neurotherapeutics. 2013;10(1):111–123.
  • Stadelmann C. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol. 2011;24(3):224–229.
  • Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8(3):280–291.
  • Campbell GR, Mahad DJ. Mitochondria as crucial players in demyelinated axons: lessons from neuropathology and experimental demyelination. Autoimmune Dis. 2011;2011:262847.
  • Su K, Bourdette D, Forte M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front Physiol. 2013;4:169.
  • Fünfschilling U, Supplie LM, Mahad D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485(7399):517–521. .
  • Karus C, Ziemens D, Rose CR. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism. Channels (Austin). 2015;9(4):200–208.
  • Finsterer J. Cerebrospinal-fluid lactate in adult mitochondriopathy with and without encephalopathy. Acta Med Austriaca. 2001;28(5):152–155.
  • Sommer JB, Gaul C, Heckmann J, et al. Does lumbar cerebrospinal fluid reflect ventricular cerebrospinal fluid? A prospective study in patients with external ventricular drainage. Eur Neurol. 2002;47(4):224–232.
  • Regenold WT, Phatak P, Makley MJ, et al. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J NeurolSci. 2008;275(1–2):106–112.
  • Zaaraoui W, Rico A, Audoin B, et al. Unfolding the long-term pathophysiological processes following an acute inflammatory demyelinating lesion of multiple sclerosis. Magn Reson Imaging. 2010;28(4):477–486. .
  • Simone IL, Federico F, Trojano M, et al. High resolution proton MR spectroscopy of cerebrospinal fluid in MS patients. Comparison with biochemical changes in demyelinating plaques. J Neurol Sci. 1996;144(1–2):182–190.
  • Lutz NW, Viola A, Malikova I, et al. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One. 2007;2(7):e595. .
  • Aasly J, Gårseth M, Sonnewald U, et al. Cerebrospinal fluid lactate and glutamine are reduced in multiple sclerosis. Acta NeurolScand. 1997;95(1):9–12.
  • Schocke MF, Berger T, Felber SR, et al. Serial contrast-enhanced magnetic resonance imaging and spectroscopic imaging of acute multiple sclerosis lesions under high-dose methylprednisolone therapy. Neuroimage. 2003;20(2):1253–1263. .
  • FonalledasPerelló MA, Politi JV, Dallo Lizarraga MA, et al. The cerebrospinal fluid lactate is decreased in early stages of multiple sclerosis. P R Health Sci J. 2008;27(2):171–174.
  • Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–286. .
  • Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–1452.
  • Filippi M, Rocca MA, Ciccarelli O, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292–303. .
  • A J T, S E B, Geurts J. Hemmer B and Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–1636.
  • Gramsch C, Nensa F, Kastrup O, et al. Diagnostic value of 3D fluid attenuated inversion recovery sequence in multiple sclerosis. Acta Radiol. 2015;56(5):622–627. .
  • Pareto D, Sastre-Garriga J, Auger C, et al. Juxtacortical lesions and cortical thinning in multiple sclerosis. AJNR Am J Neuroradiol. 2015;36(12):2270–2276. .
  • Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969;6(1):24–27.
  • Amorini AM, Nociti V, Petzold A, et al. Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta Mol Basis Dis. 2014;1842(7):1137–1143. .
  • Hassan A, Serum Lactate MD. Uric acid as biomarkers for disease activity and progression in multiple sclerosis. Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2015;52(2):127–131.
  • Brück W, Stadelmann C. Inflammation and degeneration in multiple sclerosis. Neurol Sci. 2003 Dec;24(Suppl 5):S265–7. .
  • Filippi M, Preziosa P, Banwell BL, et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 2019;142(7):1858–1875.
  • Mainero C, Louapre C, Govindarajan ST, et al. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain. 2015 Apr;138(Pt 4):932–945. .
  • Stromillo ML, Giorgio A, Rossi F, et al. Brain metabolic changes suggestive of axonal damage in radiologically isolated syndrome. Neurology. 2013;80(23):2090–2094.
  • Kirov II, Tal A, Babb JS, et al. Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS. Neurology. 2013;80(1):39–46.
  • Steen C, D’haeseleer M, Hoogduin JM, et al. Cerebral white matter blood flow and energy metabolism in multiple sclerosis. Mult Scler J. 2013;19(10):1282–1289. .
  • Husted CA, Goodin DS, Hugg JW, et al. Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol. 1994 Aug;36(2):157–165. .
  • Bagory M, Durand-Dubief F, Ibarrola D, et al. Implementation of an absolute brain 1H-MRS quantification method to assess different tissue alterations in multiple sclerosis. IEEE Trans Biomed Eng. 2012;59(10):2687–2694. .
  • Tur C, Wheeler-Kingshott CA, Altmann DR, et al. Spatial variability and changes of metabolite concentrations in the cortico-spinal tract in multiple sclerosis using coronal CSI. Hum Brain Mapp. 2014 Mar;35(3):993–1003. .
  • Steen C, Wilczak N, Hoogduin JM, et al. Reduced creatine kinase B activity in multiple sclerosis normal appearing white matter. PLoS One. 2010;5(5):e10811.
  • Lazzarino G, Amorini AM, Petzold A, et al. Serum compounds of energy metabolism impairment are related to disability, disease course and neuroimaging in multiple sclerosis. Mol Neurobiol. 2017;54(9):7520–7533. .
  • Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):R502–R516.
  • Ghareghani M, Ghanbari A, Dokoohaki S, et al. Methylprednisolone improves lactate metabolism through reduction of elevated serum lactate in rat model of multiple sclerosis. Biomed Pharmacother. 2016Dec;84:1504–1509.
  • Vawter MP, Tomita H, Meng F, et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry. 2006;11(7):615.
  • Albanese M, Zagaglia S, Landi D, et al. Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J Neuroinflammation. 2016;13(1):36.
  • Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019;16(1):272.
  • Lo Sasso B, Agnello L, Bivona G, et al. cerebrospinal fluid analysis in multiple sclerosis diagnosis: an update. Medicina (Kaunas). 2019;55(6):245.
  • Filippi M, Preziosa P, Langdon D, et al. Identifying progression in multiple sclerosis: new perspectives. Ann Neurol. 2020 Sep;88(3):438–452. .
  • Shedko ED, Tyumentseva MA. Molekuliarnye biomarkery v tserebrospinal’noĭ zhidkosti pri rasseiannom skleroze [Cerebrospinal fluid molecular biomarkers of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova. 2019;119(7):95–102. . Russian
  • Huang J, Khademi M, Fugger L, et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc Natl Acad Sci U S A. 2020;117(23):12952–12960.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.