Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 45, 2023 - Issue 2
362
Views
3
CrossRef citations to date
0
Altmetric
Research Article

5-HT1B receptor-AC-PKA signal pathway in the lateral habenula is involved in the regulation of depressive-like behaviors in 6-hydroxydopamine-induced Parkinson’s rats

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 127-137 | Received 05 Feb 2022, Accepted 11 Sep 2022, Published online: 20 Sep 2022

References

  • Löhle M, Storch A, Reichmann H. Beyond tremor and rigidity: non-motor features of Parkinson’s disease. J Neural Transm. 2009;116(11):1483–1492.
  • Kiss J, Csaki A, Bokor H, et al. Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [(3)H]D-aspartate labelling and immunocytochemistry. Neuroscience. 2002;111(3):671–691.
  • Herkenham M, Nauta WJ. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol. 1977;173(1):123–146.
  • Hikosaka O, Sesack SR, Lecourtier L, et al. Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci. 2008;28(46):11825–11829.
  • Hong S, Hikosaka O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron. 2008;60(4):720–729.
  • Sartorius A, Henn FA. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses. 2007;69(6):1305–1308.
  • Lecca S, Meye FJ, Mameli M. The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur J Neurosci. 2014;39(7):1170–1178.
  • Morris JS, Smith KA, Cowen PJ, et al. Covariation of activity in habenula and dorsal raphé nuclei following tryptophan depletion. Neuroimage. 1999;10(2):163–172.
  • Shumake J, Edwards E, Gonzalez-Lima F. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res. 2003;963(1–2):274–281.
  • Yang LM, Hu B, Xia YH, et al. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav Brain Res. 2008;188(1):84–90.
  • Meng H, Wang Y, Huang M, et al. Chronic deep brain stimulation of the lateral habenula nucleus in a rat model of depression. Brain Res. 2011;1422:32–38.
  • Li B, Piriz J, Mirrione M, et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature. 2011;470(7335):535–539.
  • Winter C, Vollmayr B, Djodari-Irani A, et al. Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav Brain Res. 2011;216(1):463–465.
  • Winter C, von Rumohr A, Mundt A, et al. Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats. Behav Brain Res. 2007;184(2):133–141.
  • Santiago RM, Barbiero J, Gradowski RW, et al. Induction of depressive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal dopamine and hippocampal serotonin. Behav Brain Res. 2014;259:70–77.
  • Sourani D, Eitan R, Gordon N, et al. The habenula couples the dopaminergic and the serotonergic systems: application to depression in Parkinson’s disease. Eur J Neurosci. 2012;36(6):2822–2829.
  • Wang T, Zhang L, Zhang QJ, et al. Involvement of lateral habenula α1 subunit-containing GABAA receptor-mediated inhibitory transmission in the regulation of depression-related behaviors in experimental Parkinson’s disease. Neuropharmacology. 2017;116:399–411.
  • Zhang J, Lv SX, Tang GY, et al. Activation of calcium-impermeable GluR2-containing AMPA receptors in the lateral habenula produces antidepressant-like effects in a rodent model of Parkinson’s disease. Exp Neurol. 2019;322:113058.
  • Tierney PL, Dégenètais E, Thierry AM, et al. Influence of the hippocampus on interneurons of the rat prefrontal cortex. Eur J Neurosci. 2004;20(2):514–524.
  • Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38(8):1083–1152.
  • De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Prog Neurobiol. 2017;151:175–236.
  • Bruinvels AT, Palacios JM, Hoyer DA, et al. Autoradiographic characterisation and localisation of 5-HT1D compared to 5-HT1B binding sites in rat brain. Naunyn-Schmiedebergs Arch Pharmacol. 1993;347(6):569–582.
  • Nautiyal KM, Tritschler L, Ahmari SE, et al. A lack of serotonin1B autoreceptors results in decreased anxiety and depression-related behaviors. Neuropsychopharmacology. 2016;41(12):2941–2950.
  • Bechtholt AJ, Smith K, Gaughan S, et al. Sucrose intake and fasting glucose levels in 5-HT(1A) and 5-HT(1B) receptor mutant mice. Physiol Behav. 2008;93(4–5):659–665.
  • Jones MD, Lucki I. Sex differences in the regulation of serotonergic transmission and behavior in 5-HT receptor knockout mice. Neuropsychopharmacology. 2005;30(6):1039–1047.
  • Maroteaux L, Saudou F, Amlaiky N, et al. Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci. 1992;89(7):3020–3024.
  • Ng GY, George SR, Zastawny RL, et al. Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. Biochemistry. 1993;32(43):11727–11733.
  • Mathur BN, Capik NA, Alvarez VA, et al. Serotonin induces long-term depression at corticostriatal synapses. J Neurosci. 2011;31(20):7402–7411.
  • Hwang EK, Chung JM. 5HT1B receptor-mediated pre-synaptic depression of excitatory inputs to the rat lateral habenula. Neuropharmacology. 2014;81:153–165.
  • Lu CW, Lin TY, Huang SK, et al. 5-HT1B receptor agonist CGS12066 presynaptically inhibits glutamate release in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:122–130.
  • Tadaiesky MT, Dombrowski PA, Figueiredo CP, et al. Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience. 2008;156(4):830–840.
  • Sclafani A, Ackroff K. Reinforcement value of sucrose measured by progressive ratio operant licking in the rat. Physiol Behav. 2003;79(4–5):663–670.
  • Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47(4):379–391.
  • Fedrowitz M, Lindemann S, Löscher W, et al. Altered spontaneous discharge rate and pattern of basal ganglia output neurons in the circling (ci2) rat mutant. Neuroscience. 2003;118(3):867–878.
  • Tchenio A, Valentinova K, Mameli M. Can the lateral Habenula crack the serotonin code. Front Neurosci. 2016;8:34.
  • Liu JH, Wu ZF, Sun J, et al. Role of AC-cAMP-PKA cascade in antidepressant action of electroacupuncture treatment in rats. Evid Based Complement Alternat Med. 2012;2012:932414.
  • Nestler EJ, Terwilliger RZ, Duman RS. Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J Neurochem. 1989;53(5):1644–1647.
  • Perez J, Tinelli D, Brunello N. cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol. 1989;172(3):305–316.
  • Ozawa H, Rasenick MM. Chronic electroconvulsive treatment augments coupling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J Neurochem. 1991;56(1):330–338.
  • Lyu S, Guo Y, Zhang L, et al. Blockade of GABA transporter-1 and GABA transporter-3 in the lateral habenula improves depressive-like behaviors in a rat model of Parkinson’s disease. Neuropharmacology. 2020;181:108369.
  • Lyu S, Guo Y, Zhang L, et al. Downregulation of astroglial glutamate transporter GLT-1 in the lateral habenula is associated with depressive-like behaviors in a rat model of Parkinson’s disease. Neuropharmacology. 2021;196:108691.
  • Qian H, Kang X, Hu J, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature. 2020;582(7813):550–556.
  • Wevers NR, Kasi DG, Gray T, et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018;15(1):23.
  • Salman MM, Marsh G, Kusters I, et al. Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging. Front Bioeng Biotechnol. 2020;8:573775.
  • Aldewachi H, Al-Zidan RN, Conner MT, et al. High-Throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases. Bioengineering (Basel). 2021;8(2):30.
  • Salman MM, Al-Obaidi Z, Kitchen P, et al. Advances in applying computer-aided drug design for neurodegenerative diseases. Int J Mol Sci. 2021;22(9):4688.
  • Franceschi C, Garagnani P, Parini P, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–590.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.